

Testing infrared confining models beyond fundamental correlation functions

Letícia F. Palhares

Departamento de Física Teórica (UERJ, Brazil)

- Confining models as an alternative approach to IR QCD
 - Status of Refined Gribov-Zwanziger framework
- Testing IR confining models in observables and phenomenology:
 - The q-qbar-photon vertex and the anomalous magnetic moment: model contraints from an observable?
 - Color SUC via nonperturbative gluon exchange

Motivation: gluon propagator in the infrared

• Finite infrared gluon propagator in Landau gauge:

- early predictions in Dyson-Schwinger studies [Aguilar, Natale (2004); Frasca (2007)]
- High-precision lattice YM results for large systems [Cucchieri, Mendes (2008)]



Also confirmed by other lattice groups: [Bogolubsky et al (2009); Oliveira & Silva (2009)]

- FRG: Cyrol, Fister, Mitter, Pawlowski, Strodthoff (PRD 2016)
- Curci-Ferrari (massive) models: Pelaez, Reinosa, Serreau, Tissier, Wschebor (2015,2016)
- Gluon condensate from lattice QCD: Boucaud, Pene, Rodriguez-Quintero et al (2001)

Quantizing Yang-Mills theories beyond Pert. Theory?

[Gribov (1978)]

The Gribov problem:

In the Landau gauge, for instance, the theory assumes the form

$$\int \mathcal{D}A\mathcal{D}\bar{c}\mathcal{D}c\mathcal{D}b \, e^{-S_{YM} + S_{gf}}$$

$$S_{gf} = b^a \partial_\mu A^a_\mu - \bar{c}^a \mathcal{M}^{ab} c^b \,, \qquad \mathcal{M}^{ab} = -\partial_\mu \left(\delta^{ab} \partial_\mu + g f^{abc} A^c_\mu \right)$$

- ullet Gribov copies o zero eigenvalues of the Faddeev-Popov operator \mathcal{M}^{ab} .
- Copies cannot be reached by small fluctuations around A=0(perturbative vacuum) \rightarrow pertubation theory works.
- Once large enough gauge field amplitudes have to be considered (non-perturbative domain) the copies will show up enforcing the effective breakdown of the Faddeev-Popov procedure.

Quantizing Yang-Mills theories: the Gribov approach

Gribov proposed a way to eliminate (infinitesimal) Gribov copies from the integration measure over gauge fields: the restriction to the (first) Gribov region Ω

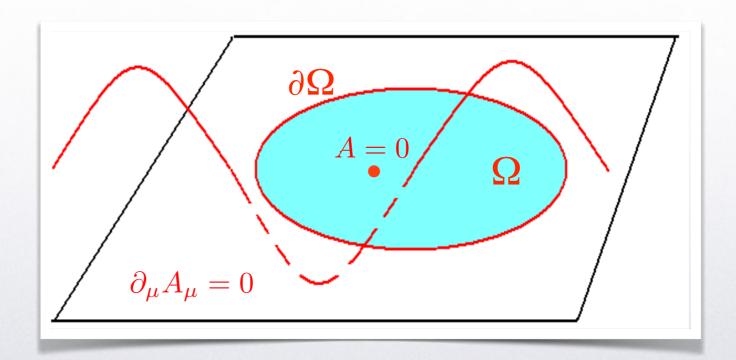
$$\int [DA]\delta(\partial A) \det(\mathcal{M}) e^{-S_{YM}} \longrightarrow \int_{\Omega} [DA]\delta(\partial A) \det(\mathcal{M}) e^{-S_{YM}} \qquad S_{YM} = \frac{1}{4} \int_{x} F^{2}$$

with
$$\Omega = \left\{ A_{\mu}^a \; ; \; \partial A^a = 0, \mathcal{M}^{ab} > 0
ight\}$$

with
$$\Omega = \left\{ A^a_\mu \; \; ; \; \; \partial A^a = 0, \mathcal{M}^{ab} > 0 \right\}$$

$$\mathcal{M}^{ab} = -\partial_\mu \left(\delta^{ab} \partial_\mu + f^{abc} A^c_\mu \right) = -\partial_\mu D^a_\mu$$

(Faddeev-Popov operator)



The Gribov-Zwanziger action

The **restriction** can be implemented as a **gap equation** for the vacuum [Zwanziger (1989,...)] energy obtained as:

$$Z = e^{-V\mathcal{E}(\gamma)} = \int \mathcal{D}A \, \delta(\partial A) \, \det \mathcal{M} \, e^{-\left(S_{YM} + \gamma^4 H(A) - \gamma^4 V D(N^2 - 1)\right)} =: +\gamma^4 \mathcal{H}$$

quantity $\sigma(k;A)$ turns out to be a decreasing func entum k. Thus, the no-pole condition becomes

$$\langle \sigma(0;A)\rangle_{1PI}=1$$
.

4) can be exactly evaluated as

$$A) = -\frac{g^2}{VD(N^2 - 1)} \int \frac{d^D p}{(2\pi)^D} \int \frac{d^D q}{(2\pi)^D} A_{\mu}^{ab}(-p) (1-p) = \frac{H(A)}{VD(N^2 - 1)}$$

he no-pole condition can also be written as

$$\langle H(A)\rangle_{1PI} = VD(N^2 - 1)$$

is known as the Horizon function

Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. P. Sorella
$$p$$
 Marcelo Santos Guimarães (DFT-IF/UERJ) p Marcelo Santos p M

 $\langle \sigma(0;A) \rangle_{1PI} = 1$.

 $\sigma(0,A)$ can be exactly evaluated as

$$\begin{split} \sigma(0,A) &= -\frac{g^2}{VD(N^2-1)} \int \frac{d^Dp}{(2\pi)^D} \int \frac{d^Dq}{(2\pi)^D} \\ &= \frac{H(A)}{VD(N^2-1)} \end{split}$$

and the no-pole condition can also be written

$$\langle H(A) \rangle_{1PI} = VD(N^2)$$

H(A) is known as the Horizon function

M. A. L. Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. F. (2013).

hys. Lett. B **719**, 448

10/38

10 / 38

tion can also be written as

$$\langle H(A)\rangle_{1PI} = VD(N^2 - 1)$$

Horizon function

marães (DFT-IF/UERJ)

quantity $\sigma(k;A)$ turns out to be a decreasing func entum k. Thus, the no-pole condition becomes

$$\langle \sigma(0;A)\rangle_{1PI}=1$$
.

4) can be exactly evaluated as

$$\begin{split} A) &= -\frac{g^2}{VD(N^2 - 1)} \int \frac{d^D p}{(2\pi)^D} \int \frac{d^D q}{(2\pi)^D} A_{\mu}^{ab}(-p) \, (1-p) \, d^D p \,$$

he no-pole condition can also be written as

$$\langle H(A) \rangle_{1PI} = VD(N^2 - 1)$$

is known as the Horizon function

Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. P. Sorella, Phys. Lett.
$$p$$
 /1(9), 448 hys.

 $\langle \sigma(0;A) \rangle_{1PI} = 1$.

$$\langle \sigma(0;A) \rangle_{1PI} = 1$$

 $\sigma(0,A)$ can be exactly evaluated as

$$\begin{split} \sigma(0,A) &= -\frac{g^2}{VD(N^2-1)} \int \frac{d^Dp}{(2\pi)^D} \int \frac{d^Dq}{(2\pi)^D} \\ &= \frac{H(A)}{VD(N^2-1)} \end{split}$$

and the no-pole condition can also be written

$$\langle H(A) \rangle_{1PI} = VD(N^2)$$

H(A) is known as the Horizon function

M. A. L. Capri, D. Dudal, M. S. Guimaraes, L. F. Palhares and S. F. (2013).

hys. Lett. B **719**, 448

orm:
$$Z = \int [\mathcal{D}\Phi] \ \delta(\partial A) \ \det \mathcal{M} \ e^{-S_{\rm GZ}}$$

tion can also be written as

$$\langle H(A) \rangle_{1PI} = VD(N^2 - 1)$$

Horizon function

marães (DFT-IF/UERJ)

ıimaraes, L. F. Palhares and S. P. Sorella, Phys. Lett. B **719**, 448

kowski space @ Trento, May/2025)

The Refined Gribov-Zwanziger action

The GZ theory is unstable against the formation of certain dimension 2 condensates, giving rise to a refinement of the effective IR action:

[Dudal et al (2008)]

$$S_{\rm YM} \xrightarrow{\rm Gribov} S_{\rm GZ} = S_{\rm YM} + \gamma^4 \mathcal{H}$$
restriction(UV
 \rightarrow IR)

Dynamical generation of dim.2 condensates

$$S_{RGZ} = S_{YM} + \gamma^4 \mathcal{H} + \frac{m^2}{2} AA - M^2 \left(\overline{\varphi} \varphi - \overline{\omega} \omega \right)$$

The Refined Gribov-Zwanziger action



The GZ theory is unstable against the formation of certain dimension 2 condensates, giving rise to a refinement of the effective IR action:

[Dudal et al (2008)]

$$S_{\mathrm{YM}} \xrightarrow{\mathsf{Gribov}} S_{\mathrm{GZ}} = S_{\mathrm{YM}} + \gamma^4 \mathcal{H}$$
restriction(UV
 $\rightarrow \mathsf{IR}$)

$$S_{\text{RGZ}} = S_{\text{YM}} + \gamma^4 \mathcal{H} + \frac{m^2}{2} AA - M^2 \left(\overline{\varphi} \varphi - \overline{\omega} \omega \right)$$

$$\frac{\partial \mathcal{E}(\gamma)}{\partial \gamma} = 0 \Rightarrow \langle H(A) \rangle_{1PI} = VD(N^2 - 1)$$

The parameters M and m are obtained via minimization of an effective potential for:

$$\langle \overline{\varphi}\varphi - \overline{\omega}\omega \rangle \neq 0 \qquad \langle A^2 \rangle \neq 0$$

Non-perturbative effects included: $(\gamma, M, m) \propto {
m e}^{-\frac{1}{g^2}}$

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies?

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- ✓ consistent with gluon 'confinement'? Confining propagator (no physical propagation; violation of reflection positivity)

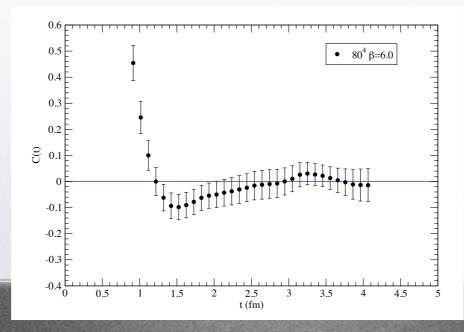
Schwinger function (computed directly from the gluon propagator):

$$C(t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi} D(p^2) \exp(-ipt).$$

Strictly positive if the gluon spectral function is physical:

$$C(t) = \int_0^\infty \mathrm{d}\omega \rho(\omega^2) e^{-\omega t}, \qquad D(p^2) = \int_0^\infty \mathrm{d}\mu \frac{\rho(\mu)}{\mu + p^2}.$$

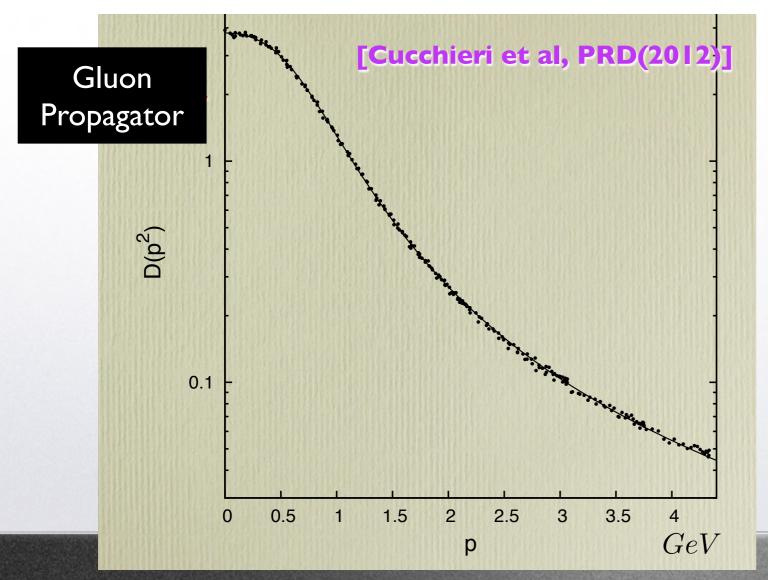
Positivity violation: for the RGZ gluon and in lattice data



SU(3) latt.: [Silva et al (2014)]

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- **✓** consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results?

- **√** (can be cast in a) local and renormalizable action
- ✓ reduces to QCD (pure gauge) at high energies
- ✓ consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results?



$$\langle A_{\mu}^{a}A_{\nu}^{b}\rangle_{p}=\delta^{ab}\left(\delta_{\mu\nu}-\frac{p_{\mu}p_{\nu}}{p^{2}}\right)D(p^{2})$$

$$D_{\mathrm{fit}}(p^{2})=C\frac{p^{2}+s}{p^{4}+u^{2}\,p^{2}+t^{2}}$$

$$C=0.56(0.01)\,,\,u=0.53(0.04)\,\mathrm{GeV}\,,$$

$$t=0.62(0.01)\,\mathrm{GeV}^{2}\,,\,u=2.6(0.2)\,\mathrm{GeV}^{2}$$
 poles: $m_{\pm}^{2}=(0.352\pm0.522i)\mathrm{GeV}^{2}$

$$D_{\text{RGZ}}(p^2) = \frac{p^2 + M^2}{p^4 + (M^2 + m^2)p^2 + 2g^2N\gamma^4}$$

NB.: Complex conjugated poles!

- **√** (can be cast in a) local and renormalizable action
- ✓ reduces to QCD (pure gauge) at high energies
- **✓** consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results (fitted propagators, promising gh-g vertex)

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- **✓** consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results (fitted propagators, promising gh-g vertex)
- **√** physical spectrum of bound states? Glueballs w/ masses compatible w/ lattice [Dudal, Guimaraes, Sorella, PRL (2011), PLB (2014)]
- **✓** other applications...
- **√** Exact modified BRST invariance => gauge-parameter independence [Capri et al (2016,2017)]

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- **✓** consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results (propagators, ghost-gluon vertex)
- **√** physical spectrum of bound states? Glueballs w/ masses compatible w/ lattice
- **✓** other applications...
- **√** Exact modified BRST invariance

[Dudal, Felix, LFP, Rondeau, Vercauteren, EPJC (2019)]

- X no quantitative prediction without fitting lattice data for propagators
- X no general definition of physical operators, unitarity
- X quark confinement properties: linear potential, etc...
- X Minkowski space
- X Radiative corrections?

[Talk by Antonio Pereira]

Radiative Corrections and vertices

Most applications of RGZ theories are at tree level. How do radiative corrections change the results?

Recent developments:

I-loop RGZ propagators [Talk by Antonio Pereira]

I-loop ghost-antighost-gluon vertex:

Soft-gluon limit [Mintz, LFP, Sorella, Pereira PRD (2018)]

General kinematics + infrared-safe running (ad-hoc model)

[Barrios, Pelaez, Guimaraes, Mintz, LFP PRD (2024)]

- √ (can be cast in a) local and renormalizable action
- ✓ reduces to QCD (pure gauge) at high energies
- ✓ consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- √ consistent with lattice IR results (propagators, ghost-gluon vertex)
- ✓ physical spectrum of bound states? Glueballs w/ masses compatible w/ lattice
- **√** other applications...
- **√** Exact BRST invariance

[Dudal, Felix, LFP, Rondeau, Vercauteren, EPJC (2019)]

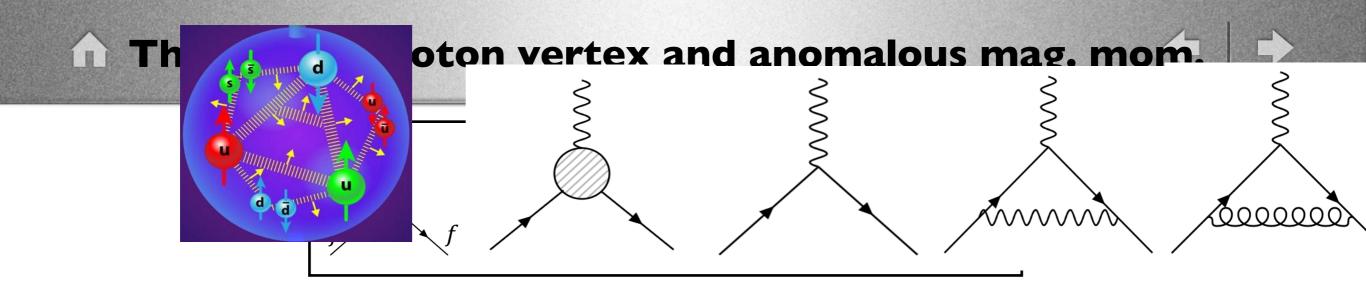
- X no quantitative prediction without fitting lattice data for propagators
- X no general definition of physical operators, unitarity
- X quark confinement properties: linear potential, etc...
- X Minkowski space
- X Radiative corrections, other observables and phenomenological tests?

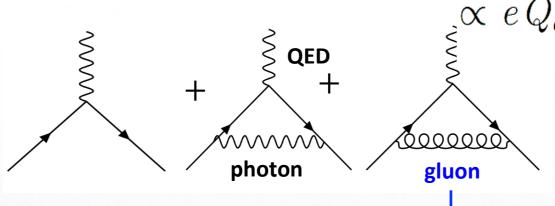
 [Talk by Antonio Pereira]

Does a theory constructed with positivity-violating fundamental DOFs produce physical phenomenology?

- A different correlation on that is accessible by lattice simulations.
- m factor is gauge independent and, in non-confined The soft limit of the fermions, directly related to an **observable**.

$$f = e Q_f \overline{\boldsymbol{U}}(q_2) \left[\gamma_{\mu} \boldsymbol{F_1}(p^2) + \frac{p_{\nu} \sigma_{\mu\nu}}{2m} \boldsymbol{F_2}(p^2) \right] \boldsymbol{U}(q_1) \Rightarrow g = 2 \left[F_{\mu}(0) + F_{2}(0) \right]$$





one-loop:
$$\bigotimes e \, Q_q \, \mathcal{N} \int \frac{d^4k}{(2\pi)^4} \left(\frac{\gamma_\nu (\not p + \not k + i m_q) \gamma_\mu (\not k + i m_q) \gamma_\nu}{[l^2 + m^2] \left[(p + k)^2 + m_q^2 \right] \left[k^2 + m_q \right]} \right)$$

$$\mu_q = Q_q \left(\frac{e}{2m_q}\right) \left(1 + Q_q^2 \left(\frac{\alpha}{2\pi}\right) + C_F \left(\frac{\alpha_s}{\pi}\right) \overline{F}_2(0)\right)$$

$$e \, Q_q \, \mathcal{N} \int \frac{d^4k}{(2\pi)^4} \left(\frac{\gamma_{\nu}(\not p + \not k + i m_q) \gamma_{\mu}(\not k + i m_q) \gamma_{\nu}}{[l^2 + m^2] \left[(p + k)^2 + m_q^2 \right] \left[k^2 + m_q^2 \right]} \right)$$

Gluon **Confining** models

$$\frac{l^2}{l^4 + \lambda^4}$$

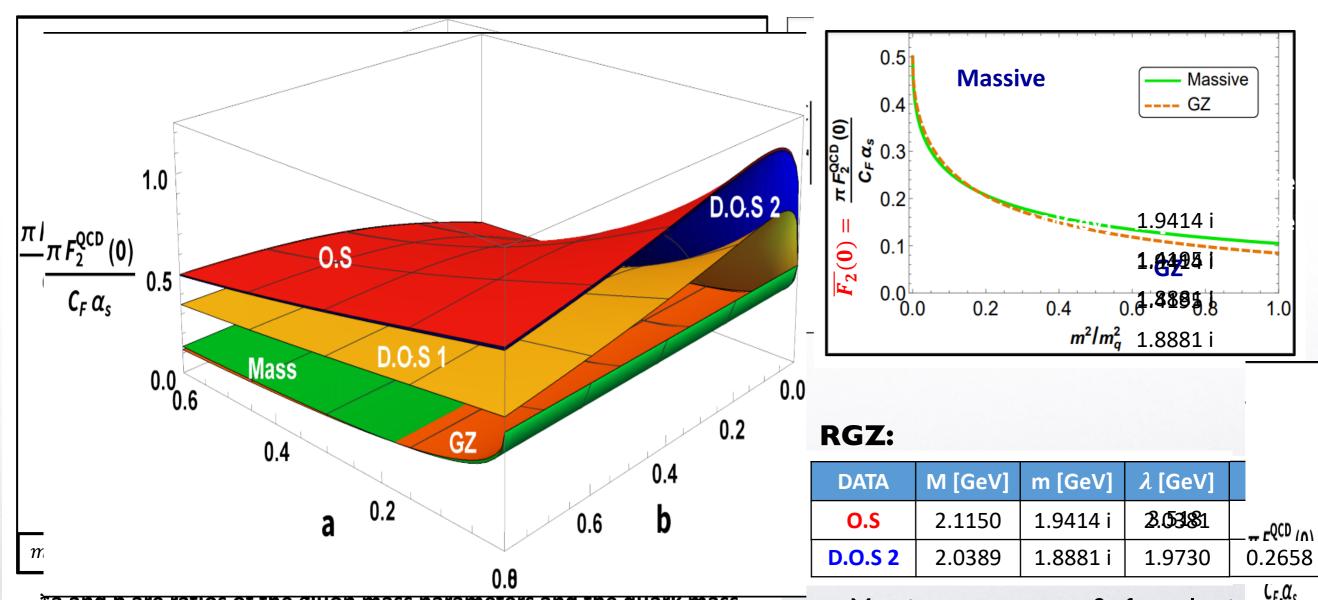
$$\frac{1}{l^2 + m_g^2} \qquad \frac{l^2}{l^4 + \lambda^4} \qquad \frac{l^2 + M_1^2}{l^4 + l^2 M_2^2 + M_3^4}$$

[Mena & LFP, PRD (2024)]

The quark-photon vertex — soft limit for F₂

[Mena & LFP, PRD (2024)]

 $\overline{F_2}(0)$ RESULTS



*a and b are ratios of the gluon mass parameters and the quark mass.

Massive parameters fit from lattice data: Oliveira & Silva, PRD (2012) Dudal, Oliveira & Silva, Ann. Phys. (2018)

0.0

0.4

Estimating the proton AMM from confining models...

0.0

0.1

We adopt the simplest Constituent Quark Model to estimate the effect on the proton A....

$$\mu_p^{CQM} = \left[\frac{4}{3}\mu_u - \frac{1}{3}\mu_d\right] \qquad \text{with} \qquad \mu_q = Q_q \left(\frac{e}{2m_q}\right) \left(1 + Q_q^2 \left(\frac{\alpha}{2\pi}\right) + C_F \left(\frac{\alpha_s}{\pi}\right) \overline{F}_2(0)\right)$$

CQM parameters: constituent quark mass fixed to proton mass

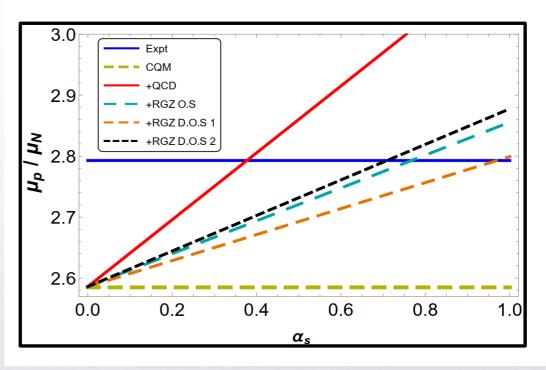
$$m_q = 363 \text{ MeV } M_p \rightarrow M_p^{exp} \approx 939 \text{ MeV}$$

Confining model parameters: dynamically generated gluon mass(es) strong coupling in the deep IR

m_g	0 MeV	140 MeV	185.64 MeV	600 MeV
$\alpha_s \parallel \lambda_{CF} = 3\alpha_s/4$	0.38 0.091	0.83 0.198	1.00 0.239	3.24 0.773

[Mena & LFP, PRD (2024)]

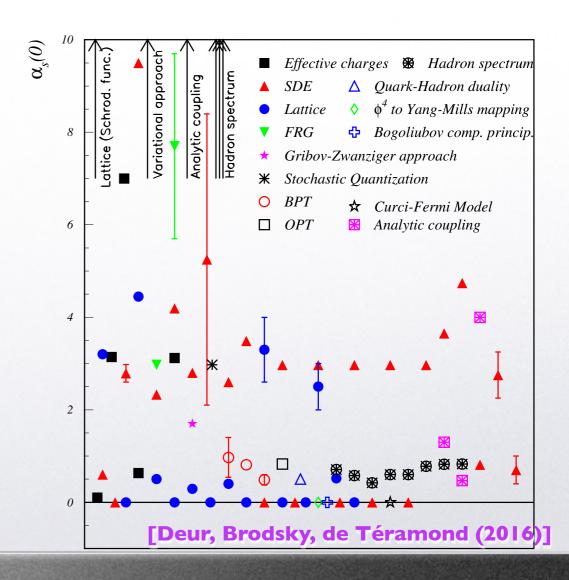
RGZ model



Estimating the proton AMM from confining models...

K

- Confining models even with complex conjugated poles yield reasonable results;
- 2. Dynamically generated gluon masses can be accomodated if the strong coupling is large enough in the IR (or changing other CQM parameters...)
- 3. Still hard to constrain models, but lattice data may help.
 - **CQM** parameters: constituent quark mass fixed to proton mass $m_q = 363 \text{ MeV } M_p \rightarrow M_p^{exp} \approx 939 \text{ MeV}$
 - Confining model parameters: dynamically generated gluon mass(es) strong coupling in the deep IR



Testing IR models with color SUC phenomenology

Color superconductivity mediated by gluons at intermediate to high densities should probably be affected by nonperturbative modifications of the gluon propagator;

Aims here:

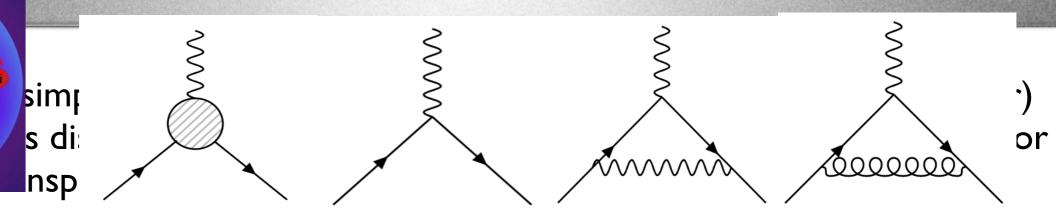
Do complex-conjugated poles generate non-physical features in SUC?

How is the SUC gap influence by the presence of massive gluon parameters?

Could one discriminate between the predictions of different IR models?

[Santos & LFP, to appear; Dudal, LFP & Santos, in progress]

model for color SUC wiht confining propagators



IR-modified boson propagators

$$S = \int_{\mathcal{X}} \mathcal{L}_{\infty} e Q_q \mathcal{N} \int \frac{d^4k}{(2\pi)^4} \left(\frac{\gamma_{\nu}(\not p + \not k + im_q)\gamma_{\mu}(\not k + im_q)\gamma_{\nu}}{[l^2 + m^2][(p + \not k)^2 + m_q^2][k^2 + m_q^2]} \right)$$
$$-g \int_{\mathcal{X}} \overline{\psi}(x)\psi(x)\phi(x),$$

Dirac (free), finite density =>
$$G_0^{-1}(x,y)=\delta(x-y)(i\gamma^\mu\partial_\mu+\gamma^0\mu-m)$$

Massive	GZ	RGZ
$\frac{1}{l^2 + m_g^2}$	$\frac{l^2}{l^4 + \lambda^4}$	$\frac{l^2 + M_1^2}{l^4 + l^2 M_2^2 + M_3^4}$

Toy model for color SUC with confining propagators

Integrating out the boson, one arrives at a 4-fermion theory that is convenient to study SUC:

IR-modified boson propagators

$$S' = \int_{x,y} \left[\overline{\psi}(x) G_0^{-1}(x,y) \psi(y) + \frac{g^2}{2} \overline{\psi}(x) \psi(x) D(x,y) \overline{\psi}(y) \psi(y) \right]$$

To describe the di-quark condensate, one can transform to Nambu Gorkov space, with a charge-conjugate spinor defined by:

$$\psi_C \equiv C\overline{\psi}^T, \qquad C = i\gamma^2\gamma^0$$

$$\overline{\psi}(x)\psi(x)\overline{\psi}(y)\psi(y) = \frac{1}{2}[\overline{\psi}_C(x)\psi_C(x)\overline{\psi}(y)\psi(y) + \overline{\psi}(x)\psi(x)\overline{\psi}_C(y)\psi_C(y)]$$

$$= -\frac{1}{2}\text{Tr}[\psi_C(x)\overline{\psi}(y)\psi(y)\overline{\psi}_C(x) + \psi(x)\overline{\psi}_C(y)\psi_C(y)\overline{\psi}(x)]$$

Toy model for color SUC with confining propagators

Introducing the di-quark condensate in mean-field approximation:

$$S'' = \int_{x,y} \left\{ \overline{\psi}(x) G_0^{-1}(x,y) \psi(y) + \frac{1}{2} \left[\overline{\psi}_C(x) \Phi^+(x,y) \psi(y) + \overline{\psi}(x) \Phi^-(x,y) \psi_C(y) \right] \right\} dy$$

$$\Phi^{+}(x,y) \equiv g^{2}D(x,y)\langle \psi_{C}(x)\overline{\psi}(y)\rangle,$$

$$\Phi^{-}(x,y) \equiv g^{2}D(x,y)\langle \psi(x)\overline{\psi}_{C}(y)\rangle.$$

$$\Phi^{-}(x,y) \equiv g^{2}D(x,y)\langle \psi(x)\overline{\psi}_{C}(y)\rangle.$$

or, in terms of the inverse propagator matrix in Nambu-Gorkov space:

$$Z = \mathcal{N}Z_{\text{bosons}}Z_0 \int \mathcal{D}\overline{\Psi} \mathcal{D}\Psi \exp \left[\sum_{k>0} \overline{\Psi}(k) \frac{\mathcal{S}^{-1}(k)}{T} \Psi(k) \right]$$

$$\mathscr{S}^{-1}(k) = \begin{pmatrix} [G_0^+(k)]^{-1} & \Phi^-(k) \\ \Phi^+(k) & [G_0^-(k)]^{-1} \end{pmatrix}$$

$$\Psi \equiv \left(egin{array}{c} \psi \ \psi_C \end{array}
ight)$$

Impl

$$\mathbf{S}(k) = \begin{pmatrix} G^{+} & F^{-} \\ F^{+} & G^{-} \end{pmatrix} = - \begin{pmatrix} \langle \psi(x)\overline{\psi}(y) \rangle & \langle \psi_{c}(x)\overline{\psi}(y) \rangle & \langle \psi_{c}(x)\overline{\psi}(y)$$

$$G^{\pm} = \left([G_0^{\pm}]^{-1} - \Phi^{\mp} G_0^{\mp} \Phi^{\pm} \right)^{-1}$$
 $G^{\pm} \equiv \left([G_0^{\pm}]^{-1} - \Phi^{\mp} G_0^{\mp} \Phi^{\pm} \right)^{-1}$

$$\mathbf{S}($$

$$F^\pm \equiv -G_0^\mp oldsymbol{\Phi}^\pm G^\pm$$

$$F^{\pm} \equiv -G_0^{\mp} \Phi^{\pm} G^{\pm}$$
 $\Phi^{+}(x, y) = -g^2 D(x, y) F^{+}(x, y)$

$$+(x,y) = -g^2 D(x,y) F^+(x,y) \Big|_{G^{\pm}}^{-\Psi}$$

$$\Phi^{+}(x,y) = -g^{2}D(x,y)F^{+}(x,y)_{G^{\pm}}^{-} \Phi^{+}(p) = -g^{2}\frac{1}{V}\sum_{k}^{\Phi^{+}(p)=g^{2}\frac{T}{V}\sum_{k}^{D}D(p-\kappa)F}$$

$$\Phi^{+}(p) = g^{2} \frac{T}{V} \sum_{k} D(p-k) G_{0}^{-} \Phi^{+} G^{+}$$

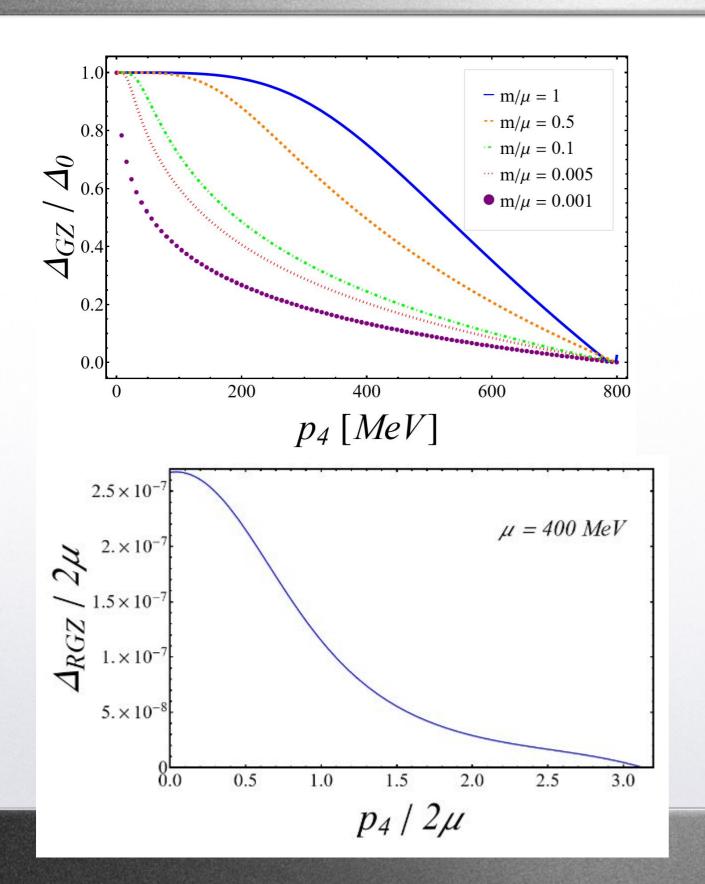
IR-modified boson propagators

$$\Phi^{\pm}(K) = \pm \Delta(K) \gamma^5$$
,

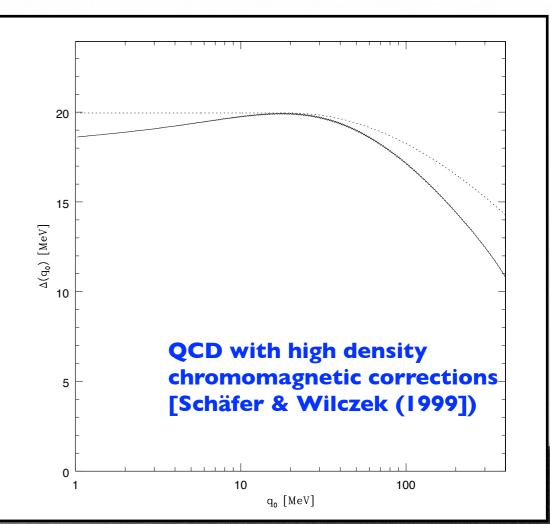
(even parity, spin-singlet pairing)

D. Bailin, A. Love, Phys.Rept. 107, 325 (1984) R.D. Pisarski, D.H. Rischke, Phys.Rev. **D60**, 094013 (1999)

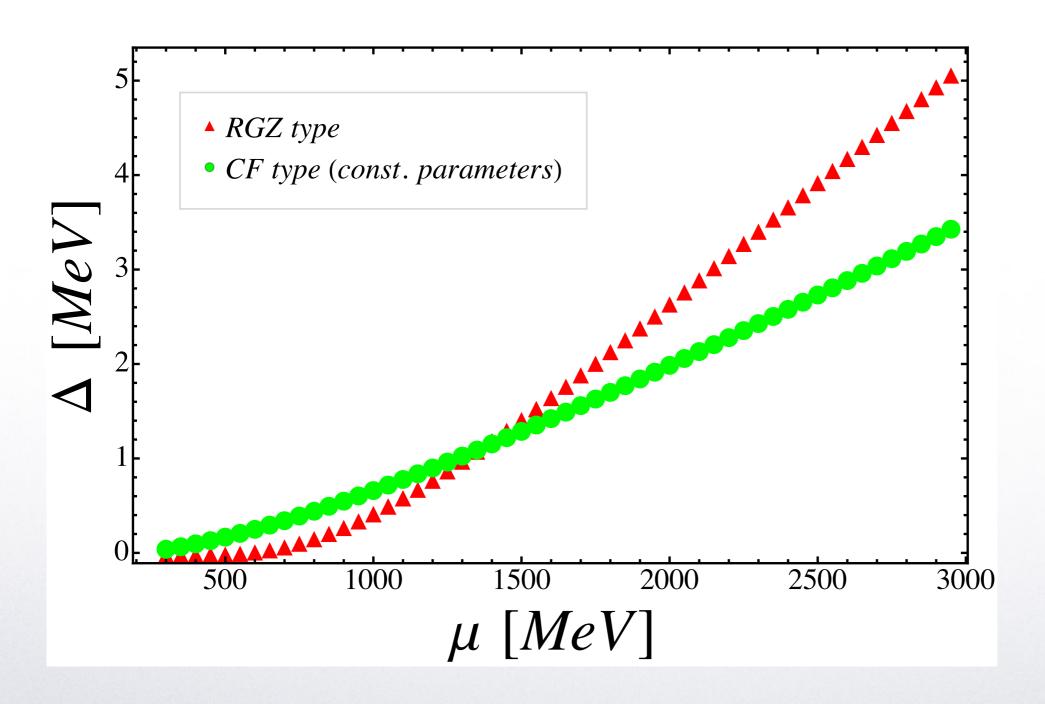
Results for the SUC gap for confining-type props.



[Santos & LFP, appear]

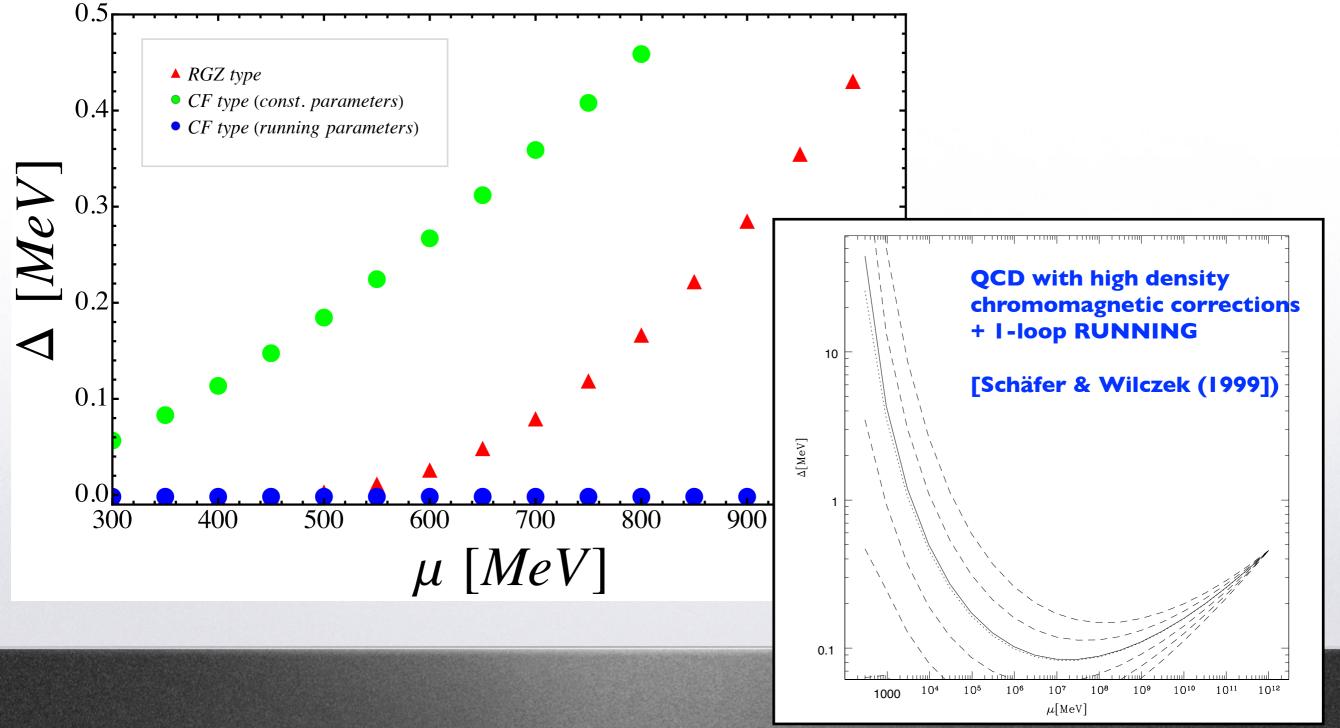


Results for the SUC gap



Toy model for color SUC with confining propagators

Infrared-safe inspired running suppresses the SUC gap in the Yukawa toy model:



Final comments

- Dynamical gluon mass generation should occur in IR YM theories.
- The Gribov problem is present and should profoundly affect the IR regime of gaugefixed non-Abelian gauge theories.
- The RGZ framework represents a consistent scenario to study the non-perturbative IR physics and has provided interesting results for correlation functions in the gluon sector fitting lattice propagators.
- The q-qbar-photon may be calculated on the lattice and offers a window to observables like the anomalous magnetic moment (possibility of parameter and/or model constraining)
- Color SUC is also sensitive to the nonperturbative gluon mass and IR models yield physical results, with in general a suppression of the value of the gap in the toy model studied.
- Extend calculations to other observables, in order to further test IR model predictions and constrain.

Thank you for your attention!