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Coming soon to an arXiv near you…

Fernando Romero-López Miguel Salg

Work in progress with:



Motivation and Context

W.I. Jay — MIT 3



Hadron Spectroscopy
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• Experimentally, most hadrons appear as resonances, i.e., 
“bumps” in scattering cross sections. 


• Location of the bump  Mass of the resonance


• Width of the bump  Lifetime of the resonance

⟺

⟺
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• Ex:  spectrum below  threshold ( )


• More than 60 years of experimental and theoretical study


• What is the nature of the resonance? 


• Can it be understood from QCD?

π−Σ+ K−p ∼ 1442 MeV

Dalitz & Tuan, PRL 2 (1959) 425-428 
 Dalitz & Tuan, Annals Phys. 10 (1960) 307-351 

Hyodo & Jido, Prog. Part. Nucl. Phys. 67, 55 (2012) 
Hyodo & Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021) 

CLAS Collaboration, PRL 112 (2014) 8, 082004 

Data - CLAS 2014 

https://inspirehep.net/literature/44384
https://inspirehep.net/literature/44389
https://arxiv.org/abs/1104.4474
https://arxiv.org/abs/2010.07592
https://arxiv.org/pdf/1402.2296
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• Ex: Exotic “XYZ” hadrons - a renaissance in hadron spectroscopy



Hadron Spectroscopy
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• Theoretically, we want to calculate the properties of resonances 
directly from the underlying degrees of freedom: QCD


• Provide predictions/postdictions to test our understanding of 
low-energy QCD


• Help characterize the nature of resonances seen in experiment
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8W.I. Jay — CSU

• Resonances are identified with poles of scattering amplitudes  
in the complex plane.


• Ex: Breit Wigner 


•  


• Pole at complex 

ℳ

ℳ(E) ∼
Γ/2

(ER − E) − iΓ/2

E = ER − iΓ/2



Resonances in field theory

9W.I. Jay — CSU

• Resonances are identified with poles of scattering amplitudes  
in the complex plane.


• But, analytic structure of scattering amplitudes is tightly 
constrained by causality and unitarity


• Causality: No poles away from the real line on first (“physical”) 
Riemann sheet


• Unitarity: Complex poles come in conjugate pairs on higher 
Riemann sheets


• Multi-particle thresholds: Branch cuts on the real line

ℳ
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• Resonances are identified with poles of scattering amplitudes  in 
the complex plane.

ℳ

PDG Review: #50 Resonances,  
Asner, Hanhart, Mikhasenko
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• Resonances are identified with poles of scattering amplitudes  in 
the complex plane.

ℳ

Branch cut

above threshold

Bound-state pole

(below threshold)

Im s

Re s

Virtual-bound-state pole

(below threshold)

Im s

Re s

Resonance poles

(complex conjugates)

Physical Sheet 2nd Sheet



Hadron Spectroscopy 
in Finite Volume
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Hadron spectroscopy in Finite Volume

13W.I. Jay — CSU

• Scattering amplitudes are defined in infinite volume:


• Begin with asymptotically separated initial states


• Particles interact


• Compute phase shift in outgoing waves at asymptotic 
separation.


• Conceptual complication in finite-volume:


• A periodic, few-fm box does not have asymptotic states



Hadron spectroscopy in Finite Volume
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Infinite volume

Continuum of 

multi-particle 

states

Finite volume

Discrete

finite-volume

energy levels

Bound states
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Quantization Condition

Infinite volumeFinite volume

det
ℓm

[F(E, L) + K−1(E)]
E=En

= 0

Finite-volume 
function (known)

Infinite-volume

K-matrix (desired)

Lüscher, Commun.Math.Phys. 104 (1986) 177 
Lüscher, Commun.Math.Phys. 105 (1986) 153-188 

Lellouch and Lüscher, Commun.Math.Phys. 219 (2001) 31-44 
+ many, many other contributors!

Hadron spectroscopy in Finite Volume
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• Consider 2 bosons in non-relativistic QM.


• Consider a finite-range potential 


• Look for scattering ( ) solutions to the Schrödinger equation


• 


• Matching solutions at  to find phase shift 


• Note: momentum  is a continuous

V(r) = 0, r > R

E > 0

ψp(r) ∼ cos (pr+δ(p))
r = R δ(p)

p

Case 1: Infinite volume
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• Look for scattering ( ) solutions to the Schrödinger equation


• 


• Compute phase shift  by matching solutions at 


• Enforce periodicity at boundary: 


• 


• Quantization condition: discrete momenta satisfy this equation

E > 0

ψp(r) ∼ cos (pr + δ(p))
δ(p) r = R

ψp(r)
r=L/2

= 0

⟹ pn
L
2

+
2
L

δ(pn) = πn

Case 2: Finite volume
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Hadron spectroscopy in Finite Volume

1. ) Compute finite-volume 
spectrum  (lattice QCD)En

det
ℓm

[F(E, L) + K−1(E)]
E=En

= 02. ) Solve quantization 
condition for K−1(En)

Real line: Reℳ−1(E) = K−1(E)

3.) Locate poles using 
analytic continuation ℳ−1(E) → ℳ−1(z)

Lattice QCD


⟨�̂�(τ)�̂�(0)⟩ ⟹

Pipeline of ideas
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‣ Choose a variational basis of  operators  with the quantum 
numbers of the desired states (e.g., I=1 )


‣ Compute the  matrix of correlation functions 


‣ Solve generalized eigenvalue problem to find  energy levels 

N �̂�i
ππ

N × N ⟨�̂�i(τ)�̂�j(0)⟩

N En

State of the art: Step 1

1. ) Compute finite-volume 
spectrum  (lattice QCD)En

Lattice QCD


⟨�̂�(τ)�̂�(0)⟩ ⟹
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State of the art: Steps 2 and 3

det
ℓm

[K−1(E)+F(E, P, L)]
E=En

= 02. ) Solve quantization 
condition for K−1(En)

3.) Locate poles using 
analytic continuation ℳ−1(E) → ℳ−1(z)

‣ Assume an explicit parametric model for the K-matrix to relate solutions 
of the quantization condition at different energies.


‣ Fix parameters of model with a least-squares fit.


‣ Solve for poles using the best-fit parameters


‣ Check parameterization dependence of result to quantify systematic 
uncertainties
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State of the art: Steps 2 and 3

det
ℓm

[K−1(E)+F(E, P, L)]
E=En

= 02. ) Solve quantization 
condition for K−1(En)

3.) Locate poles using 
analytic continuation ℳ−1(E) → ℳ−1(z)

Today’s talk:


‣ New non-parametric approach to solving quantization condition 
and finding poles via analytic continuation
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Solving the quantization condition

Useful to get concrete: Single-channel s-wave ( ) scattering


Ex:  below  threshold.





 


Determinant simplifies to a single line.


 - Lüscher zeta function (transcendental function for finite volume)

ℓ = 0

ππ → σ → ππ KK̄

det [K−1 + F] = 0

⟹ q cot δ0(q2) = (kinematics) × 𝒵00(q2, L, P)

𝒵00
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Solving the quantization condition

Useful to get concrete: s-wave multi-channel scattering


Ex: 








For each energy E, the quantization condition is a real equation in three unknowns: 

πΣ → Λ(1405) → K̄N

det [K−1 + F] = 0

⟹det [(
K−1

πΣ;πΣ(E) K−1
πΣ;K̄N(E)

K−1
K̄N;πΣ(E) K−1

K̄N;K̄N(E)) + (FπΣ(E) 0
0 FK̄N(E))] = 0

K−1
ij (E)
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Solving the quantization condition - usual method

• Parameterize the K-matrix


• Solve for discrete energies


• Compare to known energies


• Construct  function


• Define best-fit parameters

χ2

Solution 


: 





EQC(θ)

ELQCD ΔE = ELQCD − EQC(θ)

χ2(θ) = ΔETΣ−1
LQCDΔE

θ⋆ = argminθ χ2(θ)

Ansatz K−1(E) = ∑
m

θmEm



A “non-parametric” proposal
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Solving the quantization condition - a Bayesian approach

• Consider interpolating a smooth function  at a 

discrete set of “nodes”  and “values” 


• If typical variations in  occur at scale longer than node spacing, 

the error from interpolating a discrete set “ought to be small.”

u(E) : ℝ → ℝ

E u

u(E)

Goal: non-parametric model for K-matrix at nodes on the real line
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Solving the quantization condition - a Bayesian approach

• Bayesian approach  need “prior” distribution for values :








⟹ u = K−1
ℓ (E)

p(u |u0) ∝ exp [−
1
2

(u − u0)TΣ−1
p (u − u0)]

Σp(E, E′ ) = σ(E, E′ )2exp [−
(E − E′ )2

2ℓ2
c ] + ϵδE,E′ 

p(ELQCD |u) ∝ exp [− 1
2 χ2(u)]

multivariate 
Gaussian 

distribution

Radial Basis 
Function (RBF)


kernel

Likelihood - usual χ2

Goal: non-parametric model for K-matrix at nodes on the real line
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Solving the quantization condition - a Bayesian approach

Note: Similar, but not identical, to a Gaussian process.


 has important nonlinearities in  from singularities in zeta function EQC(u) u 𝒵00

Goal: non-parametric model for K-matrix at nodes on the real line

• Bayes Theorem:



(posterior) = (likelihood) × (prior)

p(u |ELQCD, u0) = p(ELQCD |u) × p(u |u0)
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Solving the quantization condition - a Bayesian approach

• Bayes Theorem:



(posterior) = (likelihood) × (prior)

p(u |ELQCD, u0) = p(ELQCD |u) × p(u |u0)

• Expectation values (mean, errors) defined with respect to the posterior, as usual:


⟨u⟩post =
1
Z ∫ ddu u p(u |ELQCD, u0)

Goal: non-parametric model for K-matrix at nodes on the real line
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Solving the quantization condition - a Bayesian approach

Posterior Sampling: Monte Carlo


1. Sample from Gaussian prior (trivial)


2. Apply reweighting: ⟨u⟩post = ⟨uwpost⟩priorwpost =
p(u |Ed, u0)

p(u |u0)

‣ Benefit: no Markov chain, so no autocorrelations.


‣ Challenge: Sampling can be inefficient when prior and posterior dissimilar

Approach #1

Goal: non-parametric model for K-matrix at nodes on the real line



Hadron spectroscopy in Finite Volume

31W.I. Jay — CSU

Solving the quantization condition - a Bayesian approach

Posterior Sampling: Monte Carlo


1. Linearize quantization condition


2. Sample from resulting Gaussian approximation to 


3. Apply reweighting to recover exact result 

(Likelihood) × (Prior)

‣ Benefit: Easy to compute normalization (Bayesian evidence) for model comparison


‣ Challenge: Sampling can still be inefficient when prior and posterior dissimilar

Approach #2

Goal: non-parametric model for K-matrix at nodes on the real line
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Solving the quantization condition - a Bayesian approach

Posterior Sampling: Monte Carlo


1. Generate samples using Hybrid Monte Carlo algorithm

‣ Benefit: Robust sampling method


‣ Challenge: Introduces familiar complications like autocorrelations


‣ Challenge: Accessing normalization Z for model comparison is more cumbersome

Goal: non-parametric model for K-matrix at nodes on the real line

Approach #3
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Solving the quantization condition - a Bayesian approach

Goal: non-parametric model for K-matrix at nodes on the real line

‣ Upshot: sampling furnishes ⟨u⟩post = K−1(E)

det
ℓm

[F(E, L) + K−1(E)]
E=En

= 0
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Analytic continuation to locate poles in the complex plane

Im E

Re E

Result of solving

quantization condition

Goal: Locate pole in   Zero in 

with robust quantification of uncertainty

ℳ ⟺ ℳ−1
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Analytic continuation to locate poles in the complex plane

Im E

Re E

Result of solving

quantization condition

Goal: Locate pole in   Zero in 

with robust quantification of uncertainty

ℳ ⟺ ℳ−1

What does “analytic continuation”

mean for a finite set of points?
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Analytic continuation to locate poles in the complex plane

Conformal map?

The natural setting for complex analysis is the unit disk.
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Analytic continuation to locate poles in the complex plane

‣ Nota bena: Such a mapping is required for both domain and codomain.

z ↦ ℳ−1(z)

ζ ↦ f(ζ)

Conformal

map

Conformal

map
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Analytic continuation to locate poles in the complex plane

‣ Nota bena: Such a mapping is required for both domain and codomain.

z ↦ ℳ−1(z)

‣ The Riemann mapping theorem guarantees existence of required conformal maps


‣ Use physics knowledge to guide the choice of domain and codomain and maps


‣ Ex: Locations of poles and zeros, range of possible values, etc…


‣ These maps implicitly contain strong theoretical assumptions. Be careful.
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Analytic continuation to locate poles in the complex plane

One appealing choice: Schwarz-Christoffel mapping



• Given data for real energies ,   

,


,


construct an analytic function   

on the disk that interpolates these points: . 

• Locate zero by extrapolation to the interior of the disk

{En} {ℳ−1(En)}

{En} → ζn ⊂ 𝔻

{ℳ−1(En)} ↦ wn ⊂ 𝔻

f(ζ)

f(ζn) = wn

40

 Numerical Analytic Continuation
The sharp technical problem

W.I. Jay — CSU



Nevanlinna-Pick Interpolation

41

• Basic fact (maximum modulus principle ):


Let  be an analytic function.


Suppose  has a zero at : .


Then .

⟹

g(ζ) : 𝔻 → 𝔻

g(ζ) a ∈ 𝔻 g(a) = 0

g(ζ) = ba(ζ)g̃(ζ)

g(a) = 0Blaschke

factor

“Remainder”

(analytic in )𝔻

The big idea: “factor out what you know”

W.I. Jay — CSU



The big idea: “factor out what you know”
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• Basic fact (maximum modulus principle ):


Let  be an analytic function.


Suppose  has a zero at : .


Then .

⟹

g(ζ) : 𝔻 → 𝔻

g(ζ) a ∈ 𝔻 g(a) = 0

g(ζ) = ba(ζ)g̃(ζ)

• Note: Setup familiar in quark-flavor 
physics from z-expansion of form factors


‣ Blaschke factors "factor out” known 
analytic structure, e.g., sub-threshold 
poles.

Nevanlinna-Pick Interpolation

g(a) = 0
Boyd, Grinstein, Lebed 

Nucl.Phys.B 461 (1996) 493-511 
Phys.Rev.D 56 (1997) 6895-6911 

Caprini, Lellouch, Neubert 
Nucl.Phys.B 530 (1998) 153-181

W.I. Jay — CSU



Theorem (Nevanlinna, 1919/1929): 

• Any solution to the interpolation problem with N points can be 
written in the form


.


• “Nevanlinna coefficients” , , ,  


Known / calculable from input data


• Arbitrary function analytic function 


 Freedom to specify further data to constrain the 
interpolating function


 Plays role of the “remainder” function on the previous slide

f(ζ) =
PN(ζ)fN(ζ) + QN(ζ)
RN(ζ)fN(ζ) + SN(ζ)

PN QN RN SN

⟺

fN(ζ) : 𝔻 → 𝔻

⟺

⟺

Repeated application of “factoring”
Analytic Continuation

43

R. Nevanlinna 
Ann. Acad. Sci. Fenn. Ser. A 13 (1919) 
Ann. Acad. Sci. Fenn. Ser. A 32 (1929)

A. Nicolau 
Proc. Summer School in Complex and 

Harmonic analysis… (2016) 
[LINK]

First application in QFT 
(Condensed Matter Physics) 

J. Fei, C.-N. Yeh, E. Gull, 
PRL 126, 056402 (2021) 

arXiv:2010.04572

W.I. Jay — CSU MIT BNL→
Patrick Oare

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

https://erepo.uef.fi/handle/123456789/15782


• Key point: The freedom and influence of the 
“remainder” is constrained, since .


• Question: What possible values can the 
interpolating function  can take when 
extrapolated to arbitrary points “ ”?


• Remarkably, this set can be parameterized 
explicitly for each  and each point “ ”.


• Size of this set  ambiguity in the analytic 
continuation

fN(ζ) ∈ 𝔻

f(ζ)

N

⟺

The full space of solutions
Analytic Continuation

44

= given

f( ) = ?

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

W.I. Jay — CSU



• Answer: The space of possible values is a disk of 
radius  centered at . This disk called the 
Wertevorrat .


• Given  interpolation points, the Wertevorrat  
rigorously contains all possible analytic continuations 
at each extrapolation point .

rN(ζ) cN(ζ)
ΔN(ζ)

N ΔN(ζ)

ζ ∈ 𝔻

The full space of solutions
Analytic Continuation

rN =
|PNSN − QNRN |

|SN |2 − |RN |2cN =
PN(−RN /SN) + QN

RN(−RN /SN) + SN

45

ζ

ΔN(ζ)
‣ Complete characterization of systematic uncertainty

‣ No model assumptions — just analyticity!

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

W.I. Jay — CSU
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Analytic continuation to locate poles in the complex plane

Searching for zeros in  with the Wertevorrat


• Use a random point in  as the function estimator. 


• Sampling trivial with formulae for radius and center





• Map the  back to original energy coordinates to find zero


• Fix random numbers  on each posterior sample


• Can sample additional values for  on each sample for 
“improved estimator”


• Similar in spirit to using many point sources on a given 
gauge-field configuration when solving the Dirac equation in 
lattice QCD.

ℳ−1(E)

ΔN(ζ)

w(ζ) = cN(ζ) + rrN(ζ)eiθ

w(ζ)

(r, θ)

(r, θ)

ΔN(ζ)
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Analytic continuation to locate poles in the complex plane

det
ℓm

[K−1(E)+F(E, P, L)]
E=En

= 02. ) Solve quantization 
condition for K−1(En)

3.) Locate poles using 
analytic continuation ℳ−1(E) → ℳ−1(z)

Our method:


2.) Solve quantization condition with Bayesian analysis


3.) Locate poles using Nevanlinna interpolation



Coupled-channel  ScatteringπΣ − K̄N
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 and  resonancesΛ(1405) Λ(1380)

Lattice QCD calculation


Single ensemble 


‣  


‣ 


‣

a ≈ 0.06 fm

Mπ ≈ 200 MeV

MK ≈ 487 MeV

BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901

⟨�̂�(τ)�̂�(0)⟩ ⟹
Energy levels En

Irreducible representations of cubic group

http://www.apple.com
https://arxiv.org/abs/2307.10413
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 and  resonancesΛ(1405) Λ(1380)

BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901

Scattering

Amplitudes

Poles

(2nd sheet)

Energy w.r.t.  thresholdπΣ

Best fit - Single parameterization

http://www.apple.com
https://arxiv.org/abs/2307.10413


Scattering

Amplitudes

Best fit - Single parameterization

Coupled-channel  ScatteringπΣ − K̄N
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 and  resonancesΛ(1405) Λ(1380)

BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901



Resonance
Λ(1405)


Virtual bound state
Λ(1380)

http://www.apple.com
https://arxiv.org/abs/2307.10413


Scattering

Amplitudes

Best fit - Single parameterization

Coupled-channel  ScatteringπΣ − K̄N

51W.I. Jay — CSU

 and  resonancesΛ(1405) Λ(1380)

BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901



Resonance
Λ(1405)


Virtual bound state
Λ(1380)

Systematic uncertainty from

parameterization dependence?

http://www.apple.com
https://arxiv.org/abs/2307.10413
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 and  resonancesΛ(1405) Λ(1380)

BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901

Scattering

Amplitudes

Poles

(2nd sheet)

Energy w.r.t.  thresholdπΣ

Best fit - Single parameterization Parameterization dependence

http://www.apple.com
https://arxiv.org/abs/2307.10413
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 and  resonancesΛ(1405) Λ(1380)

How do results look with the new method?


2.) Solve quantization condition with Bayesian analysis


3.) Locate poles using Nevanlinna interpolation

Coupled-channel  ScatteringπΣ − K̄N
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 and  resonancesΛ(1405) Λ(1380)

Energy

Scattering

Amplitudes

Bayes+Nevanlinna analysis ⟹
• Results consistent with previous analysis


• Conservative error bands naturally incorporating 
statistical and systematic uncertainties

Coupled-channel  ScatteringπΣ − K̄N

Energy

New: Bayes+Nevanlinna analysis

PRELIMINARY
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 and  resonancesΛ(1405) Λ(1380)

PRELIMINARY

Coupled-channel  ScatteringπΣ − K̄N BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901

• Two-pole picture consistent with 
original BaSc analysis


• : virtual bound state on 
second sheet below threshold 
on real line


• : resonance with finite 
imaginary part


• Results are statistically 
consistent with previous analysis

Λ(1380)

Λ(1405)

✴ Slight vertical offset for  to aid readabilityΛ(1380)

http://www.apple.com
https://arxiv.org/abs/2307.10413
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Conclusions

• Lattice QCD calculations of resonance spectroscopy are based on the 
finite-volume formalism.


• Lattice QCD is reaching the maturity to weigh in on decades-old questions, 
e.g., the nature of the  resonance in  scattering.


• Exotic hadrons (“XYZ”) discovered over the past 20 years have caused a 
renaissance in hadron spectroscopy.


• Analysis methods offering improved systematic control are timely.


• Today’s talk: proof-of-concept for a new analysis method based on 
Bayesian reconstruction and Nevanlinna interpolation.

Λ(1405) πΣ − K̄p
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Backup



• The context where this is best understood is for Green functions G(z).


• Recall: a green function is a map  ( =upper half-plane)


• Functions with this property are called Nevanlinna functions 

• Roughly speaking, any Nevanlinna function can be written as an integral of a suitable spectral function.


• Mapping the problem to the disk to invoke Nevanlinna’s theorem invokes these properties in an essential 
way.


• In other words, the interpolating function  already and automatically has the correct analytic 
structure


• The function :


• Vanishes at infinitely many points, e.g.,   

• Blows up to   Not a function .


• Has the wrong singularity structure/asymptotic behavior.


• Constructing an interpolating function  automatically excludes inconsistent/pathological functions 
like . This property holds when translated back to . 

G(z) : ℍ → ℍ ℍ

f : 𝔻 → 𝔻

sin(iz)

z ∈ iπ ℕ

±∞ ⟹ ℍ → ℍ

f : 𝔻 → 𝔻
sin(iz) G(z) : ℍ → ℍ

What about  and friends?sin(iz)

58W.I. Jay — MIT

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



The method announces its failure in two ways.


1. The Wertevorrat is expected to decrease monotonically as more information is included. If the 
radius of the Wertevorrat begins to jitter around some “saturation width,” numerical precision 
has become a limiting factor.


2. Nevanlinna’s theorem assumes the data satisfy an analytic self-consistency condition: the 
Pick matrix  must be positive semi-definite.


  


Possible Solutions


A. Check this condition and avoid data that violate the hypotheses of the theorem.


B. Rephrase the difficulty as a statistical pre-denoising problem: 


Given a statistical sample of , project to the closest set of points  such 
that  is positive semidefinite. “Closest” is determined by the covariance matrix.

Pij

Pij =
1 − wiw̄j

1 − ζiζ̄j

G ∈ ℝN G′ ∈ ℝN

Pij

What about statistical noise?
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Real vs Virtual Bound State

• Bound state: 


• Pole in  on real axis below threshold of 
physical sheet


• Corresponds to a bona fide asymptotic state (e.g., 
I=0 deuteron)


•  so wavefunction 


• Virtual bound state: 


• Pole in  on real axis below threshold of 
unphysical sheet


• Gives rise to an observable enhancement in the 
cross section at threshold. No asymptotic state 
(e.g., I=1 di-neutron)


• so wavefunction 

ℳ(E)

p = i |p | ψ ∼ eipr ∼ e−|p|r

ℳ(E)

p = − i |p | ψ ∼ eipr ∼ e+|p|r

• Look for phase-shift curve to intersect the virtual-
bound-state condition:


• 


• for purely imaginary and negative 

p cot δ(p) − ip = 0

p = − i |p |

BaSc Collaboration 
PRD 109 (2024) 1, 014511 
PRL 132 (2024) 5, 051901

http://www.apple.com
https://arxiv.org/abs/2307.10413
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Sasa Prelovsek 
Talk @ Lattice 2022  

https://indico.hiskp.uni-bonn.de/event/40/contributions/724/attachments/294/1146/prelovsek_lat22.pdf


Hadron spectroscopy in Finite Volume
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Analytic continuation to locate poles in the complex plane

Suppose I have point .

Consider some neighborhood around .

z ∈ ℂ
z

Map this neighborhood to the unit disk.

‣ What not to do:
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Analytic continuation to locate poles in the complex plane

Think carefully about where

 could send the point . ℳ−1(z) z

z ↦ ℳ−1(z)

‣ What not to do:
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Analytic continuation to locate poles in the complex plane

‣ What not to do:

z ↦ ℳ−1(z)

Choose a too-small

codomain. Yikes!
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Analytic continuation to locate poles in the complex plane

‣ What not to do:

z ↦ ℳ−1(z)

ζ ↦ f(ζ)
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Analytic continuation to locate poles in the complex plane

‣ What not to do:

z ↦ ℳ−1(z)

ζ ↦ f(ζ)

Nevanlinna’s Theorem still works. By construction, 

the solution will not describe ℳ−1(z)


