The gluon propagator at finite temperature and density

Giorgio Comitini

Department of Physics and Astronomy - University of Catania; INFN - Sez. Catania PRIN2022 (p.c. 2022SM5YAS) within NextGenerationEU funding

The complex structure of strong interactions in Euclidean and Minkowski space ECT* Trento, May 26-30 2025

イロト イポト イヨト イヨト

Myself

- PostDoc researcher @ University of Catania (IT), research grant "Analytical approaches to non-perturbative QCD and properties of the Quark-Gluon Plasma" within NGEU funding (PRIN2022, Project "Advanced probes of the Quark Gluon Plasma", p.c. 2022SM5YAS)
- Joint PhD @ University of Catania & KU Leuven in 2023 under the supervision of F. Siringo and D. Dudal
- Research interests: dynamical mass generation in QCD, gluon condensation, confinement and deconfinement, hamiltonian formulation of gauge theories, analytic structure of the gluon propagator, ...

ヘロト ヘ回ト ヘヨト ヘヨト

This talk

Topics

- Behavior of the Landau-gauge gluon propagator in pure Yang-Mills theory and in full QCD at finite temperature and finite density
- Sensitivity of the gluon propagator to the deconfinement transition and QCD phase diagram
- Analytic structure of the gluon propagator at finite temperature and density (work in progress)
- Methods: mainly, the screened massive expansion of QCD

イロト イ団ト イヨト イヨト

The screened massive expansion of pure Yang-Mills theory and full QCD

Gluons in the infrared and perturbation theory (PT)

 Well-established (at least in this room): in linear covariant gauges (and beyond), the vacuum Euclidean gluon propagator acquires an infrared mass both in YM theory and in full QCD

Ayala, et al., Phys. Rev. D86 (2012)

- IR QCD is not captured by ordinary PT in general (because of the Landau pole),
- but specifically ordinary PT is unable to describe mass generation: gluons remain massless to every finite order

A (10) A (10) A (10) A

Gluons in the infrared and perturbation theory (PT)

- Yet, this does not imply that perturbative formulations of QCD are necessarily off-limits: a clear example is the Curci-Ferrari model and its many achievements
- Can we obtain a viable perturbation theory for QCD without changing the QCD action?

$$\mathcal{L}_{\mathsf{QCD}} = \mathcal{L}_0^{(\mathsf{std.})} + \mathcal{L}_{\mathsf{int}}^{(\mathsf{std.})} \to (\mathcal{L}_0^{(\mathsf{std.})} + \mathcal{L}_{m^2}) + (\mathcal{L}_{\mathsf{int}}^{(\mathsf{std.})} - \mathcal{L}_{m^2})$$

イロト イ団ト イヨト イヨト

The screened massive expansion F. Siringo, Nucl. Phys. B 907 (2016); F. Siringo and G. C., Phys. Rev. D 98 (2018)

Set-up and Feynman rules

• Specifically, in the screened massive expansion we take as the order zero of QCD perturbation theory

$$S_0 = S_0^{(\text{std.})} + \int \frac{d^d p}{(2\pi)^d} \, \frac{m^2}{2} \, A^a_\mu t^{\mu\nu}(p) A^a_\nu$$

where $S_0^{\text{(std.)}}$ is the (standard) kinetic term of the Faddeev-Popov gauge-fixed action in a linear covariant gauge. This yields a zero-order gluon propagator $\Delta_{\mu\nu}^{ab}(p)$

$$\mu, a \quad OOOOOOOO \quad \nu, b = \delta^{ab} \left[\frac{-it_{\mu\nu}(p)}{p^2 - m^2} + \frac{-i\xi \,\ell_{\mu\nu}(p)}{p^2} \right]$$

with a transverse mass equal to m^2 (ext. parameter) and a longitudinal component which is exact

イロト イヨト イヨト イヨト

Set-up and Feynman rules

• At the same time, we take the interaction to be

$$S_{\rm int} = S_{\rm int}^{({\rm std.})} - \int rac{d^d p}{(2\pi)^d} \, rac{m^2}{2} A^a_\mu t^{\mu
u}(p) A^a_
u$$

 This keeps the action unchanged while adding a new twogluon, non-perturbative vertex to the Feynman rules, the gluon "mass counterterm" (
 — unrelated to renormalization)

$$\mu, a$$
 000000000 $\nu, b = -im^2 t^{\mu\nu}(p) \delta_{ab}$

• The new vertex is non-perturbative in the sense that it is not proportional to any fixed power of the coupling *g*

イロト イヨト イヨト イヨト

The screened massive expansion F. Siringo, Nucl. Phys. B 907 (2016); F. Siringo and G. C., Phys. Rev. D 98 (2018)

Set-up and Feynman rules

• Nonetheless, *n*-point functions are computed using the usual PT rules. E.g., for the 1-loop transverse gluon propagator

$$\Delta(p^2) = \frac{-i}{Z_A p^2 - m^2 - \Pi(p^2)}$$

one computes the diagrams

The pure Yang-Mills infrared gluon propagator at finite temperature

Thermal perturbation theory

- At finite temperature, one can use the Matsubara formalism to compute thermal averages of operators: define the theory in Euclidean space (τ, \mathbf{x}) and integrate over $\tau \in [0, \beta = 1/T]$
- Because of Lorentz symmetry breaking, at *T* ≠ 0 the Landaugauge gluon propagator can be expressed in terms of two scalar functions separately depending on ω = ω_n = 2πnT (Matsubara frequency) and on |**p**|:

$$\Delta_{\mu\nu}(\omega, \mathbf{p}) = \Delta_T(\omega, |\mathbf{p}|) P_{\mu\nu}^T(\omega, \mathbf{p}) + \Delta_L(\omega, |\mathbf{p}|) P_{\mu\nu}^L(\omega, \mathbf{p})$$

where $P_{\mu\nu}^{T,L}(\omega, \mathbf{p})$ are (4-dimensionally transverse) 3-dimensionally transverse and longitudinal projectors

イロト イヨト イヨト イヨト

Screened massive expansion

 1-loop Euclidean gluon propagator computed in the screened massive expansion:

$$p^2 \Delta_{T,L}(\omega, |\mathbf{p}|) = \frac{z_{\pi}}{\pi_{T,L}(\omega, |\mathbf{p}|; m^2, T) + \pi_0}, \qquad p^2 = \omega^2 + |\mathbf{p}|^2$$

• $\pi_{T,L}(\omega, |\mathbf{p}|; m^2, T)$ contain a vacuum and a thermal term,

$$\pi_{T,L}(\omega, |\mathbf{p}|; m^2, T) = \pi^{(\text{vac.})}(p^2; m^2) + \pi_{T,L}^{(\text{therm.})}(\omega, |\mathbf{p}|; m^2, T)$$

with the first an analytic function and the second a 1D integral involving the Bose distribution

イロト イ団ト イヨト イヨト

Screened massive expansion

Π

$$\begin{split} I_{L,T}^{(a-c)}(p) &= \left[\frac{3p^4}{2m^4} - 1\right] I_{L,T}^{00}(p) + \left[4 + \frac{3p^4 + 8m^2p^2 + 4m^4}{2m^4}\right] I_{L,T}^{mm}(p) + \\ &- \left[\frac{3p^4 + 4m^2p^2 + m^4}{m^4}\right] I_{L,T}^{m0}(p) + \frac{2p^2(p^2 + 2m^2)}{m^2} I^{mm}(p) + \\ &- \frac{2p^2(p^2 + m^2)}{m^2} I^{0m}(p) - \left[\frac{2p^2 + 3m^2}{m^2}\right] J_m + \left[\frac{2p^2 + m^2}{m^2}\right] J_0 + \\ &- \left[8m^2 + \frac{(p^2 + 2m^2)^2}{m^2}\right] \partial I_{L,T}^{mm}(p) + \frac{(p^2 + m^2)^2}{m^2} \partial I_{L,T}^{m0}(p) + \\ &- 2p^2(p^2 + 4m^2) \partial I^{mm}(p) + (p^2 + m^2)^2 \partial I^{m0}(p) + (p^2 + 3m^2) \partial J_m. \end{split}$$

$$I^{\alpha\beta}(y,\omega) = \int_0^\infty \frac{x dx}{8\pi^2 y} \left\{ \frac{n(\epsilon_{x,\alpha})}{\epsilon_{x,\alpha}} \operatorname{Re} L_\beta(\omega + i\epsilon_{x,\alpha}; y, x) + \alpha \leftrightarrow \beta \right\}$$
$$L_\alpha(z; y, x) = \log \frac{z^2 + \epsilon_{x+y,\alpha}^2}{z^2 + \epsilon_{x-y,\alpha}^2}$$

Screened massive expansion

 1-loop Euclidean gluon propagator computed in the screened massive expansion:

$$p^{2}\Delta_{T,L}(\omega, |\mathbf{p}|) = \frac{z_{\pi}}{\pi_{T,L}(\omega, |\mathbf{p}|; m^{2}, T) + \pi_{0}}, \qquad p^{2} = \omega^{2} + |\mathbf{p}|^{2}$$

- 3 free parameters: the gluon mass parameter m², an additive constant π₀ left over from field-strength renormalization and a multiplicative renormalization factor z_π
- The coupling α_s is reabsorbed into z_{π} and π_0 . Choosing a renormalization scheme (e.g. MOM) fixes one of these

イロト イポト イヨト イヨト

Screened massive expansion

• At T = 0 one can optimize π_0 based on principles of gauge invariance: $\pi_0 = -0.876$. m^2 is then the only free parameter. Excellent agreement is found with the IR lattice data^{*a*}

 $^{a}m = 0.657$ GeV for Duarte, Oliveira and Silva, Phys. Rev. D 94 (2016)

Screened massive expansion

- Both m^2 and π_0 can in principle depend on temperature
- At $T \ge 0$ we can adopt two approaches
 - use the (optimized) T = 0 parameters
 - fit temperature-dependent parameters from the lattice
- (Note: optimization is not excluded in principle at T > 0, but we never attempted it)

イロト イヨト イヨト イヨト

Screened massive expansion: parameters fixed from T = 0 ($\omega_n = 0$)

1.5 2 2.5

p/mn

0.5

The Screened Massive Expansion

F. Siringo and G.C., Phys. Rev. D 103 (2021); G.C. and F. Siringo, Phys. Rev. D 111 (2025)

Screened massive expansion: parameters from the lattice ($\omega_n = 0$)

Giorgio Comitini The gluon propagator at finite temperature and density 18/50

Screened massive expansion: parameters from the lattice ($\omega_n = 0$)

Silva, Oliveira, Bicudo, PRD 89 (2014)

- The transverse fit is quite good up to T = 458 MeV, the longitudinal one isn't below $|\mathbf{p}| \approx 0.7$ GeV around $T \approx T_c$
- Need to fit the parameters separately for the two components
- Possible explanations: needs separate mass parameters $m_{T,L}^2(T)$ for the two components, Polyakov loop unaccounted for, etc.

Screened massive expansion: parameters from the lattice ($\omega_n = 0$)

Silva, Oliveira, Bicudo, PRD 89 (2014)

- The transverse mass parameter grows from 650 to 900 MeV from T = 0 to T = 458 MeV
- Consistent with a transverse gluon mass still influenced by the behavior of vacuum, enhanced by thermal effects
- We'll come back to this (hopefully) at the end

Screened massive expansion

To summarize:

- The qualitative behavior of both the components is already captured using fixed parameters
- The transverse propagator is in good quantitative agreement with the lattice when slowly increasing parameters are used
- The longitudinal propagator does not grow nearly as much as expected as $T \rightarrow T_c$, but it is still sensitive to the phase transition as observed on the lattice

The gauge sector at 1-loop seems to be enough under control for qualitative results to be obtained in full QCD

ヘロト ヘ回ト ヘヨト ヘヨト

The full QCD infrared gluon propagator at finite temperature and density

Screened massive expansion: modeling IR quarks

- Obv., quark chiral symmetry breaking cannot be described by keeping the quark sector decoupled from the gluons'
- In the spirit of the screened massive expansion, what we would do in the quark sector is shift the expansion point of the quarks' perturbative series too:

$$\overline{\psi}(i\not\!\!\!D - m_q)\psi = \left[\overline{\psi}(i\not\!\!\!\partial - M_q)\psi\right] + \left[\overline{\psi}(g\not\!\!\!A + m_q - M_q)\psi\right]$$

• This strategy proved successfull in vacuum^a, but it is overshoot if the aim is to obtain qualitative results *in the gluon sector*

^aSee e.g. G.C., D. Rizzo, M. Battello and F. Siringo, PRD 104 (2021)

∃ 900

Screened massive expansion: modeling IR quarks

• Instead, we employ the simplest possible model for IR quarks: we use an enhanced mass $M_q \approx 350 - 450$ MeV, as suggested by lattice, SDE, etc., and keep it constant at all momenta, temperatures and densities:

$$(\mathcal{L}_{\mathsf{QCD}})_0 = (\mathcal{L}_{\mathsf{YM}})_{0,\mathsf{SME}} + \sum_q \overline{\psi}_q (\partial \!\!\!/ + M_q) \psi_q$$

without further subtracting the quark mass

- We will discuss the validity of this approximation (and propose alternatives) esp. at large T and μ later
- We work with $N_f = 2 + 1$, $M_1 = 350$ MeV, $M_2 = 450$ MeV and *baryonic* chemical potential, i.e. $\mu_1 = \mu_2 = \mu := \mu_B/3$

イロン 不通 とくほ とくほう

The full QCD IR gluon propagator at finite T and μ

G.C. and F. Siringo, Phys. Rev. D 111 (2025)

Screened massive expansion: parameters

• 1-loop Euclidean gluon propagator, as before,

$$p^2 \Delta_{T,L}(\omega, |\mathbf{p}|) = \frac{z_{\pi}}{\pi_{T,L}(\omega, |\mathbf{p}|; m^2, T, \mu) + \pi_0}$$

where $\pi_{T,L}(\omega, |\mathbf{p}|; m^2, T, \mu)$ now also depends on chemical potential μ and contains the quark loop

• Same free parameters as pure YMT, but not enough data for a fit over the whole (T, μ) domain \implies use T = 0 YMT parameters. Obj.: provide at least a qualitative picture

A D D A A A B D A

Screened massive expansion, results: transverse propagator

Depends only slightly on μ . Strictly decreases with *T* at $\mu = 0$

イロト イヨト イヨト イヨト

Screened massive expansion, results: transverse propagator

Expands to larger $|\mathbf{p}|$ with μ , slightly increasing @ interm. $|\mathbf{p}|$

イロト イヨト イヨト イヨト

Screened massive expansion, results: longitudinal propagator

Marked dependence on μ , non-monotonic with T

イロト イヨト イヨト イヨト

Screened massive expansion, results: longitudinal propagator

Same as pure YMT at low μ , decreasing with *T* for $\mu \gtrsim M_1$

イロト イヨト イヨト イヨト

Screened massive expansion, results: longitudinal propagator

Crossing at low *T*, $|\mathbf{p}|$, and $\mu \gtrsim M_1, M_2$. 1-loop artefact? Feature?

イロト イヨト イヨト イヨト

Screened massive expansion, results: longitudinal propagator

- If we assume the longitudinal propagator in full QCD to be sensitive to the phase transition just like in pure YMT, we may draw a parallelism between the two and identify the turning point T_{max}(μ) with T_c(μ)
- This should mostly be understood in a weak sense: we do not expect a sharp phase transition, but rather a crossover
 @ lower μ and M_q, so no sharp, "true" T_c
- Based on our pure YMT results, this can at most provide a *qualitative* estimate of the behavior of *T_c*(μ)

イロト (四) (正) (日)

The full QCD IR gluon propagator at finite T and μ

G.C. and F. Siringo, Phys. Rev. D 111 (2025)

The full QCD IR gluon propagator at finite T and μ

G.C. and F. Siringo, Phys. Rev. D 111 (2025)

Screened massive expansion, results: $T_{max}(\mu) @ |\mathbf{p}| = 0$

In more detail:

- Keeping (M_1, M_2) constant across all (T, μ) yields a long. propagator with a max wrt. *T* at fixed μ and $|\mathbf{p}| \Longrightarrow T_{\max}(\mu)$
- As μ increases, the (matter part of the) quark loops turns on at lower *T*'s and makes $T_{\max}(\mu)$ decrease until $T_{\max}(\mu) = 0$ at $\mu = M_1$
- Then:
 - If we stick with the constant-mass model, $T_{\max}(\mu)$ develops two humps
 - If we assume chiral symmetry restoration beyond µ = M₁, we should decrease the masses ⇒ the humps disappear

イロン 人間 とくほ とくほど

Screened massive expansion, results: long. prop. + sudden CS rest.

No crossing at low *T*. Increased separation between $T < T_c$ and $T > T_c$ curves because of mass jump

Screened massive expansion, results: trans. prop. w/ CS rest.

Here too, increased separation between $T < T_c$ and $T > T_c$ curves because of mass jump

イロト イヨト イヨト イヨト

The full QCD IR gluon propagator at finite T and μ

G.C. and F. Siringo, Phys. Rev. D 111 (2025)

Screened massive expansion, results: stability

Parameters arbitrary \implies test dependence of results

The qualitative features are parameter-independent as long as we use (T, μ) -independent parameters

イロト イヨト イヨト イヨト

Screened massive expansion, results: stability

Parameters arbitrary \implies test dependence of results

Configuration	M_1 (MeV)	M_2 (MeV)	m (MeV)
C_0	350	450	656
C_1	150	225	656
C_2	350	450	1000
C_3	1100	1300	656
C_4	350	225	200

The qualitative features are parameter-independent as long as we use (T, μ) -independent parameters

- 4 回 2 4 三 2 4 三 2 4

Screened massive expansion, fixed params results: summary

- At μ = 0, the full QCD IR gluon propagator behaves as in pure Yang-Mills theory wrt. *T*: strictly decreasing transverse component, non-monotonic longitudinal component
- As μ increases, the (matter component of the) quark loops suppress the long. component at lower and lower *T*. Their influence on the transverse component is minor for μ ≤ m
- The long. suppression eventually (at μ = M₁) makes the long. propagator a decreasing function of T
- If the quark masses are kept constant, for $\mu > M_1, M_2$ the long. prop. is still slightly suppressed at low *T* and $|\mathbf{p}|$

イロト (四) (正) (日)

Screened massive expansion, results: summary

- By comparison with pure Yang-Mills theory, one could interpret $T_{max}(\mu)$ as a transition temperature $T_c(\mu)$
- If the quark masses are decreased for $T > T_c(\mu)$, the long. propagator is decreasing with *T* for small $|\mathbf{p}|$ too. Additionally, the separation between $T < T_c(\mu)$ and $T > T_c(\mu)$ curves increases (realistically, faster suppression)
- The qualitative behavior described above does not depend on the free parameters of the expansion, as long as they are taken to be (T, μ) -independent

イロト (四) (正) (日)

E DQC

Analytic structure of the gluon propagator at finite temperature and density (in progress)

(G.C. and F. Siringo, in preparation)

Beyond Euclidean space

- The screened massive expansion is a modified perturbation theory ⇒ it provides analytic expressions up to a 1D integral at finite (T, μ) (Bose/Fermi distributions)
- Very easy to extend to the complex plane: replace ω ∈ 2πZ (Matsubara freq.) with ω = p⁴ ∈ C in functions/integrands and if complex singularities are where expected that's the (unique) analytic continuation
- On indefinite-metric Hilbert spaces, propagators can only have two kinds of singularities:
 - a branch cut along $\omega \in i\mathbb{R}$ (Minkowski axis)
 - complex-conjugate singularities for $\omega \notin \mathbb{R}, i\mathbb{R}$ (e.g. c.c. poles)

ヘロト ヘ回ト ヘヨト ヘヨト

(G.C. and F. Siringo, in preparation)

Beyond Euclidean space

 Branch cut and c.c. singularities fully determine the propagator over the whole ℂ via spectral representations. E.g., in the presence of simple c.c. poles {*z_i*(|**p**|)},

$$\Delta_{T,L}(z, |\mathbf{p}|) = \sum_{i} \frac{Z_{i}(|\mathbf{p}|)}{z - z_{i}(|\mathbf{p}|)} + \int_{-\infty}^{+\infty} \mathrm{d}\omega \ \frac{\rho_{T,L}(\omega, |\mathbf{p}|)}{\omega + iz}$$

where the spectral functions $\rho_{T,L}(\omega, |\mathbf{p}|)$ live on the branch cut,

$$\rho_{T,L}(\omega, |\mathbf{p}|) = -\frac{1}{\pi} \operatorname{Im} \left\{ \Delta_{T,L}(i\omega + \epsilon, |\mathbf{p}|) \right\}$$

イロト イ団ト イヨト イヨト

(G.C. and F. Siringo, in preparation)

Screened massive expansion: objectives

- For gluons in pure Yang-Mills theory we've already found:
 - c.c. poles for $T \ge 0$
 - positivity-violating spectral function for T = 0
- Compute the spectral functions for pure YMT at *T* > 0 and extend these results to full QCD at (*T*, μ) > 0
- Explore whether the spectral functions have peaks, indicating e.g. quasi-particle-like behavior
- Start from $|\mathbf{p}| = 0$, where $\Delta_T = \Delta_L$ for all $(T, \mu) > 0$

イロト イヨト イヨト ・ ヨトー

∃ <2 <</p>

(G.C. and F. Siringo, in preparation)

Preliminary results: poles

Left: $\mu = 0, T \in [0, 450]$ MeV. Right: $T = 0, \mu \in [0, 1000]$ MeV

イロト イヨト イヨト イヨト

-

(G.C. and F. Siringo, in preparation)

Preliminary results: YM spectral functions

Left: fixed T = 0 parameters. Right: parameters from lattice (transverse prop., Silva, Oliveira, Bicudo PRD 89, 2014)

イロト イヨト イヨト

э.

(G.C. and F. Siringo, in preparation)

Preliminary results: QCD spectral functions ($T = \mu = 0$ params.)

Left: $\mu = 0$. Right: T = 0. Constant $(M_1, M_2) = (350, 450)$ MeV.

イロン イボン イヨン イヨン

3

(G.C. and F. Siringo, in preparation)

Preliminary results: QCD spectral functions ($T = \mu = 0$ params.)

- Behavior of c.c. poles in full QCD similar to pure YMT, except for a dependence on the quark masses at low T and μ
- Spectral functions still show positivity violation at $T, \mu \neq 0$
- No distinct peaks in spectral functions at *T*, μ > 0 ⇒ no strong indications of quasi-particle-like behavior in the deconfined phase, at least for (*T*, μ) accessible at colliders
- **HOWEVER**, this is in Landau gauge. What would happen in a "physical" gauges?

イロト イヨト イヨト ・ ヨトー

∃ <2 <</p>

(G.C. and F. Siringo, in preparation)

Preliminary results: QCD spectral functions ($T = \mu = 0$ params.)

Work to do:

- Thorough exploration of parameter space
- Careful analysis of singularities near the Minkowski axis
- Go beyond $|\mathbf{p}| = 0$, where $\Delta_T \neq \Delta_L$ (future work?)

イロト イ理ト イヨト イヨト

Thank you

イロト イヨト イヨト イヨト

æ