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1. Introduction

• Yang-Mills theories/QCD become strongly coupled at large distances  
• Computing observables in the IR requires sophisticated non-perturbative methods and/or 

effective models 
• From a continuum quantum-field theoretic perspective, gauge-fixing is necessary in order to 

compute correlation functions 
• Observables are encoded in gauge-invariant correlation functions [See Giovani’s talk today!] 
• Correlation functions of elementary fields are the seeds for the extraction of observables

• However, the underlying assumptions of the traditional gauge-fixing procedure (Faddeev-
Popov) do not hold at strong coupling 

• It does not select one representative for each gauge orbit (gauge-fixing needs to be fixed!) 
• The existence of several configurations living on the same gauge orbit and satisfying the same 

gauge fixing condition is the (in)famous Gribov problem



1. Introduction

• Taking into account the existence of such configurations might play an important role in the IR 
• This has been (partially) addressed by Gribov and Zwanziger and, later on, refined by Dudal, 

Gracey, Sorella, Vandersickel and Verschelde [(Refined) Gribov-Zwanziger (RGZ) setup] 
• However, explicit computations of loop corrections within this scenario are still scarce and the 

issue how to include matter is debatable [there is a fork in the road]

• This talk:  
A. I will briefly review the RGZ framework 
B. Present recent results on radiative corrections to two-point functions in RGZ 
C. Debate on how matter can be consistently included  
D. Present recent results on radiative corrections to the two-point functions of 

RGZ-matter systems 
E. Collect concluding remarks



Warning: This talk is totally Euclidean!



Warning: This talk is totally Euclidean!

No time!



2. Brief overview of the Gribov problem

SYM =
1
4 ∫ ddx Fa

μνFa
μν

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abcAb

μ Ac
ν

a = 1,…, N2 − 1

[Ta, Tb] = i f abcTc

coupling  
constant

structure 
constants 

Our starting point is the four-dimensional Euclidean Yang-Mills action and  as gauge groupSU(N)

(A′￼)a
μ Ta = U(Aa

μTa)U† +
i
g

U∂μU†

The action  is invariant underSYM

U = exp (−igαaTa) ∈ SU(N)

For infinitesimal , αa

A′￼a
μ ≈ Aa

μ − Dab
μ αb

Dab
μ = δab∂μ − g f abcAc

μ



Formal Quantization

𝒵YM = ∫ [𝒟A]e−SYM[A]

gauge 
Invariant

gauge 
Invariant

A ≡ {Aa
μ(x) , x ∈ ℝd}

[𝒟A] = ∏
x

∏
μ

∏
a

dAa
μ(x)

2. Brief overview of the Gribov problem
We should restrict the functional integration to 

the moduli space. Formally, it is defined by

𝒜 = {A} 𝒢 = {U}

U = {U(x) ∈ SU(N) ; x ∈ ℝd}
𝒞 =

𝒜
𝒢



2. Brief overview of the Gribov problem

The Faddeev-Popov procedure aims at 
tracing global sections on the wild field space 

slicing each gauge orbit once 

In practice, one chooses a condition that 
must be satisfied by the gauge field, namely, 

 

Common choices are: , , 
,… 

Fa[A] = 0

∂μAa
μ = 0 ∂iAa

i = 0
∂μAa

μ = αba

Ideally



Faddeev-Popov procedure: Systematics

Toy version:

δ( f(x)) =
n

∑
i=1

δ(x − xi)
| f′￼(xi) | ∫ dx δ( f(x)) =

n

∑
i=1

1
| f′￼(xi) |

⇒
1

∑n
i=1

1
| f′￼(xi) |

∫ dxδ( f(x)) = 1

 are zeros of . We assume that   exists and does not vanish at {xi} f(x) f′￼(x) {xi}

Let us assume that  has just one root and its derivative is positive. Hencef(x)

f′￼(xi)∫ dx δ( f(x)) = 1

2. Brief overview of the Gribov problem



Faddeev-Popov procedure: Systematics

2. Brief overview of the Gribov problem

“Real-life” version:

The Faddeev-Popov procedure is the functional generalization of the toy example retaining its 
key assumptions. The resulting gauge-fixed path integral is

𝒵YM = ∫ [𝒟A] det ( δF[AU]
δαa

α=0 ) δ[F[A]] e−SYM[A]

The assumptions in the toy model version can be translated as: the gauge condition picks one 
representative per gauge orbit (one root) and the determinant is positive.

The expression above can be nicely written in terms of auxiliary fields that lift the determinant and 
delta-functional to the Boltzmann factor and generate a gauge-fixed Yang-Mills action



Faddeev-Popov procedure: Systematics

2. Brief overview of the Gribov problem

𝒵YM = ∫ [𝒟A][𝒟c̄][𝒟c][𝒟b] e−SFP[A,c̄,c,b]

SFP[A, c̄, c, b] = SYM + ∫ ddx (baFa[A] + c̄aℳabcb)

The  are the so-called Faddeev-
Popov ghosts and  is the Nakanishi-

Lautrup field. 

(c̄a, cb)
ba

The gauge-fixed action provides 
an incredibly efficient tool to 

perform computations in the UV

However…

∂μAa
μ = 0

∂μA′￼a
μ = 0

A′￼a
μ = Aa

μ − Dab
μ ζb

implies

−∂μDab
μ ζb = 0



2. Brief overview of the Gribov problem

−∂μDab
μ is the Faddeev-Popov operator in the Landau gauge 

Existence of (infinitesimal) Gribov copies

Existence of normalizable zero modes of 
the FP operator

They exist!

[Gribov 1978; Singer 1978]
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−∂μDab
μ is the Faddeev-Popov operator in the Landau gauge 

Existence of (infinitesimal) Gribov copies

Existence of normalizable zero modes of 
the FP operator

They exist!

[Gribov 1978; Singer 1978]
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2. Brief overview of the Gribov problem

−∂μDab
μ ζb = − ∂2ζa + gf abcAc

μ∂μζb

It also reinforces that the Gribov problem 
becomes relevant at the strongly-coupled 

regime

Perturbatively

the first term dominates and the FP 
operator does not develop zero modes

This is in agreement with the success 
of perturbative computations using 

the FP procedure
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−∂μDab
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This is in agreement with the success 
of perturbative computations using 
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3. Don’t cross the Horizon! (aka RGZ) 
Infinitesimal copies are linked to normalizable 

zero modes of the FP operator

One way of dealing with them is to 
restrict the functional integral to a 

region where the FP operator does not 
develop zero modes (it is positive)

Remarkably, in the Landau gauge, such a region 
exists and it features highly non-trivial 

geometrical properties

This region is known as the Gribov region and it 
is bounded. Its boundary is known as the 

Gribov horizon.



3. Don’t cross the Horizon! (aka RGZ) 
Infinitesimal copies are linked to normalizable 

zero modes of the FP operator

One way of dealing with them is to 
restrict the functional integral to a 

region where the FP operator does not 
develop zero modes (it is positive)

Remarkably, in the Landau gauge, such a region 
exists and it features highly non-trivial 

geometrical properties

This region is known as the Gribov region and it 
is bounded. Its boundary is known as the 

Gribov horizon.

Moreover, all gauge orbits cross it at least once

𝒵GZ = ∫Ω
[𝒟A][𝒟c̄][𝒟c][𝒟b] e−SFP[A,c̄,c,b]

The restriction to  can be worked 
out and it effectively engenders a non-

local modification to the FP action

Ω

𝒵GZ = ∫ [𝒟A][𝒟c̄][𝒟c][𝒟b] e−SGZ[A,c̄,c,b]+dγ4(N2−1)V

SGZ[A, c̄, c, b] = SFP[A, c̄, c, b] − γ4H(A)

[Dell’Antonio and Zwanziger 1991]



3. Don’t cross the Horizon! (aka RGZ) 

H(A) = g2 ∫x,y
f abcAb

μ(x)[ℳ−1]ad(x, y)f decAe
μ(y)

Horizon Function
Non-local due to the inverse 

of the FP operator

 is a mass-like parameter - 
Gribov parameter

γ

This parameter is not free but fixed 
by a gap equation

⟨H(A)⟩ = dV(N2 − 1)



3. Don’t cross the Horizon! (aka RGZ) 

H(A) = g2 ∫x,y
f abcAb

μ(x)[ℳ−1]ad(x, y)f decAe
μ(y)

Horizon Function
Non-local due to the inverse 

of the FP operator

 is a mass-like parameter - 
Gribov parameter

γ

This parameter is not free but fixed 
by a gap equation

⟨H(A)⟩ = dV(N2 − 1)

Remarkably, the Horizon function can be localized

ΣGZ[A, c̄, c, b] = SFP[A, c̄, c, b] + SH

SH = ∫x
(φ̄ab

μ ℳac(A)φcb
μ − ω̄ab

μ ℳac(A)ωcb
μ )

+igγ2 ∫x
f abcAa

μ (φ + φ̄)bc
μ

𝒵GZ = ∫ [𝒟μ]GZ e−ΣGZ[A,c̄,c,b]+dγ4(N2−1)V

[𝒟μ]GZ = [𝒟A][𝒟c̄][𝒟c][𝒟b][𝒟φ̄][𝒟φ][𝒟ω̄][𝒟ω]

[Zwanziger 1989]



3. Don’t cross the Horizon! (aka RGZ) 

[Dudal, Gracey, Sorella, Vandersickel and Verschelde 2008]

However, it has IR instabilities - Stabilizing 
(refining) condensates are introduced: Refined GZ

The local action  is renormalizable and 
effectively eliminates infinitesimal Gribov copies

ΣGZ

SRGZ = SGZ + Scond

Scond = ∫x [ m2

2
Aa

μ Aa
μ + M2 (φ̄ab

μ φab
μ − ω̄ab

μ ωab
μ )]

The mass parameters  and  are not free but 
fixed by their own gap equations

m2 M2

[Dudal, Felix, Palhares, Rondeau, Sorella, Vandersickel, Vercauteren]



3. Don’t cross the Horizon! (aka RGZ) 
The tree-level gluon propagator in 

the RGZ setup is

[Dudal, Gracey, Sorella, Vandersickel and Verschelde 2008]

However, it has IR instabilities - Stabilizing 
(refining) condensates are introduced: Refined GZ

The local action  is renormalizable and 
effectively eliminates infinitesimal Gribov copies

ΣGZ

⟨Aa
μ(p)Ab

ν (−p)⟩ = δab (δμν −
pμpν

p2 ) 𝒟A(p2)

SRGZ = SGZ + Scond

Scond = ∫x [ m2

2
Aa

μ Aa
μ + M2 (φ̄ab

μ φab
μ − ω̄ab

μ ωab
μ )]

The mass parameters  and  are not free but 
fixed by their own gap equations

m2 M2

[Dudal, Felix, Palhares, Rondeau, Sorella, Vandersickel, Vercauteren]

𝒟A(p2) =
p2 + M2

(p2 + m2)(p2 + M2) + 2γ4g2N

It is finite at vanishing momentum.  
The ghost propagator is not enhanced in the 

IR: Massive/Decoupling behavior

At vanishing condensate masses (GZ): 
Scaling behavior



3. Don’t cross the Horizon! (aka RGZ) 

Solving the corresponding gap equations: Too 
difficult for quantitative precision

Strategy: Using the mass-like parameters to fit the 
tree-level propagator to lattice data

[Dudal, Oliveira and Vandersickel 2010]

The functional form of the propagator fits very well 
lattice data in the IR



3. Don’t cross the Horizon! (aka RGZ) 

Solving the corresponding gap equations: Too 
difficult for quantitative precision

Strategy: Using the mass-like parameters to fit the 
tree-level propagator to lattice data

[Dudal, Oliveira and Vandersickel 2010]

The functional form of the propagator fits very well 
lattice data in the IR

Non-perturbatively-informed tree-level propagator!



3. Don’t cross the Horizon! (aka RGZ) 

What happens if one-loop corrections are added to 
the tree-level expression?

This is not a trivial task due to the proliferation of 
diagrams arising from the extra fields in the RGZ

Inspired by the success of the Curci-Ferrari model, 
it is expected that one-loop corrections will not 
spoil the good agreement achieved at tree level

Recently, the one-loop computation was performed at 
fixed coupling and the result compared to lattice data

[de Brito and AP 2024]

[Lattice data: Cucchieri and Mendes; Duarte, Oliveira and Silva]
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[de Brito and AP 2024]

[Lattice data: Cucchieri and Mendes; Duarte, Oliveira and Silva]



3. Don’t cross the Horizon! (aka RGZ) 

[de Brito and AP 2024] [Lattice data: Cucchieri and Mendes; Duarte, Oliveira and Silva]
p2

± |SU(2) ≈ − 0.184 ± 0.667i GeV2

p2
± |SU(3) ≈ − 0.404 ± 0.332i GeV2

Complex conjugate poles



3. Don’t cross the Horizon! (aka RGZ) 
In our setup, the ghost propagator was a “prediction”. 

However, our procedure needs optimization [Work in Progress]

[de Brito and AP 2024] [Lattice data: Cucchieri and Mendes; Duarte, Oliveira and Silva]



3. Don’t cross the Horizon! (aka RGZ) 

The RGZ action is not invariant under BRST 
transformations

BRST is a powerful tool and particularly important 
for gauge-parameter dependence

The RGZ was formulated in the Landau gauge. 
What about linear covariant gauges with a free 

gauge parameter?

It’s not always rainbows and butterflies…

sSRGZ ≠ 0



3. Don’t cross the Horizon! (aka RGZ) 

The RGZ action is not invariant under BRST 
transformations

BRST is a powerful tool and particularly important 
for gauge-parameter dependence

The RGZ was formulated in the Landau gauge. 
What about linear covariant gauges with a free 

gauge parameter?

It’s not always rainbows and butterflies…

sSRGZ ≠ 0

A BRST-invariant reformulation of the RGZ 
framework was proposed

[Capri, Dudal, Fiorentini, Guimaraes, Justo, Mintz, 
Palhares, AP, Sobreiro, Sorella]

This is achieved by means of dressed 
gauge-invariant fields

[Lavelle, McMullan, Zwanziger,…]

𝒜2
min = min

U
Tr∫x

AU
μ AU

μ

[See Giovani’s talk this afternoon]



3. Don’t cross the Horizon! (aka RGZ) 

The Gribov parameter couples to a BRST-
closed term: it is not akin to a gauge parameter

Ah
μ = (δμν −

∂μ∂ν

∂2 ) χν

χν = Aν − ig [ 1
∂2

∂A, Aν] +
ig
2 [ 1

∂2
∂A, ∂ν

1
∂2

∂A] + 𝒪(A3)

sAh
μ = 0 In the Landau gauge: Ah

μ → Aμ

H(Ah) = g2 ∫x,y
f abcAh,b

μ (x)[ℳ−1(Ah)]ad(x, y)f decAh,e
μ (y)

BRST-invariant reformulation of the Horizon function



3. Don’t cross the Horizon! (aka RGZ) 

The Gribov parameter couples to a BRST-
closed term: it is not akin to a gauge parameter

[Capri, Fiorentini, AP, Sorella 2017]

The gauge-invariant dressed field  
can be localized by means of a 

Stuckelberg-like field

Ah
μ

Ah
μ = (δμν −

∂μ∂ν

∂2 ) χν

χν = Aν − ig [ 1
∂2

∂A, Aν] +
ig
2 [ 1

∂2
∂A, ∂ν

1
∂2

∂A] + 𝒪(A3)

sAh
μ = 0 In the Landau gauge: Ah

μ → Aμ

H(Ah) = g2 ∫x,y
f abcAh,b

μ (x)[ℳ−1(Ah)]ad(x, y)f decAh,e
μ (y)

BRST-invariant reformulation of the Horizon function

The same happens with the refining 
mass-like parameters

The BRST-invariant RGZ action is 
local but non-polynomial. Yet, it is 

renormalizable

Correlation functions of gauge fields 
and FP ghosts are equivalent in the 

BRST-invariant and the standard 
RGZ frameworks



4. Going beyond pure YM-RGZ 

The elimination of (infinitesimal) Gribov copies 
affects, directly, only the gauge sector

The RGZ introduces non-perturbative 
information to the tree-level gluon propagator

If matter is minimally coupled to the gauge 
fields, the tree-level matter propagator is the 

perturbative one

Should matter be introduced with a 
non-perturbative structure that mimics 

the gauge sector?

Or should the non-perturbative information 
be introduced via gauge loops?
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The elimination of (infinitesimal) Gribov copies 
affects, directly, only the gauge sector

The RGZ introduces non-perturbative 
information to the tree-level gluon propagator

If matter is minimally coupled to the gauge 
fields, the tree-level matter propagator is the 

perturbative one

Should matter be introduced with a 
non-perturbative structure that mimics 

the gauge sector?

Or should the non-perturbative information 
be introduced via gauge loops?

A non-perturbative coupling was proposed

[Capri, Fiorentini, AP, Sorella 2017]

[Dudal, Guimaraes, Palhares, Sorella 2013]
[Capri, Guimaraes, Justo, Palhares, Sorella 2014]

ℋF = g2 ∫x,y
(Ta)ijFi(x)[ℳ−1]ab(x, y)(Tb) jkFk(y)

For a given matter field :Fi(x)

This corresponds to a Horizon-like 
term for the matter fields

This is what we shall call a non-perturbative 
coupling between matter and the RGZ

Mass-like parameters are needed and should 
be fixed by appropriate gap equations



4. Going beyond pure YM-RGZ 

As a concrete example: Scalar fields in the 
adjoint representation

Snm
ϕRGZ = SRGZ + Snm

ϕ

Snm
ϕ = ∫x [ 1

2
(Dab

μ ϕb)(Dac
μ ϕc) +

m2
ϕ

2
ϕaϕa +

λ
4!

(ϕaϕa)2]
+∫x

(ζ̄abℳac(A)ζcb − θ̄abℳac(A)θcb) +igσ2 ∫x
f abcϕa(ζ̄ + ζ)bc

+M2
ϕ ∫x

(ζ̄abζab − θ̄abθab)



4. Going beyond pure YM-RGZ 

As a concrete example: Scalar fields in the 
adjoint representation

Snm
ϕRGZ = SRGZ + Snm

ϕ

Snm
ϕ = ∫x [ 1

2
(Dab

μ ϕb)(Dac
μ ϕc) +

m2
ϕ

2
ϕaϕa +

λ
4!

(ϕaϕa)2]
+∫x

(ζ̄abℳac(A)ζcb − θ̄abℳac(A)θcb) +igσ2 ∫x
f abcϕa(ζ̄ + ζ)bc

+M2
ϕ ∫x

(ζ̄abζab − θ̄abθab)

Standard minimally coupled 
scalar-field action

Localization of the Horizon-like 
function for the matter sector

Condensates of the auxiliary 
localizing fields



4. Going beyond pure YM-RGZ 

As a concrete example: Scalar fields in the 
adjoint representation

Snm
ϕRGZ = SRGZ + Snm

ϕ

⟨ϕa(p)ϕb(−p)⟩ = δab
p2 + M2

ϕ

(p2 + m2
ϕ)(p2 + M2

ϕ) + 2Ng2σ4

The tree-level scalar-field propagator is

[Capri, Guimaraes, Justo, Palhares, Sorella 2014]

Using the mass-like parameters to fit lattice 
data, the tree-level expression provides a quite 
good description of the scalar-field propagator



4. Going beyond pure YM-RGZ 

As a concrete example: Scalar fields in the 
adjoint representation

Snm
ϕRGZ = SRGZ + Snm

ϕ

⟨ϕa(p)ϕb(−p)⟩ = δab
p2 + M2

ϕ

(p2 + m2
ϕ)(p2 + M2

ϕ) + 2Ng2σ4

The tree-level scalar-field propagator is

[Capri, Guimaraes, Justo, Palhares, Sorella 2014] [Capri, Guimaraes, Justo, Palhares, Sorella 2014]

[Lattice data: Maas]Using the mass-like parameters to fit lattice 
data, the tree-level expression provides a quite 
good description of the scalar-field propagator



4. Going beyond pure YM-RGZ 
Back to minimal coupling

SϕRGZ = SRGZ + Sϕ

[de Brito, de Fabritiis, AP 2023]

Sϕ = ∫x [ 1
2

(Dab
μ ϕb)(Dac

μ ϕc) +
m2

ϕ

2
ϕaϕa +

λ
4!

(ϕaϕa)2]
Compute one-loop corrections to the scalar-

field propagator arising from its coupling to the 
RGZ dynamics

Use the values for the mass-like parameters of 
the RGZ from the tree-level fitting of the 

(quenched) gluon propagator



4. Going beyond pure YM-RGZ 
Back to minimal coupling

SϕRGZ = SRGZ + Sϕ

[de Brito, de Fabritiis, AP 2023]

Sϕ = ∫x [ 1
2

(Dab
μ ϕb)(Dac

μ ϕc) +
m2

ϕ

2
ϕaϕa +

λ
4!

(ϕaϕa)2]
Compute one-loop corrections to the scalar-

field propagator arising from its coupling to the 
RGZ dynamics

Use the values for the mass-like parameters of 
the RGZ from the tree-level fitting of the 

(quenched) gluon propagator

The computation is performed at fixed coupling

Despite the large set of Feynman rules and 
mixings in the RGZ, the scalar propagator at 
one-loop order is obtained directly from the 

inversion of the 1PI two-point function

⟨ϕa(p)ϕb(−p)⟩ = δab𝒟ϕ(p2)

𝒟ϕ(p2) = (Γ(2)
ϕϕ(p2))

−1



4. Going beyond pure YM-RGZ [de Brito, de Fabritiis, AP 2023] [Lattice data: Maas (scalar sector); Cucchieri and 
Mendes (quenched gluon propagator)]
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If we fit  as well, the 
results are considerably 

improved

g



4. Going beyond pure YM-RGZ [de Brito, de Fabritiis, AP 2023] [Lattice data: Maas (scalar sector); Cucchieri and 
Mendes (quenched gluon propagator)]

If we fit  as well, the 
results are considerably 

improved

g

Within our setup, we 
were not able to identify 

positivity violation 
conclusively



4. Going beyond pure YM-RGZ 
For RGZ-Scalar systems:

The scalar-field propagator can be well 
described by minimal and non-perturbative 

matter coupling

The non-perturbative coupling has the 
advantage (or rather drawback) of introducing 
new parameters that are independent of those 

in the gluon propagator

Fitting the scalar-field propagator is a 
completely independent procedure

Further investigation within this scheme is 
necessary



4. Going beyond pure YM-RGZ 
For RGZ-Scalar systems:

The scalar-field propagator can be well 
described by minimal and non-perturbative 

matter coupling

The non-perturbative coupling has the 
advantage (or rather drawback) of introducing 
new parameters that are independent of those 

in the gluon propagator

Fitting the scalar-field propagator is a 
completely independent procedure

Further investigation within this scheme is 
necessary

In the minimal scheme, the scalar-field 
propagator receives quantum corrections that 

depend on parameters of the original RGZ action

The scalar-field propagator can be 
“predicted” if the mass parameters are 

fixed by the gluon propagator

The scalar-field propagator can be 
“predicted” if the mass parameters are 

fixed by the gluon propagator

The setup employed needs to be 
improved in several directions. First 

results are encouraging

[Work in Progress]



4. Going beyond pure YM-RGZ 
What about quarks?

Snm
ψRGZ = SRGZ + Snm

ψ

The non-perturbative matter coupling gives rise to

Snm
ψ = ∫x

Nf

∑
f=1

[ψ̄ i
f γμDij

μ ψ j
f − mf

ψψ̄ i
f ψ

i
f]

+∫x

Nf

∑
f=1

(λ̄ai
f ℳab(A)λbi

f + θ̄ab
f ℳac(A)θcb

f )

+∫x

Nf

∑
f=1

μ2
ψ, f (λ̄ai

f λai
f + θ̄ai

f θai
f )

+ig∫x

Nf

∑
f=1

M3/2
f (λ̄ai

f (Ta)ijψ j
f + ψ̄ai

f (Ta)ijλj
f )
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+∫x

Nf

∑
f=1

(λ̄ai
f ℳab(A)λbi

f + θ̄ab
f ℳac(A)θcb

f )

+∫x

Nf

∑
f=1

μ2
ψ, f (λ̄ai

f λai
f + θ̄ai

f θai
f )

+ig∫x

Nf

∑
f=1

M3/2
f (λ̄ai

f (Ta)ijψ j
f + ψ̄ai

f (Ta)ijλj
f )

Standard minimally coupled 
Dirac action

Localization of the Horizon-like 
function for the matter sector

Condensates of the auxiliary 
localizing fields
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ψRGZ = SRGZ + Snm

ψ

The non-perturbative matter coupling gives rise to

S(p) = Z(p)
iγμpμ − A(p)
p2 + A2(p)

The tree-level quark propagator for degenerate  isNf = 2

[Capri, Guimaraes, Justo, Palhares, Sorella 2014]

A(p) =
g2M3

p2 + μ2
ψ

+ mψZ(p) = 1

[Capri, Guimaraes, Justo, Palhares, Sorella 2014]
[Dudal, Guimaraes, Palhares, Sorella 2013]

Non-trivial momentum-dependence on the 
mass function already at tree-level

This mass function captures a 
non-trivial chiral limit.
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Fit the mass-parameters as well as 
the coupling using the unquenched 
gluon propagator at one-loop order
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Minimally coupled quarks

SψRGZ = SRGZ + Sψ

Sψ = ∫x

Nf

∑
f=1

[ψ̄ i
f γμDij

μ ψ j
f − mf

ψψ̄ i
f ψ

i
f]

[de Brito, de Fabritiis, AP 2025]

Compute one-loop corrections to the 
quark propagator arising from its 

coupling to the RGZ dynamics

Fit the mass-parameters as well as 
the coupling using the unquenched 
gluon propagator at one-loop order

A toy-running for the coupling is 
used, namely,

g2(p) =
g2

0

1 +
g2

0

16π2 ( 11
3 Nc − 2

3 Nf) log ( p2 + Λ2

Λ2 )

 stands for a IR cutoff to circumvent 
the perturbative Landau pole

Λ



4. Going beyond pure YM-RGZ 

[de Brito, de Fabritiis, AP 2025]
[Lattice data: Sternbeck, Maltman, Muller-Preussker and von Smekal]

 Unquenched gluon propagator at one-
loop order from RGZ minimally coupled 

to quarks



4. Going beyond pure YM-RGZ 

[de Brito, de Fabritiis, AP 2025]
[Lattice data: Oliveira, Silva, Skullerud and Sternbeck]

Quark mass function at one-loop order: 
The mass-parameters from the RGZ are 

fixed by the gluon propagator

mψ = 37 MeV Mπ = 422 MeV

No extra parameter is 
introduced. This is a “prediction”.

In the present treatment, chiral-symmetry 
breaking effects are not captured by the 
one-loop (or any finite order) correction - 
One should perform such analysis away 

from the chiral limit



4. Going beyond pure YM-RGZ 

[de Brito, de Fabritiis, AP 2025]
[Lattice data: Oliveira, Silva, Skullerud and Sternbeck]

The quark dressing function is not even 
in qualitative agreement with the lattice 

data in the IR

mψ = 37 MeV Mπ = 422 MeV

This is very similar to what happens in the 
Curci-Ferrari model. In fact, we checked 

that in the limit , our results coincide 
with Curci-Ferrari results at one-loop order

γ → 0

Two-loop computations are needed to 
improve the results (as it was shown in 
the Curci-Ferrari case) - Challenging 

task in the RGZ

[Pelaez, Tisser and Wschebor 2014]

[Barrios, Gracey, Pelaez and Reinosa 2021]



4. Going beyond pure YM-RGZ 
Chiral-symmetry breaking effects 

require some sort “beyond”-perturbative 
treatment.

There are several ways to tackle this 
problem, but there are no results in the 
context of the RGZ coupled to matter in 

a minimal way

The results here presented can be 
viewed as an encouragement that the 

elimination of Gribov copies in the 
gauge sector is sufficient to transfer the 

“necessary” IR effects to the matter 
sector via gluon and localizing auxiliary 

fields loops.



4. Going beyond pure YM-RGZ 
Chiral-symmetry breaking effects 

require some sort “beyond”-perturbative 
treatment.

There are several ways to tackle this 
problem, but there are no results in the 
context of the RGZ coupled to matter in 

a minimal way

The results here presented can be 
viewed as an encouragement that the 

elimination of Gribov copies in the 
gauge sector is sufficient to transfer the 

“necessary” IR effects to the matter 
sector via gluon and localizing auxiliary 

fields loops.

Since the Curci-Ferrari model can be viewed as a 
minimalistic approach to mimic the removal of 

Gribov copies, the results here presented should be, 
at least, in qualitative agreement with such a model. 

They are indeed.

It is important to emphasize that the Curci-Ferrari 
model is a particular case of the present setup in 

which the Gribov parameter  is set to zeroγ

RGZ expressions for the propagators at one-loop 
are much more complicated than the CF ones. This 
makes the fitting procedure much more involved.

The non-perturbative matter coupling can be cast in 
a BRST-invariant framework by dressing the matter 

fields

[Capri, Fiorentini, AP, Sorella 2017]



5. Conclusions

The Gribov problem is around for almost 50 years  

So far, we have managed to understand how to partially deal with it for computationally 
advantageous gauges

It is unclear if its resolution will give any new physical information in YM theories 

We have evidence for its relevance in the IR for correlation functions involving gauge 
fields and FP ghosts

There exists a local and renormalizable framework, the RGZ, that effectively removes 
infinitesimal Gribov copies and takes into account the formation of condensates 

Its original formulation in the Landau gauge has been extended to an entire new class 
of gauges thanks to a BRST-invariant formulation of the RGZ



5. Conclusions

The RGZ provides a non-perturbatively-informed tree-level structure 

What happens if loop corrections are introduced? This requires a systematic investigation and we have 
presented some recent contributions in this direction

Should the matter sector also be non-perturbatively-informed or the gluon (and auxiliary 
fields) loops will take care of the IR behavior of matter fields? 

We have found evidence supporting the minimal-coupling prescription

However, the non-perturbative RGZ-matter coupling should be investigated further as well. 
Even if it is not a necessary ingredient, it can be an efficient effective description of matter

A lot of work to be done. Cross-fertilization with functional methods would be fantastic!

See also [Mintz, Palhares, AP, Sorella 2018]
[Barrios, Guimaraes, Mintz, Palhares, Pelaez 2024]



Obrigado


