EMERGENT HADRON MASS FOR THEORETICAL STUDIES N NUCLEAR PHYSICS AND RELATED AREAS FONDAZIONE BRUNO KESSLER and PION/KAON/NUCLEON FORM FACTORS

DANIELE BINOSI ECT* - FONDAZIONE BRUNO KESSLER

The Complex Structure of Strong Interactions in Euclidean and Minkowski space

MAY 26 - 30 2025, TRENTO, IT

$$\mathcal{L}_{\text{QCD}} = \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$
$$D_\mu = \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu$$
$$G^a_{\mu\nu} = \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu$$

$$\begin{aligned} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} \\ D_\mu &= \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{aligned}$$

GLUON SELF-INTERACTION

pure-glue QCD displays a **mass gap**

 $m_g \sim 0.5 \,\,\mathrm{GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

$$\lim_{q^2 \to 0} q^2 \Pi(q^2) = m_g$$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

GLUON **SELF-INTERACTION**

QCD

pure-glue QCD displays a mass gap

 $m_g \sim 0.5 \,\,\mathrm{GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

$$\lim_{q^2 \to 0} q^2 \Pi(q^2) = m_g$$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

 $\partial_\mu ar c^a \partial_\mu c^a + g f^{abc} (\partial_\mu ar c^a) A^b_\mu c^a$

Faddeev-Popov ghost term

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu \\ D_\mu = & \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} = & \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{split}$$
 (inear) gauge fixing

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_g \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

 $\lim_{q^2 \to 0} q^2 \Pi(q^2) = m_g$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,...

 $_{\mu} \overline{c}^{a} \partial_{\mu} c^{a} + g f^{abc} (\partial_{\mu} \overline{c}^{a}) A^{b}_{\mu} c^{a}$

Faddeev-Popov ghost term

Aguilar et al., EPJC 80 (2020) DB et al., PLB 742 (2015)

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu \\ D_\mu = & \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} = & \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{split}$$
 (inear) gauge fixing

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_g \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

 $\lim_{q \to \infty} q^2 \Pi(q^2) = m_g$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

Aguilar et al., EPJC 80 (2020) and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015) 0.4 0.3 0.2 0.1 0.0 3 2 0 4 k / GeV

 $_{\mu}\overline{c}^{a}\partial_{\mu}c^{a}+gf^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}c^{a}$

Faddeev-Popov ghost term

P EFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 + b_0}$$

parameter free prediction

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu \\ D_\mu = & \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} = & \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{split}$$
 (inear) gauge fixing

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_q \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

 $\lim_{q \to \infty} q^2 \Pi(q^2) = m_g$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

Aguilar et al., EPJC 80 (2020) and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015) 0.4 0.3 0.2 0.1 0.0 3 2 0 4 k / GeV

 $_{\mu}\overline{c}^{a}\partial_{\mu}c^{a}+gf^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}c^{a}$

Faddeev-Popov ghost term

PI EFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 + b_0}$$

parameter free prediction

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu \\ D_\mu = & \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} = & \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{split}$$
 (inear) gauge fixing

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_q \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

 $\lim_{q \to \infty} q^2 \Pi(q^2) = m_g$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR **IS ANOMALOUS**

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

Aguilar et al., EPJC 80 (2020) and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015)

 $_{\mu}\overline{c}^{a}\partial_{\mu}c^{a} + gf^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}c^{a}$

Faddeev-Popov ghost term

PI EFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 - b_0}$$

parameter free prediction

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu \\ D_\mu = & \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} = & \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{split}$$
 (inear) gauge fixing

GLUON **SELF-INTERACTION**

pure-glue QCD displays a mass gap

 $m_g \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

$$\lim_{q^2 \to 0} q^2 \Pi(q^2) = m_g$$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015)

 $_{\mu}\overline{c}^{a}\partial_{\mu}\overline{c}^{a}+g\overline{f}^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}\overline{c}^{c}$

Faddeev-Popov ghost term

Aguilar et al., EPJC 80 (2020)

P EFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 + b_0}$$

parameter free prediction

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu Q^a_\mu + \partial_\mu A^a_\mu + \partial_\mu$$

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_a \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

 $\lim_{q \to \infty} q^2 \Pi(q^2) = m_g$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

Aguilar et al., EPJC 80 (2020) and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015) 0.35 — RL herein 0.30 Observable-constrained bRL 0.25 N(k)/GeV 0.15 DB RGI 0.10

 $_{\mu}\overline{c}^{a}\partial_{\mu}c^{a}+gf^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}c^{a}$

Faddeev-Popov ghost term

k² [GeV²]

2.5

3.0

2.0

PI EFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 + b_0}$$

parameter free prediction

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu Q^a_\mu + \partial_\mu A^a_\mu + \partial_\mu$$

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_q \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

 $\lim q^2 \overline{\Pi(q^2)} = m_g$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

$$m_g = 0.43(1) \,\,\mathrm{Ge}$$

Aguilar et al., EPJC 80 (2020) and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015) 0.35 RL herein 0.30 Observable-constrained bRL

 $d\bar{c}^a \partial_\mu c^a + g f^{abc} (\partial_\mu \bar{c}^a) A^b_\mu c^c$

Faddeev-Popov ghost term

A QCD EHM PRIMER

PIEFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 + b_0}$$

parameter free prediction

$$\begin{split} \mathcal{L}_{\text{QCD}} = & \sum_{j=u,s,d,\dots} \bar{q}_j \left[\gamma_\mu D_\mu + m_j \right] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \delta_\mu A^a_\mu \right] \\ D_\mu = & \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu \\ G^a_{\mu\nu} = & \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu \end{split}$$
 (inear) gauge fixing

GLUON SELF-INTERACTION

pure-glue QCD displays a mass gap

 $m_g \sim 0.5 \text{ GeV}$

Cornwall, PRD 26 (1982)

GAUGE SYMMETRY IS FINE

2-point STI can be still satisfied with

$$\Delta_{\mu\nu}(q) = \frac{P_{\mu\nu}(q)}{q^2 [1 + \Pi(q^2)]}, \quad q^{\mu} P_{\mu\nu}(q) = 0$$

$$\lim_{q^2 \to 0} q^2 \Pi(q^2) = m_g$$

("only" requires the presence of longitudinally coupled massless poles) Schwinger, PR 125 and 128 (1962)

STRESS-ENERGY TENSOR IS ANOMALOUS

$$T_{\mu\mu} = \frac{\beta}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

but no size prescribed...

40 years+ non-perturbative methods uncover the size of the gluon mass

Aguilar et al., EPJC 80 (2020) and reveal the associated RGI running masses, unifies matter-based and gauge-focused understanding of QCD interactions,... DB et al., PLB 742 (2015)

 $_{\mu}\overline{c}^{a}\partial_{\mu}c^{a} + gf^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}c^{c}$

Faddeev-Popov ghost term

A QCD EHM PRIMER

PI EFFECTIVE CHARGE

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 + b_0}$$

parameter free prediction

but no size prescribed...

 $\partial_{\mu}\overline{c}^{a}\partial_{\mu}c^{a} + gf^{abc}(\partial_{\mu}\overline{c}^{a})A^{b}_{\mu}c^{c}$

Faddeev-Popov ghost term

A QCD EHM PRIMER

Ρ **EFFECTIVE CHARGE**

RST = BFM = PT

the emergence of a non-zero gluon mass scale cess independent effective charge emerges

 $\overline{(11-2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}$

Aguilar et al., EPJC 80 (2020) GI running masses, focused understanding ions,...

DB et al., PLB 742 (2015)

but no size prescribed...

$$\widehat{\alpha}(s) = \frac{4\pi}{(11 - 2n_f/3)\log[\mathcal{K}^2(s)/\Lambda^2]}, \quad \mathcal{K}^2(s) = \frac{a_0^2 + a_1}{b_0 - b_0}$$

owing to the emergence of a non-zero gluon mass scale a process independent effective charge emerges

candidate for QCD interaction strength @ all moment

BETHE-SALPETER EQUATION

dressed-quark propagators singularities limit mass of bound-state

singularities move in the complex k^2 domain sampled by the bound-state equations

BETHE-SALPETER EQUATION

dressed-quark propagators singularities limit mass of bound-state

singularities move in the complex k^2 domain sampled by the bound-state equations

BETHE-SALPETER EQUATION

dressed-quark propagators singularities limit mass of bound-state

SPM INTERPOLATION

$$D = \{(x_i, y_i = f(x_i)), i = 1, \dots, N\}$$

$$C_N(x) = \frac{y_1}{1+} \frac{a_1(x - x_1)}{1+} \frac{a_2(x - x_2)}{1+} \dots \frac{a_{N-1}(x_N)}{1+} C_N(x_i) = y_i \quad \forall x_i \in D$$
Schlassinger DI

PRECISION **TEMPERATURE METROLOGY**

VIRIAL COEFFICIENTS

Describe the deviation from ideal-gas behavior

$$\frac{p}{\rho RT} = 1 + B(T)\rho + C(T)\rho^2 + \cdots$$

:

SPM INTERPOLATION

Schlessinger, PR 167 (1968)

DB, Garberoglio, Harvey, Jour.Chem.Phys. 160 (24)

singularities move in the complex k^2 domain sampled by the bound-state equations

BETHE-SALPETER EQUATION

dressed-quark propagators singularities limit mass of bound-state

TRIANGULAR DIAGRAM

SPM INTERPOLATION

sampled by the bou

EQUATION

limit mass of bound-state

Yao, DB, Cui, Roberts, 2403.08088 (FR in press)

FADDEEV EQUATION

TRIANGULAR DIAGRAM

SPM INTERPOLATION

Yao, DB, Cui, Roberts, 2403.08088 (FR in press)

FADDEEV EQUATION

TRIANGULAR DIAGRAM

SPM INTERPOLATION

FADDEEV EQUATION

TRIANGULAR DIAGRAM

SPM INTERPOLATION

Yao, DB, Cui, Roberts, 2403.08088 (FR in press)

FADDEEV EQUATION

TRIANGULAR DIAGRAM

Yao, DB, Cui, Roberts, 2403.08088 (FR in press)

FADDEEV EQUATION

TRIANGULAR DIAGRAM

Yao, DB, Cui, Roberts, 2403.08088 (FR in press)

FADDEEV EQUATION

TRIANGULAR DIAGRAM

SPM INTERPOLATION

Yao, DB, Cui, Roberts, 2403.08088 (FR in press)

FADDEEV EQUATION

TRIANGULAR DIAGRAM

SPM INTERPOLATION

Zero-crossing of F_1^d (linear fit to data)

 $Q^2 = 9.8 \pm 1.8 \text{ GeV}^2$

EHM prediction

$$Q^2 = 5.7^{+1.5}_{-0.5} \text{ GeV}^2$$

experiment is only 1.4σ away from our prediction!

BETHE-SALPETER FADDEEV EQUATIONS

TRIANGULAR DIAGRAM

SPM INTERPOLATION

GRAVITATIONAL DE FORMERACIONAL

Yao et al, EPJA 61 (2025)

BETHE-SALPETER FADDEEV EQUATIONS

TRIANGULAR DIAGRAM

A(0)=1

J(0)=¹/₂

D(0)=?

...the last unknown property of the nucleon...

SPM INTERPOLATION

Schlessinger, PR 167 (1968)

 $+ \frac{1}{4} (Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2) D(Q^2)]\Lambda_+(p_i)$

GRAVITATIONAL DI GRAVITATIONAL DI GRAVITATIONAL

Yao et al, EPJA 61 (2025)

BETHE-SALPETER FADDEEV EQUATIONS

D(0)=?

A(0)=1

J(0)=1/2

...the last unknown property of the nucleon...

TRIANGULAR DIAGRAM

SPM INTERPOLATION

GRAVITATIONAL DE FORMERACIONAL

Yao et al, EPJA 61 (2025)

BETHE-SALPETER FADDEEV EQUATIONS

D(0)=?

A(0)=1

J(0)=¹/₂

...the last unknown property of the nucleon...

TRIANGULAR DIAGRAM

SPM INTERPOLATION

GRAVITATIONAL DI GRAVITATIONAL DI GRAVITATIONAL

Yao et al, EPJA 61 (2025)

BETHE-SALPETER FADDEEV EQUATIONS

TRIANGULAR DIAGRAM

D(0)=?

$$m_N \Lambda^{Ng}_{\mu\nu}(Q) = -\Lambda_+(p_f) [K_\mu K_{\nu} A_\mu A_\mu A_\mu A_\nu] + \frac{1}{4} (Q_\mu Q_\nu - \delta_{\mu\nu} A_\mu A_\nu)$$

A(0)=1

J(0)=¹/₂

...the last unknown property of the nucleon...

 $A(Q^2) + iK_{\{\mu}\sigma_{\nu\}\rho}Q_{\rho}J(Q^2)$ $(Q^2)D(Q^2)]\Lambda_+(p_i)$

SPM INTERPOLATION

$D = \{(x_i,$	y_i =	$=f(x_i)), i$	$=1,\ldots,N$	
$C_N(x) =$	$\frac{y_1}{1+}$	$\frac{a_1(x-x_1)}{1+}$	$\frac{a_2(x-x_2)}{1+}\cdots$	$\cdot \frac{a_{N-1}(x)}{x}$
$C_N(x_i) =$	y_i	$\forall x_i \in D$		

GRAVITATIONAL DI GRAVITATIONAL DI GRAVITATIONAL

Yao et al, EPJA 61 (2025)

BETHE-SALPETER FADDEEV EQUATIONS

TRIANGULAR DIAGRAM

D(0)=?

A(0)=1

J(0)=¹/₂

...the last unknown property of the nucleon...

 $A(Q^2) + i K_{\{\mu} \sigma_{\nu\}\rho} Q_{\rho} J(Q^2)$ $(Q^2)D(Q^2)]\Lambda_+(p_i)$

SPM INTERPOLATION

$D = \{(x_i, y_i \in$	$=f(x_i)), i$	$= 1, \ldots, N$	
$C_N(x) = \frac{y_1}{1+}$	$\frac{a_1(x-x_1)}{1+}$	$\frac{a_2(x-x_2)}{1+}\cdots$	$\cdot \frac{a_{N-1}(x)}{x}$
$C_N(x_i) = y_i$	$\forall x_i \in D$		

Schlessinger, PR 167 (1968)

2.5

