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What I'll talk about...

* Aim: We want to understand confinement/vacuum structure

(We work in Euclidean (sorry!); translation to Minkowski language is just as hard as that of instanton
gas/quantum tunneling stuff)

 Strategy: Deformation (preserving confinement)
As this deformation, we make T? compactification (with some trick)

QCD / SU(N) Yang-Mills ) Deformed theory
(strongly coupled, hard problem) (weakly coupled, easy problem)

We want to know Confinement by gas of fractional instantons



Adiabatic continuity

* In this talk, we consider T? compactification to have weakly-coupled theory

* With the naive compactification, there is a deconfinement transition somewhere

size of compactified T2

deconfined 3 f confined

Deconfinement transition (SSB of center symmetry)

* Nice trick: inserting ‘t Hooft flux, which stabilizes the center symmetry / avoids
deconfinement = We expect the adiabatic continuity in this setup.

in a similar spirit as twisted Eguchi-Kawai [Gonzalez-Arroyo, Okawa '83--]

size of compactified T2

weakly-coupled . :
confinement! confined

cf.) Lattice work: YM on R? x T? w/ ‘t Hooft twist [Bergner—Gonzalez-Arroyo—Soler ’25]



Semiclassics via T# compactification

Today’s talk: We investigate SU(N) YM/QCD vacuum structure through semiclassical
analysis on R? X T2 with ‘t Hooft flux (+ baryon magnetic flux for QCD).

Main ansatz: adiabatic continuity conjecture
Size of compactified T2

—

weak coupling want to know

\ J
|

“adiabatic continuity” (confinement phase, w/o transition)

Calculate here

L Empirically, this method successfully gives a reasonable picture for confining vacuum in SU(N) YM, SU(N) N=1 SYM, QCD(F),
QCD(Sym), QCD(AS), QCD(BF) [Tanizaki-Unsal ‘22 ‘23][Tanizaki-YH-Watanabe ’23 ‘24]. (cf. [Yamazaki-Yonekura ‘17])
This work: expanding analysis for QCD(F).
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Plan:

Consider SU(N) Yang-Mills theory on R? X T with ‘t Hooft flux;
Study physics at small T4, and predict the original theory on R* [Tanizaki-Unsal '22]
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SU(N) YM on R? X T4 with ‘t Hooft flux (1)

[Tanizaki-Unsal ’22, ......] (cf. [Yamazaki-Yonekura ‘17])

1 X
* ‘t Hooft flux for T> (or Zz[v] background) g0 \iz
21i
A unit ‘t Hooft flux & choose g3(0)g.(L) gl (L)gl(0) = eW.
(g3 (x4), g4(x3): transition functions on T? ) < 93(Xa)
{a(i x3 + L,xy) = glags —i gldgs X X
a(®,x3,x, +1) = glag, —igidgs X3

Up to gauge, we can take g3 = S, g4, = C (shift and clock matrices of SU(N)).

= In this gauge, inserting ‘t Hooft flux & twisted boundary condition:

{ a(f,x3+L,x4)=S+aS eg)N=3 )

1
a(%, x2,x, +L)=CTacC 0 1 0 o
(¥, x3, 4 + L) S=<001,C=0eT
1 0 O 0 0

0
0

41i

e 3
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SU(N) YM on R? X T4 with ‘t Hooft flux (2)

X4 9
, . L 0te) | T
* Consequences from ‘t Hooft-twisted compactification
v'Center symmetry is kept at small T2
Classically, P; = Sand P, = C = (tr P3) = (tr P,) = 0. 93(Xa)
v'Perturbatively gapped gluons: ‘
S _ ot X3
a(f’ X3 +L,xq) = ST as ~adjoint higgsing by Polyakov gs =S, gi=C
a(X,x3,x,+L)=C"aC loops P35, Py: SU(N) — Zy ' s
e.g. =
= no zeromode; O(1/NL) KK mass
For confinement on R?; . (8 (1) (1)>
v'Numerical evidence for *center vortex/fractional instanton 1 00
. — 8m? — «“ . ” . 2
with § = NgZ’ Q:op = 1/N as a “local solution” (scale ~ Size(T?)) Lo 0
[Gonzalez-Arroyo—Montero 98, Montero 99 ‘00] =10 e %
(cf. [Garcia Pérez—Gonzalez-Arroyo—Soderberg ’90; Itou ‘18] for R X T3) 0 0 es

Note) fractional topological charge: it cannot exist alone if the boundary condition for R? is regular



Remark: center vortex?

Center vortex (in general context)
[‘t Hooft ‘78, ...: cf. Gastao’s talk]

Co-dim-2 object carrying “magnetic
flux of center element”:

| Wilson loop

2Tl
| T e

center vortex

(expected to play an important role
in quark confinement)

Center vortex (we consider here)

In addition, it is a 1/N fractional
instanton satisfying the BPS bound

812
S = N_gz' Qtop =1/N

RZ
[ )
Center vortex




Fractional instanton (in QM) [ \

N\,
Ry >
1ime
e Reduction to QM (cf. [Yamazaki-Yonekura '17]) 1
Further spatial compactification:
N pat P 1| ! ! __> Sllarge
R* X T? = Riime X Sjarge X T?
with Size(T?) « Size(Sfyge) « A7} 2d EFT:(SUN) =) Zy gauge —
) ~—— P(Slarge)
= N classical vacua with P(Sj,ge) = €*™/N1 (k = 0,---,N — 1)

* “Fractional instanton = tunneling event”
(lattice: [Garcia Perez—Gonzalez-Arroyo—Soderberg '90; Itou ’'18])

Qtop = 1/3
* does not globally exist if the periodic BC is imposed
e can exist globally under the twisted BC

p41i/3 \/ P = e2mi/3



Semiclassics on R% X T2 in SU(N) YM funskinsr 22

* Dilute gas of center vortices For calculating partition function, we

The center-vortex and anti-center-vortex vertices are: compactify R? without ‘t Hooft flux.
_SLZZH- 0/N _8L22_l- 6/N = total topological charge is
Ke Ng ) Ke Ng constrained Qo € Z

with a dimensionful constant K.

Then, the dilute gas approximation yields, (only configurations with Q;,, € Z are admitted)

n 2 n
1 —E+l’§ —8L—ig A
Zym = z ﬁ‘sn—ﬁENz(VKe Ng* N) (VKe Ng* N) E(9)
n,n =0 2
_Sn 0 — 2k
= Z exp|—=V | —2Ke N9° cos N
ke€Zn
k=0 " 0
N cErilsesiesl vEEs Energy density of k-th vacuum [monopole]

—>multibranch structure!

L One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.



Digression: relation to another method

 Two deformations to weak-coupling confined theories
Today’s talk

4d Yang-Mills theory
S1 compactification T? compactification
with center stabilization ‘ with ‘t Hooft flux

“Monopole semiclassics” “Center-vortex semiclassics”
[Unsal 07, Unsal-Yaffe ’08,...] [Tanizaki-Unsal ’22,...]

weakly coupled setup, where BPS/KK  mumlp ~ Weakly coupled setup, where
monopoles cause confinement center vortices cause confinement

BPS/KK monopole = center vortex [YH-Tanizaki’24; YH-Misumi-Tanizaki ‘24]
(cf. [Glivendik-Schafer-Unsal ’24])

“monopole as junction / \
of center vortices”

X34 H 'monopole p— P
[Ambjgrn-Giedt-Greensite ‘99, Engelhardt-Reinhardt ‘99,
Cornwall ’99,...] /Z X2 X1 1 \ Center vortex
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Plan:

Consider similar T? compactification for QCD, and study small-T# physics

New insights on n” meson: periodicity extension / n’ mass from fractional instanton
[Tanizaki-Unsal '22; YH-Tanizaki ‘24]

. )




Introduction: global structure of n’?

* Low-energy effective theory of QCD: SU(Ny) Chiral Lagrangian

Light pseudoscalar mesons: Nambu-Goldstone bosons of (approximate) SU(Nf)
= S[U] = [ f;Z 1dU|* — A’tr (MU) + c.c.

* Chiral Lagrangian with n’? mass matrix from quark mass

chiral

Sometimes, one includes n’ by considering U(N¢) chiral Lagrangian and adds the instanton-induced n’
mass term (Kobayashi-Maskawa-t Hooft vertex).

= S[U] = [ f?|dU|? — Atr (MU) — Ae™ 9 det(U) + c.c.

Question: ambiguity in n’ mass (or global structure of n’)?
It’s common to use det-vertex, but it should be log-det(U)-type vertex at large-N...



(Oversimplified) summary

Question: ambiguity in n’ mass
Instanton (det-type) vertex? log-det vertex?

Our suggestion (from 2d semiclassics):

Use fractional instanton vertex (det U)1/N|
(while n’ periodicity is extended by N, eating YM vacuum label)



SEtUp fOr QCD [Tanizaki-Unsal ’22]

* In the presence of fundamental quarks, it is impossible to insert ‘t Hooft flux alone

271

(93(0)g4(L)gd (L)gl(0) = e leads to an inconsistency).

* To avoid this problem, we also introducg baryon magnetic flux simultaneously:
sz dAg = 2m. (e.g., we can take Ay = L—Zx3dx4; 1/N magnetic flux in terms of U(1),)

X4
Boundary conditions for quarks (in the gauge g3 =S, g, =C): (g4(x3), 1)
w(f, X3 + L, X4) — eiZ;VTzLL S-I-l/)(f, x3,X4) <+ (x ) ei%
‘|:¢(5C>; X3, X4 + L) — C-I-lp(f; X3, x4) (93 4; )

X3

« At small T4, there is one 2d Dirac “low-energy mode” (&without KK mass) per flavor.
(obtained by solving zeromode equation)

Index theorem “N X sz dA, =1" (UD)p = U1),/Zy)



Constructing 2d effective theory

N = 1 case: _
7 Invariance under

* Low-energy mode: one 2d Dirac fermion (& compact scalar @) 6->0+a9p—->¢p+ta

smw? |
—+i60/N |,

* Center-vortex vertex: Ke Ng? e=t?/N” from U(1) chira] SPUrious symmetry

* Dilute gas approximation

1 _8m* — 0 —2mk
—— S|o] =f—|dg0|2—m,ucosg0 — 2Ke Ng* cos<(p )

8T N
@ “eats” the vacuum label k € Zy and extends its periodicity to ¢ ~ ¢ + 27N.

residual gauge SU(N) — Zy
Nf > 2 case: the non-abelian bosonization

= U(Nf)1 WZW ( + quark-mass deformation + center-vortex deformation)

= 2d analog of U(Ny) chiral Lagrangian with n'~ n' + 2N & (det U)*/N-type n’ mass.



2d version of chiral Lagrangian

* For Nf > 1, we use the non-Abelian bosonization: looks like chiral Lagrangian with n’!

[U € U(Nf) with 2 N-periodic (det U)]
1 _8m”
S[U] = j@ |[dU|? —mptr (U) — Ke Ng?e 99/N(det U)YN + c.c. +S3%,,[U]

guark-mass deformation Center-vortex-induced n” mass term
(if present) “finite-N version of log-det vertex”

% “2d version of chiral Lagrangian”
Up to gapped n’, this 2d effective theory
= T?compactification with U(1) 5 flux of 4d SU(Nf) chiral Lagrangian

Couplingto U(1)p 1 4 3 1 4 3 2d
background jM3><T2 dAdg A <24TL’2 tr (U~dU)° | = JMB Ton tr (U1dU)? ) = Sy [U]




Results

n~n+2n
* 2d effective theory on R? >0 ~n' +2nN

= 2d analog of chiral Lagrangian + periodicity-extended n’

finite-N version
of log-det vertex

* This 2d effective theory explains the expected vacuum structure of QCD (phase
diagram on mVret?):

+ corresponding 7’ mass term (det U)'/V

N = 1: - . .

(P . > ep

= ¢ >

m:_mo

* 7' extends its periodicity by absorbing the Z, vacuum label; also for 4d chiral
Lagrangian, this prescription improves the global aspects.

(periodicity extension ~ in the limit where the Chern-Simons DW is infinitely heavy)
cf.) [Csaki-D'Agnolo-Gupta-Kuflik-Roy-Ruhdorfer ‘23]: n’ in anomaly-mediated SUSY-broken SQCD: N-Nf branches



Application: Dashen phase on (m,,, m ) plane

Phase diagram of (1+1)-flavor QCD on (m, , m, ) plane:

The conventional U(2) chiral Lagrangian with det-type n mass has an artificial
CP-restored phase (“phase C”).

Using (det U)l/N -vertex ellmlnates the artificial phase.

a g

—‘ri;" l\

Uy

’ 1 C Bf‘ A
cP v g

mglh 0F 1 i A

My
1
d

Up=-1 \ B/C [AOki-CreUtZ 114]

[ U =3 Fig. 1 of S. Aoki and M. Creutz,
l [ o7 PRL 112 141603 (2014)

2k J ‘ : ’
-2 -1 0 1 2

From conventional chiral Lagrangian with n
withn ~n + 2N & (det U)Y/N mass (with det-type mass term)




Summary of this section

We study QCD through semiclassics on R? x T2 with ‘t Hooft flux & U(1)z magnetic flux

Our results: n' ~n' +2m

» 2d effective theory on R? =>n'~n' +2mN

= 2d analog of chiral Lagrangian + periodicity-extended n’
Center-vortex
+ corresponding 7’ mass term (det U)'/V induced mass

* This 2d effective theory explains the expected vacuum structure of QCD (phase
diagram on m"Vre'?).

* The periodicity extension of 1’ = inclusion of YM vacuum label

Also for 4d chiral Lagrangian with 1, the periodicity extension improves global aspects
(particularly, smooth connection to quenched limit).
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4. Summary

4 )
Conclusion:

T? compactification with ‘t Hooft flux gives tractable confining theory

= Study small-T'% physics tells us some aspects of confinement

o )

 Dilute gas of center vortices (fractional instantons) describes confining vacuum

* New insights on eta prime (on its global structure)

* More developments: other theories (SYM/QCD(adj), QCD(AS/Sym), QCD(BF),......)
[Tanizaki-Unsal ‘22 ’22, YH-Tanizaki-Watanabe ‘23 ‘24],, connections to monopole semiclassics
[YH-Tanizaki ‘24, YH-Misumi-Tanizaki’24], center stability at large N [YH-Tanizaki-Unsal ‘25],...






Backup



Technicality: Zy gauging and vacuum label

+19/N

* Problem: Center-vortex vertex: Ke Ng “e~l®/N” |ooks ill-defined/non-genuine.

 Keypoint: residual Zy, gauge after adjoint higgsing by Polyakov loops : SU(N) — Zy.

* The residual Zy gauge is vector-like to fermion 1. It couples to ¢ magnetically
[

o az, NAQ  (#fermions) = (#kinks).

Integrating out az,, = constraint [ dg € 2nN Z

= It is possible to regard ¢ € R/2nNZ.

* In the lift from 2m-periodic field to 2w N-periodic field, there is Zy ambiguity: ¢ —
@ + 2mk. This 1-to-N correspondence absorbs the vacuum label k. In summary,

fDaZN Z f . = j D(p
g0+27r QP~p+2TN

e~ L ?/N hecomes well-defined.



2d version of chiral Lagrangian

* For Nf > 1, we use the non-Abelian bosonization: looks like chiral Lagrangian with n’!
[U € U(Nf) with 2 N-periodic (det U)]

1 _8m”
S[U] = jgldUl2 —mutr (U) —Ke N9?e=0/N(det )VN + c.c. +Si%,, U]

guark-mass deformation
(if present) Center-vortex-induced n” mass term

“finite-N version of log-det vertex”

Up to gapped n’, this 2d effective theory
= T?compactification with U(1) 5 flux of 4d SU(Nf) chiral Lagrangian

Couplingto U(1)p 1 4 3 1 4 3 2d
background jM3><T2 dAdg A <24TL’2 tr (U~dU)° | = JMB Ton tr (U1dU)? ) = Sy [U]




Vacuum structure from 2d effective theory

The 2d effective theory explains the vacuum structure, just by finding potential minima:

* Ny = 1 case: the effective potential for 2 N-periodic ¢ is,

0
sm> 00 m = —m, |m e’
Vo] = —mpucosgp — 2Ke Ng? cos( = ) > cp | S

\ L/ \ ¢/
\/\/ ' \/ 0,
* Ny = 2 case: we take the SU(Nf) symmetric ansatz, ¢ == o=

U = e'?1 with (logdetU) = Nr@ + 21k (- < ¢ <,k € Zy)

2

8m

= Nr@+21k—6
= V[p] = —Nymucos¢p —2Ke No* cos( f¢+Nn )
At 6 = m, this potential has two degenerate minima: |ﬂNf al 0

((p:<p*,k:0)and(<p=—<,0*;k=1) # i I >



Discrete anomaly

Baryon-color-flavor anomaly:
Flavor-symmetric QCD with N quarks at 6 = 7 has mixed anomaly between
SU(Nf)xU(1)q

and CP if ng (N, Nf) # 1. [Gaiotto-Komargodski-Seiberg ‘17]

ZN

* For gcd (N, Nf) = 1, the variables (k, @) in the SU(Nf) symmetric ansatz can be combined into
single 2mN-periodic one @: Nr@ + 2mk = N (mod 27tN). Like the mass deformation in Ny = 1
case, a suitable symmetric deformation can single out a unique gapped vacuum (the absence of
anomaly).

* Forgcd (N, Nf) # 1, the Zgq (NNf) discrete label cannot be absorbed. (Intuitively, quark
fluctuation only bridges k-th vacuum and (k + N¢)-th vacuum, so it cannot split the degeneracy
of CP-broken vacua: k = 0and k = 1.)

* 4d chiral Lagrangian with periodicity-extended 1’ reproduces this discrete anomaly.

(A more essential point is that the coupling [ n'dAg A dAg becomes well-defined thanks to the
periodicity extension.)
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