Semiclassics for QCD vacuum structure via T^2 compactification

Yui Hayashi (Yukawa Institute, Kyoto U.)

The complex structure of strong interactions in Euclidean and Minkowski space

ECT*, 26–30 May, 2025

Based on: JHEP **08** 001 (2024) [arXiv:2402.04320 [hep-th]] with Yuya Tanizaki (Yukawa Institute, Kyoto U.)

What I'll talk about...

• Aim: We want to understand confinement/vacuum structure

(We work in <u>Euclidean</u> (sorry!); translation to Minkowski language is just as hard as that of instanton gas/quantum tunneling stuff)

Strategy: Deformation (preserving confinement)

As this deformation, we make T^2 compactification (with some trick)

QCD / SU(N) Yang-Mills (strongly coupled, hard problem)

Deformed theory (weakly coupled, easy problem)

Confinement by gas of fractional instantons

We want to know

Adiabatic continuity

- In this talk, we consider T^2 compactification to have weakly-coupled theory
- With the naïve compactification, there is a deconfinement transition somewhere

 Nice trick: inserting 't Hooft flux, which stabilizes the center symmetry / avoids deconfinement ⇒ We expect the adiabatic continuity in this setup.

in a similar spirit as twisted Eguchi-Kawai [González-Arroyo, Okawa '83--]

Semiclassics via T^2 compactification

Today's talk: We investigate SU(N) YM/QCD vacuum structure through semiclassical analysis on $\mathbb{R}^2 \times T^2$ with **'t Hooft flux (+** baryon magnetic flux for QCD).

Empirically, this method successfully gives a reasonable picture for confining vacuum in SU(N) YM, SU(N) N=1 SYM, QCD(F), QCD(Sym), QCD(AS), QCD(BF) [Tanizaki-Ünsal '22 '23][Tanizaki-YH-Watanabe '23 '24]. (cf. [Yamazaki-Yonekura '17]) This work: expanding analysis for QCD(F).

Contents

- 1. Introduction (3 pages)
- 2. Center-vortex semiclassics for pure YM (6 pages)
- 3. Center-vortex semiclassics for QCD (8 pages)
- 4. Summary

Plan:

Consider SU(N) Yang-Mills theory on $\mathbb{R}^2 \times T^2$ with 't Hooft flux; Study physics at small T^2 , and predict the original theory on \mathbb{R}^4 [Tanizaki-Ünsal '22]

SU(N) YM on $\mathbb{R}^2 \times T^2$ with 't Hooft flux (1)

[Tanizaki-Ünsal '22,] (cf. [Yamazaki-Yonekura '17])

• 't Hooft flux for T^2 (or $\mathbb{Z}_N^{[1]}$ background)

A unit 't Hooft flux \Leftrightarrow choose $g_3(0)g_4(L)g_3^{\dagger}(L)g_4^{\dagger}(0) = e^{\frac{2\pi i}{N}}$. $(g_3(x_4), g_4(x_3)$: transition functions on T^2)

$$\begin{cases} a(\vec{x}, x_3 + L, x_4) = g_3^{\dagger} a g_3 - i g_3^{\dagger} d g_3 \\ a(\vec{x}, x_3, x_4 + L) = g_4^{\dagger} a g_4 - i g_4^{\dagger} d g_4 \end{cases}$$

Up to gauge, we can take $g_3 = S$, $g_4 = C$ (shift and clock matrices of SU(N)). \Rightarrow In this gauge, inserting 't Hooft flux \Leftrightarrow twisted boundary condition:

$$\begin{cases} a(\vec{x}, x_3 + L, x_4) = S^{\dagger} a S \\ a(\vec{x}, x_3, x_4 + L) = C^{\dagger} a C \end{cases} \qquad \qquad \underbrace{e.g.} N = 3 \\ S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{3}} & 0 \\ 0 & 0 & e^{\frac{4\pi i}{3}} \end{pmatrix}$$

SU(N) YM on $\mathbb{R}^2 \times T^2$ with 't Hooft flux (2)

Consequences from 't Hooft-twisted compactification

 ✓ Center symmetry is kept at small T²
 Classically, P₃ = S and P₄ = C ⇒ (tr P₃) = (tr P₄) = 0.
 ✓ Perturbatively gapped gluons:

$$\begin{bmatrix} a(\vec{x}, x_3 + L, x_4) = S^{\dagger} a S \\ a(\vec{x}, x_3, x_4 + L) = C^{\dagger} a C \end{bmatrix}$$

$$\sim$$
adjoint higgsing by Polyakov
loops P_3, P_4 : $SU(N) \rightarrow \mathbb{Z}_N$

⇒ no zeromode; O(1/NL) KK mass

For confinement on \mathbb{R}^2 :

✓ Numerical evidence for [∃]center vortex/fractional instanton

with $S = \frac{8\pi^2}{Ng^2}$, $Q_{top} = 1/N$ as a "local solution" (scale ~ Size(T²))

[Gonzalez-Arroyo–Montero '98, Montero '99 '00]

(cf. [García Pérez–Gonzalez-Arroyo–Soderberg '90; Itou '18] for $\mathbb{R} \times T^3$)

Note) fractional topological charge: it cannot exist alone if the boundary condition for \mathbb{R}^2 is regular

$$\begin{array}{c|c} x_4 \\ g_4(x_3) \\ \hline T^2 \\ g_3(x_4) \\ g_3(x_4) \\ g_3 = S, g_4 = C \\ \underline{e.g.} N = 3 \end{array}$$

$$S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

 $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{3}} & 0 \\ & & \frac{4\pi i}{3} \end{pmatrix}$

Remark: center vortex?

Center vortex (in general context)

['t Hooft '78, ...: cf. Gastão's talk]

Co-dim-2 object carrying "magnetic flux of center element":

$$e^{\frac{2\pi i}{N}}$$

(expected to play an important role in quark confinement)

Center vortex (we consider here)

In addition, it is a 1/N fractional instanton satisfying the BPS bound $S = \frac{8\pi^2}{Ng^2}$, $Q_{top} = 1/N$

Fractional instanton (in QM)

• <u>Reduction to QM</u> (cf. [Yamazaki-Yonekura '17])

Further spatial compactification:

 $\mathbb{R}^{2} \times T^{2} \to \mathbb{R}_{\text{time}} \times S_{\text{large}}^{1} \times T^{2}$ with Size $(T^{2}) \ll \text{Size}(S_{\text{large}}^{1}) \ll \Lambda^{-1}$ 2d EFT: $(SU(N) \to) \mathbb{Z}_{N}$ gauge \Rightarrow N classical vacua with $P(S_{\text{large}}^{1}) = e^{2\pi k i/N} \mathbf{1}$ $(k = 0, \dots, N - 1)$

"Fractional instanton = tunneling event"

P = 1 (lattice: [Garcia Perez–Gonzalez-Arroyo–Soderberg '90; Itou '18]) $Q_{top} = 1/3$ • does not globally exist if the periodic BC is imposed • can exist globally under the twisted BC $P = e^{4\pi i/3}$

Semiclassics on $\mathbb{R}^2 \times T^2$ in SU(N) YM [Tanizaki-Ünsal '22]

• Dilute gas of center vortices

The center-vortex and anti-center-vortex vertices are:

$$Ke^{-\frac{8\pi^2}{Ng^2}+i\,\theta/N}$$
, $Ke^{-\frac{8\pi^2}{Ng^2}-i\,\theta/N}$

For calculating partition function, we compactify \mathbb{R}^2 without 't Hooft flux. \Rightarrow total topological charge is constrained $Q_{top} \in \mathbb{Z}$

with a dimensionful constant *K*.

Then, the dilute gas approximation yields, (only configurations with $Q_{top} \in \mathbb{Z}$ are admitted)

One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.

Digression: relation to another method

• Two deformations to weak-coupling confined theories

 S^1 compactification with center stabilization

"Monopole semiclassics"

[Ünsal '07, Ünsal-Yaffe '08,...] weakly coupled setup, where BPS/KK monopoles cause confinement

4d Yang-Mills theory

 T^2 compactification with 't Hooft flux

Today's talk

"Center-vortex semiclassics"

[Tanizaki-Ünsal '22,...] weakly coupled setup, where center vortices cause confinement

 $\begin{array}{c} \text{BPS/KK monopole} = \text{center vortex} & [YH-Tanizaki '24; YH-Misumi-Tanizaki '24] \\ (cf. [Güvendik-Schäfer-Ünsal '24]) \\ (cf. [Güvendik-Schäfer-Ünsal '2$

Contents

- 1. Introduction (3 pages)
- 2. Center-vortex semiclassics for pure YM (6 pages)
- 3. Center-vortex semiclassics for QCD (8 pages)
- 4. Summary

Plan:

Consider similar T^2 compactification for QCD, and study small- T^2 physics New insights on η' meson: periodicity extension / η' mass from fractional instanton [Tanizaki-Ünsal '22; YH-Tanizaki '24]

Introduction: global structure of η' ?

• Low-energy effective theory of QCD: $SU(N_f)$ Chiral Lagrangian

Light pseudoscalar mesons: Nambu-Goldstone bosons of (approximate) $SU(N_f)_{chiral}$ $\Rightarrow S[U] = \int f_{\pi}^2 |dU|^2 - \Lambda^3 tr(MU) + c.c.$

Chiral Lagrangian with η'?

mass matrix from quark mass

Sometimes, one includes η' by considering $U(N_f)$ chiral Lagrangian and adds the instanton-induced η' mass term (Kobayashi-Maskawa-'t Hooft vertex).

 $\Rightarrow S[U] = \int f_{\pi}^2 |dU|^2 - \Lambda^3 \operatorname{tr} (MU) - \Delta e^{-i\theta} \det(U) + c.c.$

Question: ambiguity in η' mass (or global structure of η')? It's common to use det-vertex, but it should be log-det(U)-type vertex at large-N...

(Oversimplified) summary

Question: ambiguity in η' mass Instanton (det-type) vertex? log-det vertex?

Our suggestion (from 2d semiclassics): Use fractional instanton vertex $(\det U)^{1/N}$! (while η' periodicity is extended by N, eating YM vacuum label)

Setup for QCD [Tanizaki-Ünsal '22]

- In the presence of fundamental quarks, it is impossible to insert 't Hooft flux alone $(g_3(0)g_4(L)g_3^{\dagger}(L)g_4^{\dagger}(0) = e^{\frac{2\pi i}{N}}$ leads to an inconsistency).
- To avoid this problem, we also introduce **baryon magnetic flux** simultaneously: $\int_{T^2} dA_B = 2\pi. \text{ (e.g., we can take } A_B = \frac{2\pi}{L^2} x_3 dx_4; \text{ 1/N magnetic flux in terms of } U(1)_q)$

Boundary conditions for quarks (in the gauge $g_3 = S$, $g_4 = C$):

$$\begin{cases} \psi(\vec{x}, x_3 + L, x_4) = e^{i\frac{2\pi x_4}{NL}} S^{\dagger}\psi(\vec{x}, x_3, x_4) \\ \psi(\vec{x}, x_3, x_4 + L) = C^{\dagger}\psi(\vec{x}, x_3, x_4) \end{cases}$$

• At small T^2 , there is one 2d Dirac "low-energy mode" (\Leftrightarrow without KK mass) per flavor. (obtained by solving zeromode equation)

Index theorem " $N \times \int_{T^2} dA_q = 1$ " $(U(1)_B = U(1)_q / \mathbb{Z}_N)$

Constructing 2d effective theory

 $N_f = 1$ case:

• Low-energy mode: one 2d Dirac fermion (\Leftrightarrow compact scalar φ)

Invariance under $\theta \rightarrow \theta + \alpha, \varphi \rightarrow \varphi + \alpha$

- Center-vortex vertex: $Ke^{-\frac{8\pi^2}{Ng^2}+i\theta/N}$ " $e^{-i\varphi/N}$ " from $U(1)_{chiral}$ spurious symmetry
- Dilute gas approximation

$$\longrightarrow S[\varphi] = \int \frac{1}{8\pi} |d\varphi|^2 - m\mu \cos\varphi - 2Ke^{-\frac{8\pi^2}{Ng^2}} \cos\left(\frac{\varphi - \theta - 2\pi k}{N}\right)$$

 φ "eats" the vacuum label $k \in \mathbb{Z}_N$ and extends its periodicity to $\varphi \sim \varphi + 2\pi N$.

residual gauge $SU(N) \rightarrow \mathbb{Z}_N$

$N_f \ge 2$ case: the non-abelian bosonization

 $\Rightarrow U(N_f)_1$ WZW (+ quark-mass deformation + center-vortex deformation)

 \Rightarrow 2d analog of $U(N_f)$ chiral Lagrangian with $\eta' \sim \eta' + 2\pi N \& (\det U)^{1/N}$ -type η' mass.

2d version of chiral Lagrangian

• For $N_f > 1$, we use the non-Abelian bosonization: looks like **chiral Lagrangian with** η' ! $[U \in U(N_f)$ with $2\pi N$ -periodic (det U)] $S[U] = \int \frac{1}{8\pi} |dU|^2 - m\mu \operatorname{tr}(U) - K e^{-\frac{8\pi^2}{Ng^2}} e^{-i\theta/N} (\det U)^{1/N} + c.c. + S^{3d}_{WZW}[U]$ quark-mass deformation (if present)
Center-vortex-induced η' mass term "finite-N version of log-det vertex"

% "2d version of chiral Lagrangian"

Up to gapped n', this 2d effective theory

 $= T^{2} \text{ compactification with } U(1)_{B} \text{ flux of 4d } SU(N_{f}) \text{ chiral Lagrangian}$ $\int_{M_{3} \times T^{2}} dA_{B} \wedge \left(\frac{1}{24\pi^{2}} \operatorname{tr} (U^{-1} dU)^{3}\right) \Rightarrow \int_{M_{3}} \left(\frac{1}{12\pi} \operatorname{tr} (U^{-1} dU)^{3}\right) = S_{WZW}^{3d}[U]$

Results

- 2d effective theory on \mathbb{R}^2
 - = 2d analog of chiral Lagrangian + periodicity-extended η'

+ corresponding η' mass term $(\det U)^{1/N}$

finite-N version of log-det vertex

 $\eta' \sim \eta' + 2 \pi$

 $\Rightarrow \eta' \sim \eta' + 2 \pi N$

• This 2d effective theory explains the expected vacuum structure of QCD (phase diagram on $m^{N_f} e^{i\theta}$):

• η' extends its periodicity by absorbing the \mathbb{Z}_N vacuum label; also for 4d chiral Lagrangian, this prescription improves the global aspects. (periodicity extension \sim in the limit where the Chern-Simons DW is infinitely heavy)

cf.) [Csáki-D'Agnolo-Gupta-Kuflik-Roy-Ruhdorfer '23]: η' in anomaly-mediated SUSY-broken SQCD: N-Nf branches

Application: Dashen phase on (m_u, m_d) plane

Phase diagram of (1+1)-flavor QCD on (m_u, m_d) plane:

The conventional U(2) chiral Lagrangian with det-type η mass has an artificial CP-restored phase ("phase C").

Using $(\det U)^{1/N}$ -vertex eliminates the artificial phase.

Summary of this section

We study QCD through semiclassics on $\mathbb{R}^2 \times T^2$ with 't Hooft flux & $U(1)_B$ magnetic flux Our results: $\eta' \sim \eta' + 2 \pi$

- 2d effective theory on \mathbb{R}^2
 - = 2d analog of chiral Lagrangian + periodicity-extended η'

+ corresponding η' mass term $(\det U)^{1/N}$

Center-vortex induced mass

 $\Rightarrow \eta' \sim \eta' + 2 \pi N$

- This 2d effective theory explains the expected vacuum structure of QCD (phase diagram on $m^{N_f} e^{i\theta}$).
- The periodicity extension of η' = inclusion of YM vacuum label

Also for 4d chiral Lagrangian with η' , the periodicity extension improves global aspects (particularly, smooth connection to quenched limit).

Contents

- 1. Introduction
- 2. Center-vortex semiclassics for pure YM
- 3. Center-vortex semiclassics for QCD
- 4. Summary

4. Summary

Conclusion:

 T^2 compactification with 't Hooft flux gives **tractable confining theory** \Rightarrow Study small- T^2 physics tells us some aspects of confinement

- Dilute gas of center vortices (fractional instantons) describes confining vacuum
- New insights on eta prime (on its global structure)
- More developments: other theories (SYM/QCD(adj), QCD(AS/Sym), QCD(BF),.....) [Tanizaki-Ünsal '22 '22, YH-Tanizaki-Watanabe '23 '24], connections to monopole semiclassics [YH-Tanizaki '24, YH-Misumi-Tanizaki'24], center stability at large N [YH-Tanizaki-Ünsal '25],...

Backup

Technicality: \mathbb{Z}_N gauging and vacuum label

- Problem: Center-vortex vertex: $Ke^{-\frac{8\pi^2}{Ng^2}+i\theta/N}$ " $e^{-i\varphi/N}$ " looks ill-defined/non-genuine.
- Keypoint: **residual** \mathbb{Z}_N gauge after adjoint higgsing by Polyakov loops : $SU(N) \to \mathbb{Z}_N$.
- The residual \mathbb{Z}_N gauge is vector-like to fermion ψ . It couples to φ magnetically $\frac{i}{2\pi} \int a_{\mathbb{Z}_N} \wedge d\varphi$ (#fermions) = (#kinks).

Integrating out $a_{\mathbb{Z}_N} \Rightarrow \text{constraint} \int d\varphi \in 2\pi N \mathbb{Z}$

 $e^{-i \varphi/N}$ becomes well-defined.

 \Rightarrow It is possible to regard $\varphi \in \mathbb{R}/2\pi N\mathbb{Z}$.

• In the lift from 2π -periodic field to $2\pi N$ -periodic field, there is \mathbb{Z}_N ambiguity: $\varphi \rightarrow \varphi + 2\pi k$. This 1-to-N correspondence absorbs the vacuum label k. In summary,

$$\int Da_{\mathbb{Z}_N} \sum_{k \in \mathbb{Z}_N} \int_{\varphi \sim \varphi + 2\pi} D\varphi \dots \Rightarrow \int_{\varphi \sim \varphi + 2\pi N} D\varphi \dots$$

2d version of chiral Lagrangian

• For $N_f > 1$, we use the non-Abelian bosonization: looks like **chiral Lagrangian with** $\eta'!$ [$U \in U(N_f)$ with $2\pi N$ -periodic (det U)] $S[U] = \int \frac{1}{8\pi} |dU|^2 - m\mu \operatorname{tr}(U) - K e^{-\frac{8\pi^2}{Ng^2}} e^{-i\theta/N} (\det U)^{1/N} + c.c. + S^{3d}_{WZW}[U]$

quark-mass deformation (if present)

Center-vortex-induced η' mass term "finite-N version of log-det vertex"

Up to gapped **q'**, this 2d effective theory

Coupling to $U(1)_B$ background

$$= T^{2} \text{ compactification with } U(1)_{B} \text{ flux of 4d } SU(N_{f}) \text{ chiral Lagrangian}$$
$$dA_{B} \wedge \left(\frac{1}{24\pi^{2}} \text{ tr } (U^{-1} dU)^{3}\right) \Rightarrow \int_{M_{3}} \left(\frac{1}{12\pi} \text{ tr } (U^{-1} dU)^{3}\right) = S^{3d}_{WZW}[U]$$

Vacuum structure from 2d effective theory

The 2d effective theory explains the vacuum structure, just by finding potential minima:

iΩ

• $N_f = 1$ case: the effective potential for $2\pi N$ -periodic φ is,

Discrete anomaly

Baryon-color-flavor anomaly:

Flavor-symmetric QCD with N_f quarks at $\theta = \pi$ has mixed anomaly between $\frac{SU(N_f) \times U(1)_q}{\mathbb{Z}_N}$ and CP if gcd $(N, N_f) \neq 1$. [Gaiotto-Komargodski-Seiberg '17]

- For gcd $(N, N_f) = 1$, the variables (k, φ) in the $SU(N_f)$ symmetric ansatz can be combined into single $2\pi N$ -periodic one $\varphi: N_f \varphi + 2\pi k \Rightarrow N_f \varphi \pmod{2\pi N}$. Like the mass deformation in $N_f = 1$ case, a suitable symmetric deformation can single out a unique gapped vacuum (the absence of anomaly).
- For gcd $(N, N_f) \neq 1$, the $\mathbb{Z}_{\text{gcd}(N,N_f)}$ discrete label cannot be absorbed. (Intuitively, quark fluctuation only bridges k-th vacuum and $(k + N_f)$ -th vacuum, so it cannot split the degeneracy of CP-broken vacua: k = 0 and k = 1.)
- 4d chiral Lagrangian with periodicity-extended η' reproduces this discrete anomaly.

(A more essential point is that the coupling $\int \eta' dA_B \wedge dA_B$ becomes well-defined thanks to the periodicity extension.)