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What I’ll talk about…

• Aim: We want to understand confinement/vacuum structure
(We work in Euclidean (sorry!); translation to Minkowski language is just as hard as that of instanton 
gas/quantum tunneling stuff)

• Strategy: Deformation (preserving confinement)

QCD / SU(N) Yang-Mills 
(strongly coupled, hard problem)

Deformed theory
(weakly coupled, easy problem)

We want to know Confinement by gas of fractional instantons

As this deformation, we make 𝑇2 compactification (with some trick)



Adiabatic continuity

• In this talk, we consider 𝑻𝟐 compactification to have weakly-coupled theory

• With the naïve compactification, there is a deconfinement transition somewhere

• Nice trick: inserting ‘t Hooft flux, which stabilizes the center symmetry / avoids 
deconfinement ⇒ We expect the adiabatic continuity in this setup.

size of compactified 𝑻𝟐

confined

deconfined

size of compactified 𝑻𝟐

confined

Deconfinement transition (SSB of center symmetry)

weakly-coupled 
confinement!

cf.) Lattice work: YM on ℝ𝟐 × 𝑻𝟐 w/ ‘t Hooft twist [Bergner–González-Arroyo–Soler ’25]

in a similar spirit as twisted Eguchi-Kawai [González-Arroyo, Okawa ’83--]



Today’s talk: We investigate SU(N) YM/QCD vacuum structure through semiclassical 
analysis on ℝ𝟐 × 𝑇2 with ‘t Hooft flux (+ baryon magnetic flux for QCD).

Semiclassics via 𝑇2 compactification

weak coupling

Size of compactified 𝑇2

“adiabatic continuity” (confinement phase, w/o transition)

want to know

Main ansatz: adiabatic continuity conjecture

 Empirically, this method successfully gives a reasonable picture for confining vacuum in SU(N) YM, SU(N) N=1 SYM, QCD(F), 
QCD(Sym), QCD(AS), QCD(BF) [Tanizaki-Ünsal ‘22 ‘23][Tanizaki-YH-Watanabe ’23 ‘24]. (cf. [Yamazaki-Yonekura ‘17])  

This work: expanding analysis for QCD(F).

Calculate here
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SU(N) YM on ℝ2 × 𝑇2 with ‘t Hooft flux (1)
[Tanizaki-Ünsal ’22, ……] (cf. [Yamazaki-Yonekura ‘17])

• ‘t Hooft flux for 𝑻𝟐 (or ℤ𝑵
[𝟏]

background)

A unit ‘t Hooft flux ⇔ choose 𝑔3 0 𝑔4 𝐿 𝑔3
† 𝐿 𝑔4

† 0 = 𝑒
2𝜋i

𝑁 .

(𝑔3 𝑥4 , 𝑔4 𝑥3 : transition functions on 𝑇2 )

Up to gauge, we can take 𝑔3 = 𝑆, 𝑔4 = 𝐶 (shift and clock matrices of 𝑆𝑈(𝑁)).

⇒ In this gauge, inserting ‘t Hooft flux ⇔ twisted boundary condition:

𝑥3

𝑥4
𝑔4(𝑥3)

𝑔3(𝑥4)

𝑎 Ԧ𝑥, 𝑥3 + 𝐿, 𝑥4 = 𝑔3
†𝑎𝑔3 − i 𝑔3

†d𝑔3

𝑎 Ԧ𝑥, 𝑥3, 𝑥4 + 𝐿 = 𝑔4
†𝑎𝑔4 − i 𝑔4

†d𝑔4

𝑻𝟐

e.g.) 𝑁 = 3

𝑆 =
0 1 0
0 0 1
1 0 0

, 𝐶 =

1 0 0

0 𝑒
2𝜋𝑖

3 0

0 0 𝑒
4𝜋𝑖

3

𝑎 Ԧ𝑥, 𝑥3 + 𝐿, 𝑥4 = 𝑆† 𝑎 𝑆

𝑎 Ԧ𝑥, 𝑥3, 𝑥4 + 𝐿 = 𝐶† 𝑎 𝐶



SU(N) YM on ℝ2 × 𝑇2 with ‘t Hooft flux (2)

• Consequences from ‘t Hooft-twisted compactification

✓Center symmetry is kept at small 𝑻𝟐

Classically, 𝑃3 = 𝑆 and 𝑃4 = 𝐶 ⇒ tr 𝑃3 = tr 𝑃4 = 0.

✓Perturbatively gapped gluons: 

⇒ no zeromode; O(1/NL) KK mass 
For confinement on ℝ2:

✓Numerical evidence for ∃center vortex/fractional instanton

with 𝑆 =
8𝜋2

𝑁𝑔2 , 𝑄𝑡𝑜𝑝 = 1/𝑁 as a “local solution” (scale ∼ Size(𝑇2))

[Gonzalez-Arroyo–Montero ’98, Montero ’99 ‘00]
(cf. [García Pérez–Gonzalez-Arroyo–Soderberg ’90; Itou ‘18] for ℝ × 𝑇3)

Note) fractional topological charge: it cannot exist alone if the boundary condition for ℝ2 is regular

𝑥3

𝑥4
𝑔4(𝑥3)

𝑔3(𝑥4)

𝑻𝟐

𝑔3 = 𝑆, 𝑔4 = 𝐶

e.g.) 𝑁 = 3

𝑆 =
0 1 0
0 0 1
1 0 0

, 

𝐶 =

1 0 0

0 𝑒
2𝜋𝑖

3 0

0 0 𝑒
4𝜋𝑖

3

 

𝑎 Ԧ𝑥, 𝑥3 + 𝐿, 𝑥4 = 𝑆† 𝑎 𝑆

𝑎 Ԧ𝑥, 𝑥3, 𝑥4 + 𝐿 = 𝐶† 𝑎 𝐶
～adjoint higgsing by Polyakov 

loops 𝑷𝟑, 𝑷𝟒: 𝑆𝑈 𝑁 → ℤ𝑁



Remark: center vortex?

Center vortex (in general context)
[‘t Hooft ‘78, …: cf. Gastão’s talk]

Co-dim-2 object carrying “magnetic 
flux of center element”: 

(expected to play an important role 
in quark confinement)

Center vortex (we consider here)

In addition, it is a 1/N fractional 
instanton satisfying the BPS bound

𝑆 =
8𝜋2

𝑁𝑔2
, 𝑄𝑡𝑜𝑝 = 1/𝑁

Center vortex

=    𝑒
2𝜋𝑖

𝑁

center vortex 

Wilson loop

ℝ2



Fractional instanton (in QM)

• Reduction to QM (cf. [Yamazaki-Yonekura ’17])

Further spatial compactification:

ℝ2 × 𝑇2 → ℝtime × 𝑆large
1 × 𝑇2

with Size 𝑇2 ≪ Size 𝑆large
1 ≪ Λ−1

⇒ N classical vacua with 𝑃(𝑆large
1 ) = e2𝜋𝑘𝑖/𝑁𝟏 (𝑘 = 0, ⋯ , 𝑁 − 1)

• “Fractional instanton = tunneling event” 
(lattice: [Garcia Perez–Gonzalez-Arroyo–Soderberg '90; Itou ’18])𝑃 = 1

𝑄𝑡𝑜𝑝 = 1/3

𝑃 = e2𝜋𝑖/3
𝑃 = e4𝜋𝑖/3

• does not globally exist if the periodic BC is imposed
• can exist globally under the twisted BC

2d EFT: (𝑆𝑈 𝑁 →) ℤ𝑁 gauge

×

𝑃(𝑆large
1 )

𝑆large
1

ℝtime



Semiclassics on ℝ𝟐 × 𝑇2 in 𝑆𝑈(𝑁) YM [Tanizaki-Ünsal ‘22]

• Dilute gas of center vortices

The center-vortex and anti-center-vortex vertices are:

𝐾𝑒
−

8𝜋2

𝑁𝑔2+𝑖 𝜃/𝑁
, 𝐾𝑒

−
8𝜋2

𝑁𝑔2−𝑖 𝜃/𝑁

with a dimensionful constant 𝐾. 

Then, the dilute gas approximation yields, (only configurations with 𝑄𝑡𝑜𝑝 ∈ ℤ are admitted)

𝑍𝑌𝑀 = 

𝑛, ഥ𝑛 ≥0

1

𝑛! ത𝑛!
𝛿𝑛− ഥ𝑛 ∈𝑁ℤ 𝑉𝐾𝑒

−
8𝜋2

𝑁𝑔2+𝑖
𝜃
𝑁

𝑛

𝑉𝐾𝑒
−

8𝜋2

𝑁𝑔2−𝑖
𝜃
𝑁

ത𝑛

= 

𝑘∈ℤ𝑁

exp −𝑉 −2𝐾𝑒
−

8𝜋2

𝑁𝑔2 cos
𝜃 − 2𝜋𝑘

𝑁

One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.

Energy density of k-th vacuum
→multibranch structure!

N semiclassical vacua

𝜃

𝐸(𝜃)

𝑘 = 0
[monopole]

𝑘 = 1
[dyon]

For calculating partition function, we 
compactify ℝ2 without ‘t Hooft flux.

⇒ total topological charge is 
constrained 𝑄𝑡𝑜𝑝 ∈ ℤ



Digression: relation to another method

𝑥3 monopole

𝑥1
𝑥2 Center vortex

“monopole as junction 
of center vortices” =

[YH-Tanizaki ’24; YH-Misumi-Tanizaki ‘24]

“Monopole semiclassics”
[Ünsal ’07, Ünsal-Yaffe ’08,…] 

weakly coupled setup, where BPS/KK 
monopoles cause confinement

“Center-vortex semiclassics”
[Tanizaki-Ünsal ’22,…]

weakly coupled setup, where 
center vortices cause confinement

4d Yang-Mills theory

BPS/KK monopole = center vortex

𝑺𝟏 compactification
with center stabilization

𝑻𝟐 compactification
with ‘t Hooft flux

• Two deformations to weak-coupling confined theories
Today’s talk

(cf. [Güvendik-Schäfer-Ünsal ’24])

[Ambjørn-Giedt-Greensite ‘99, Engelhardt-Reinhardt ‘99,
Cornwall ’99,…]
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Plan:
Consider similar 𝑇2 compactification for QCD, and study small-𝑇2 physics
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[Tanizaki-Ünsal ’22; YH-Tanizaki ‘24]



Introduction: global structure of η’?

• Low-energy effective theory of QCD: 𝑆𝑈(𝑁𝑓) Chiral Lagrangian

Light pseudoscalar mesons: Nambu-Goldstone bosons of (approximate) 𝑆𝑈 𝑁𝑓 chiral

⇒ 𝑆[𝑈] =  𝑓𝜋
2 𝑑𝑈 2 − Λ3tr 𝑀𝑈 + 𝑐. 𝑐.

• Chiral Lagrangian with η’?

Sometimes, one includes η’ by considering 𝑈(𝑁𝑓) chiral Lagrangian and adds the instanton-induced η’ 
mass term (Kobayashi-Maskawa-’t Hooft vertex).

⇒ 𝑆[𝑈] =  𝑓𝜋
2 𝑑𝑈 2 − Λ3tr 𝑀𝑈 − Δ e−i𝜃 det 𝑈 + 𝑐. 𝑐.

mass matrix from quark mass

Question: ambiguity in η’ mass (or global structure of η’)?
It’s common to use det-vertex, but it should be log-det(U)-type vertex at large-N…



(Oversimplified) summary

Question: ambiguity in η’ mass
Instanton (det-type) vertex? log-det vertex?

Our suggestion (from 2d semiclassics): 

Use fractional instanton vertex det 𝑈 1/𝑁!
(while η’ periodicity is extended by N, eating YM vacuum label)



Setup for QCD [Tanizaki-Ünsal ’22]

• In the presence of fundamental quarks, it is impossible to insert ‘t Hooft flux alone 
(𝑔3 0 𝑔4 𝐿 𝑔3

† 𝐿 𝑔4
† 0 = 𝑒

2𝜋i

𝑁 leads to an inconsistency). 

• To avoid this problem, we also introduce baryon magnetic flux simultaneously: 

𝑇2 𝑑𝐴𝐵 = 2𝜋. (e.g., we can take 𝐴𝐵 =
2𝜋

𝐿2 𝑥3𝑑𝑥4; 1/N magnetic flux in terms of 𝑈 1 𝑞)

Boundary conditions for quarks (in the gauge 𝑔3 = 𝑆, 𝑔4 = 𝐶 ):

• At small 𝑇2 , there is one 2d Dirac “low-energy mode” (⇔without KK mass) per flavor.

(obtained by solving zeromode equation)

𝜓 Ԧ𝑥, 𝑥3 + 𝐿, 𝑥4 = 𝑒𝑖
2 𝜋𝑥4

𝑁𝐿 𝑆†𝜓 Ԧ𝑥, 𝑥3, 𝑥4

𝜓 Ԧ𝑥, 𝑥3, 𝑥4 + 𝐿 =  𝐶†𝜓 Ԧ𝑥, 𝑥3, 𝑥4  

𝑥3

𝑥4
(𝑔4 𝑥3 , 1)

(𝑔3 𝑥4 , 𝑒𝑖
2𝜋𝑥4

𝐿 )

Index theorem “𝑁 × 𝑇2 𝑑𝐴𝑞 = 1”  (𝑈 1 𝐵 = 𝑈 1 𝑞/ℤ𝑁)



Constructing 2d effective theory

𝑁𝑓 = 1 case: 

• Low-energy mode: one 2d Dirac fermion (⇔ compact scalar 𝜑)

• Center-vortex vertex: 𝐾𝑒
−

8𝜋2

𝑁𝑔2+𝑖 𝜃/𝑁
“𝑒−𝑖 𝜑/𝑁” from 𝑈 1 chiral spurious symmetry

• Dilute gas approximation 

𝑆 𝜑 = න
1

8𝜋
𝑑𝜑 2 − 𝑚𝜇 cos 𝜑 − 2𝐾𝑒

−
8𝜋2

𝑁𝑔2 cos
𝜑 − 𝜃 − 2 𝜋𝑘

𝑁

𝝋 “eats” the vacuum label 𝒌 ∈ ℤ𝑵 and extends its periodicity to 𝝋 ∼ 𝝋 + 𝟐𝝅𝑵.

𝑁𝑓 ≥ 2 case: the non-abelian bosonization

⇒ 𝑈 𝑁𝑓 1
WZW ( + quark-mass deformation + center-vortex deformation)

⇒ 2d analog of 𝑈(𝑁𝑓) chiral Lagrangian with 𝜂′∼ 𝜂′ + 2𝜋𝑁 & det 𝑈 1/𝑁-type 𝜂′ mass. 

Invariance under
𝜃 → 𝜃 + 𝛼, 𝜑 → 𝜑 + 𝛼

residual gauge 𝑺𝑼 𝑵 → ℤ𝑵



2d version of chiral Lagrangian

• For 𝑁𝑓 > 1, we use the non-Abelian bosonization: looks like chiral Lagrangian with η’! 

[ 𝑈 ∈ 𝑈 𝑁𝑓 with 2𝜋𝑁-periodic (det U)]

𝑆 𝑈 = න
1

8𝜋
𝑑𝑈 2 − 𝑚𝜇 tr (𝑈) − 𝐾e

−
8𝜋2

𝑁𝑔2e−𝑖𝜃/𝑁 det 𝑈 1/𝑁 + 𝑐. 𝑐. +𝑆𝑊𝑍𝑊
3𝑑 [𝑈]

※ “2d version of chiral Lagrangian”

Up to gapped η’, this 2d effective theory 

= 𝑇2compactification with 𝑈 1 𝐵 flux of 4d 𝑆𝑈(𝑁𝑓) chiral Lagrangian

න
𝑀3×𝑇2

d𝐴𝐵 ∧
1

24𝜋2
tr 𝑈−1d𝑈 3 ⇒ න

𝑀3

1

12𝜋
tr 𝑈−1d𝑈 3 = 𝑆𝑊𝑍𝑊

3𝑑 [𝑈]

quark-mass deformation 
(if present)

Center-vortex-induced η’ mass term
“finite-N version of log-det vertex”

Coupling to 𝑈 1 𝐵

background 



Results

• 2d effective theory on ℝ𝟐

=  2d analog of chiral Lagrangian + periodicity-extended 𝜼′

+ corresponding 𝜼′ mass term det 𝑈 1/𝑁

• This 2d effective theory explains the expected vacuum structure of QCD (phase 
diagram on 𝑚𝑁𝑓e𝑖𝜃):

• 𝜼′ extends its periodicity by absorbing the ℤ𝑵 vacuum label; also for 4d chiral 
Lagrangian, this prescription improves the global aspects.
(periodicity extension ～ in the limit where the Chern-Simons DW is infinitely heavy)

CP

𝑚 = −𝑚0

𝑚 e𝑖 𝜃𝑁𝑓 = 1:

CP

𝑚𝑁𝑓 e𝑖 𝜃𝑁𝑓 ≥ 2:

𝜂′ ∼ 𝜂′ + 2 𝜋
⇒ 𝜂′ ∼ 𝜂′ + 2 𝜋 𝑁

finite-N version 
of log-det vertex

cf.) [Csáki-D'Agnolo-Gupta-Kuflik-Roy-Ruhdorfer ‘23]: η’ in anomaly-mediated SUSY-broken SQCD: N-Nf branches



Application: Dashen phase on (𝑚𝑢 , 𝑚𝑑) plane

with 𝜂 ∼ 𝜂 + 2𝜋𝑁 & det 𝑈 1/𝑁 mass 
From conventional chiral Lagrangian with η
(with det-type mass term)

[Aoki-Creutz ‘14]
Fig. 1 of S. Aoki and M. Creutz,
PRL 112 141603 (2014)

Phase diagram of (1+1)-flavor QCD on (𝒎𝒖 , 𝒎𝒅) plane:
The conventional U(2) chiral Lagrangian with det-type η mass has an artificial 
CP-restored phase (“phase C”). 

Using det 𝑈 1/𝑁-vertex eliminates the artificial phase.

𝐶𝑃 

𝑪𝑷 



Summary of this section

We study QCD through semiclassics on ℝ𝟐 × 𝑇2 with ‘t Hooft flux & 𝑈 1 𝐵 magnetic flux

Our results:

• 2d effective theory on ℝ𝟐

=  2d analog of chiral Lagrangian + periodicity-extended 𝜼′

+ corresponding 𝜼′ mass term det 𝑈 1/𝑁

• This 2d effective theory explains the expected vacuum structure of QCD (phase 
diagram on 𝑚𝑁𝑓e𝑖𝜃).

• The periodicity extension of 𝜼′ = inclusion of YM vacuum label

Also for 4d chiral Lagrangian with 𝜼′, the periodicity extension improves global aspects 
(particularly, smooth connection to quenched limit).

𝜂′ ∼ 𝜂′ + 2 𝜋
⇒ 𝜂′ ∼ 𝜂′ + 2 𝜋 𝑁

Center-vortex 
induced mass



Contents

1. Introduction

2. Center-vortex semiclassics for pure YM

3. Center-vortex semiclassics for QCD 

4. Summary



4. Summary

• Dilute gas of center vortices (fractional instantons) describes confining vacuum

• New insights on eta prime (on its global structure)

• More developments: other theories (SYM/QCD(adj), QCD(AS/Sym), QCD(BF),……) 
[Tanizaki-Ünsal ’22 ’22, YH-Tanizaki-Watanabe ‘23 ‘24] , connections to monopole semiclassics
[YH-Tanizaki ‘24, YH-Misumi-Tanizaki’24], center stability at large N [YH-Tanizaki-Ünsal ‘25],…

Conclusion:
𝑇2 compactification with ‘t Hooft flux gives tractable confining theory
⇒ Study small-𝑇2 physics tells us some aspects of confinement





Backup



Technicality: ℤ𝑁 gauging and vacuum label

• Problem: Center-vortex vertex: 𝐾𝑒
−

8𝜋2

𝑁𝑔2+𝑖 𝜃/𝑁
“𝑒−𝑖 𝜑/𝑁” looks ill-defined/non-genuine.

• Keypoint: residual ℤ𝑵 gauge after adjoint higgsing by Polyakov loops ∶ 𝑆𝑈 𝑁 → ℤ𝑁 .

• The residual ℤ𝑁 gauge is vector-like to fermion 𝜓. It couples to 𝜑 magnetically 
𝑖

2 𝜋
න𝑎ℤ𝑁

∧ 𝑑𝜑

Integrating out 𝑎ℤ𝑁
⇒ constraint  𝑑𝜑 ∈ 2𝜋𝑁 ℤ

⇒ It is possible to regard 𝜑 ∈ ℝ/2𝜋𝑁ℤ.  

• In the lift from 2𝜋-periodic field to 2𝜋𝑁-periodic field, there is ℤ𝑁 ambiguity: 𝜑 →
𝜑 + 2𝜋𝑘. This 1-to-N correspondence absorbs the vacuum label 𝑘. In summary,

න 𝐷𝑎ℤ𝑁


𝑘∈ℤ𝑁

න
𝜑∼𝜑+2𝜋

𝐷𝜑 … ⇒ න
𝜑∼𝜑+2𝜋𝑁

𝐷𝜑 …

𝑒−𝑖 𝜑/𝑁 becomes well-defined.

(#fermions) = (#kinks).



2d version of chiral Lagrangian

• For 𝑁𝑓 > 1, we use the non-Abelian bosonization: looks like chiral Lagrangian with η’! 

[ 𝑈 ∈ 𝑈 𝑁𝑓 with 2𝜋𝑁-periodic (det U)]

𝑆 𝑈 = න
1

8𝜋
𝑑𝑈 2 − 𝑚𝜇 tr (𝑈) − 𝐾e

−
8𝜋2

𝑁𝑔2e−𝑖𝜃/𝑁 det 𝑈 1/𝑁 + 𝑐. 𝑐. +𝑆𝑊𝑍𝑊
3𝑑 [𝑈]

Up to gapped η’, this 2d effective theory 

= 𝑇2compactification with 𝑈 1 𝐵 flux of 4d 𝑆𝑈(𝑁𝑓) chiral Lagrangian

න
𝑀3×𝑇2

d𝐴𝐵 ∧
1

24𝜋2
tr 𝑈−1d𝑈 3 ⇒ න

𝑀3

1

12𝜋
tr 𝑈−1d𝑈 3 = 𝑆𝑊𝑍𝑊

3𝑑 [𝑈]

quark-mass deformation 
(if present) Center-vortex-induced η’ mass term

“finite-N version of log-det vertex”

Coupling to 𝑈 1 𝐵

background 



Vacuum structure from 2d effective theory

The 2d effective theory explains the vacuum structure, just by finding potential minima: 

• 𝑵𝒇 = 𝟏 case: the effective potential for 2𝜋𝑁-periodic 𝜑 is, 

𝑉 𝜑 = −𝑚𝜇 cos 𝜑 − 2𝐾𝑒
−

8𝜋2

𝑁𝑔2 cos
𝜑−𝜃

𝑁

• 𝑵𝒇 ≥ 𝟐 case: we take the S𝑈 𝑁𝑓 symmetric ansatz,

𝑈 = 𝑒𝑖 𝜑1 with (log det 𝑈) = 𝑁𝑓𝜑 + 2𝜋𝑘 (−𝜋 < 𝜑 ≤ 𝜋, 𝑘 ∈ ℤ𝑁)

⇒ 𝑉 𝜑 = −𝑁𝑓𝑚𝜇 cos 𝜑 − 2𝐾𝑒
−

8𝜋2

𝑁𝑔2 cos
𝑁𝑓𝜑+2𝜋𝑘−𝜃

𝑁

At  𝜃 = 𝜋, this potential has two degenerate minima: 

(𝜑 = 𝜑∗, 𝑘 = 0) and (𝜑 = −𝜑∗, 𝑘 = 1) CP

𝑚𝑁𝑓 e𝑖 𝜃

CP

𝑚 e𝑖 𝜃

𝜑

𝜑 = 𝜋

𝜑

𝜑 = 𝜋

𝑚 = −𝑚0



Discrete anomaly

• For gcd 𝑁, 𝑁𝑓 = 1, the variables (𝑘, 𝜑) in the S𝑈 𝑁𝑓 symmetric ansatz can be combined into 
single 2𝜋𝑁-periodic one 𝜑: 𝑁𝑓𝜑 + 2𝜋𝑘 ⇒ 𝑁𝑓𝜑 mod 2𝜋𝑁 . Like the mass deformation in 𝑁𝑓 = 1
case, a suitable symmetric deformation can single out a unique gapped vacuum (the absence of 
anomaly).

• For gcd 𝑁, 𝑁𝑓 ≠ 1, the ℤgcd 𝑁,𝑁𝑓
discrete label cannot be absorbed. (Intuitively, quark 

fluctuation only bridges 𝑘-th vacuum and (𝑘 + 𝑁𝑓)-th vacuum, so it cannot split the degeneracy 
of CP-broken vacua: 𝑘 = 0 and 𝑘 = 1.)

• 4d chiral Lagrangian with periodicity-extended 𝜂′ reproduces this discrete anomaly.

(A more essential point is that the coupling  𝜂′𝑑𝐴𝐵 ∧ 𝑑𝐴𝐵 becomes well-defined thanks to the 
periodicity extension.)

Baryon-color-flavor anomaly: 
Flavor-symmetric QCD with 𝑁𝑓 quarks at 𝜃 = 𝜋 has mixed anomaly between 
𝑆𝑈 𝑁𝑓 ×𝑈 1 𝑞

ℤ𝑁
and 𝐶𝑃 if gcd 𝑁, 𝑁𝑓 ≠ 1. [Gaiotto-Komargodski-Seiberg ‘17]


	Slide 1: Semiclassics for QCD vacuum structure via cap T squared compactification
	Slide 2: What I’ll talk about…
	Slide 3: Adiabatic continuity
	Slide 4: Semiclassics via cap T squared compactification
	Slide 5: Contents
	Slide 6: SU(N) YM on double-struck cap R squared times cap T squared with ‘t Hooft flux (1) [Tanizaki-Ünsal ’22, ……] (cf. [Yamazaki-Yonekura ‘17])
	Slide 7: SU(N) YM on double-struck cap R squared times cap T squared with ‘t Hooft flux (2)
	Slide 8: Remark: center vortex?
	Slide 9: Fractional instanton (in QM)
	Slide 10: Semiclassics on double-struck cap R to the bold 2 times cap T squared in cap S cap U open paren cap N close paren  YM [Tanizaki-Ünsal ‘22]
	Slide 11: Digression: relation to another method
	Slide 12: Contents
	Slide 13: Introduction: global structure of η’?
	Slide 14: (Oversimplified) summary
	Slide 15: Setup for QCD [Tanizaki-Ünsal ’22]
	Slide 16: Constructing 2d effective theory
	Slide 17: 2d version of chiral Lagrangian
	Slide 18: Results
	Slide 19: Application: Dashen phase on (m sub , u , end subscript,m sub d ) plane
	Slide 20: Summary of this section
	Slide 21: Contents
	Slide 22: 4. Summary
	Slide 23
	Slide 24: Backup
	Slide 25: Technicality: double-struck cap Z sub cap N  gauging and vacuum label
	Slide 26: 2d version of chiral Lagrangian
	Slide 27: Vacuum structure from 2d effective theory
	Slide 28: Discrete anomaly

