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Introduction

* Complex conjugate poles appear in various methods for non-perturbative QCD in
Euclidean spacetime: analytical (Refined Gribov-Zwanziger, Curci-Ferrari..),
semi-analytical (Dyson-Schwinger, FRG..) and numerical (gauge-fixed lattice)

*The Minkowski description of this region is (even) less understood

* Today’s talk is just a small demonstration of the subtleties of the analytical
continuation between Euclidean and Minkowski space outside of the real axis

* Other people have said important things about this topic, | will briefly discuss this at
the end of the talk



A basic question

Are the setting sun diagram defined in Euclidean space and its Minkowskian counterpart
connected through analytic continuation p2 — —p2 for all p* € C?
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A basic question

Are the setting sun diagram defined in Euclidean space

[k 1 1
Sp (") = / (2m)* (k3 +m3) (ke + p)* + m3)

with k2 = k2 + k2 and its Minkowskian counterpart
E =K

n [ dk ! !
Su (P7) = / (2m)* (k3; — m? + i€) ((kas + p)> — m? + ie)

with k3, = ki — k% connected through analytical continuation Sg (pz) = —iSM(—pQ) for
all a priori p* € C2



A very basic question

Are the setting sun diagram defined in Euclidean space in 2D and with two equal real
masses m

[ Pkg 1 1
e (1) = / (2m)? (kg +m?) (kg + p)* + m?)

with k% = k5 + k% and its Minkowskian counterpart

[ Pk 1 L
S (77) = / (2m)? (kyy — m? +i€) ((kar + p)? — m? + ie)

with k3, = k2 — k* connected through analytical continuation Sg(p®) = —iSy(—p?) for
all a priori p*> € C 2



Methods

* Of course, for p? ¢ R_ it is well-known that we have Sy (p?) = —iSy (—p?)

* The usual way to deal with the sunset diagram is to use Feynman’s trick introducing
/1 dr and making the substitution £ = k& — pz; then set /ddk N /ddg

. Hcc)awever, for complex p? this changes the integration limits in a complex way

* We will calculate the integrals by using Cauchy’s residue theorem for the ks-integral
and perform the k-integral explicitly

%dsz(kz) = ZﬁiZRGS[f, a]



o1 1 1
S () = (2m)? /dk/dk2 (k5 + k2 4+m2) ((k2 + p)? + k2 + m2)

The k5 integrand has 4 k-dependent poles

i = iVi2+m?
fr = —ivVKR+m?
fs = i\/k2 +m? —p
f4 = —i\/kz + m? — p
with residues
Ri(k,p) = —Ra(k,—p) = Rs(k,—p) = —Ry(k,p) = — 1

2p (—ip\/k2 + m? + 2k? + 2n12)



n 1 1 1
S (7) = (2m)? /dk/de (k3 + k2 +m?2) (k2 + p)? + k2 +m?)
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For all cases the contour integral picks up the same poles:

Se (r?) = i / dk (Ry(k, p) + Ra(k, p)) = — V4242




1 1 1
_ 2 —
| Su (=77) (27r)2/dkO/dk(kg—kQ—m2+ie) (ho — ip) — 12 —m? 1 i¢)

The ksintegrand has 4 k-dependent poles

i = VE24+m?2—ie
fo = —Vk2+m?+tie
fs = VK4 m2—ie+ip
i = —VKR2+m2+ie+ip
with residues
Rik,p) = —Ralk,—p) = Ra(k,—p) = —Ra(k,p) = - i

2p (ip\/k2 + m? + 2k% + 2mz)
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Sm (—pz) = E/dk(Rz(k,p) + Ry(k, p)) sm(-1?) = i/dk(Rz(k,p)+R4(k,p)+R3(k,p)) S (—pz) = i/dkRz(k,p)

For all cases the contour integral picks up different poles! After integration, we have
three different expressions for each of the domains, which are not smoothly
connected. Only for p° € R_do we have SE(p2) = —Z'SM(—pz)



Wick rotation
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Wick rotation
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Wick rotation p> e C
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Results?

In summary, what we find from this direct integration method is that

for p> € R_:Sg(p?) = —iSm(—p?)
for p> € Ct : Sp(p?) = —2iSm(—p*) + l

P E(P°) m(=P7) 2p+/4m? + p?
for ¥ € C™ :Sg(p?) = —2iSy(—p?) — i

P E(P7) m(=F") 2p\/4m? + p?

This violates the Schwartz reflection principle iSyq(p?) = Sy (p)
and thus the optical theorem



Kallén-Lehmann spectral density
function

It was established [Dudal & Guimardes, 201 1] that the Euclidean sunset diagram in
terms of the K-L spectral density function

Fn . = o(7)
SE(p ) —LlllszT+p2

with
1 1
27T /T2 — dm2T

o(T)

is analytical in the whole complex p2-p|qne except for the interval [—oco, —4m7]
Therefore if the relation Sp(p®) = —iSy;(—p?) holds on the real axis, this relation
extends to the complex plane. We have to conclude that we cannot perform the
integrals with a priori complex momenta.



Some suggestions from other works

oo(14i€)
* Eichmann et al. (2019): the integration limits in Minkowski are / dko, so Wick
rotation does not pick up any poles. —oo(1-+ie)
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* Siringo & Comitini (2023): c.c. poles lead to opposite signs in Minkowski space, from this
construct general K-L spectral density function
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* Oribe et al. (2025): massage the function until the Minkowski function is analytical in C/R



Conclusion

* For the case study of a 2D setting sun diagram, the Euclidean and Minkowski are
connected for all p? € Cby analytic continuation

2 - 2
Se(p”) = —idu(=p°)
* The analytic continuation is not established by a Wick rotation from a priori complex

external momenta

* Instead, one needs to perform the integral for real p?and extend the result to
complex p?to match the spectral representation

* For complex m? the K-L integral is not well-defined and we do not have a
benchmark to relate the Euclidean and Minkowski integrals



