ECT* workshop: Complex structure of strong interactions in

Euclidean and Minkowski space

Goldstone bosons at finite temperature

(Based on: PL, O. Philipsen, 2501.17120, 2506.XXXX)

Peter Lowdon

(Goethe University Frankfurt)

GOETHE @4
UNIVERSITAT CRC-TR2n

Strong-interaction matter
FRANKFURT AM MAIN under extreme conditions




1. Goldstone's theorem in vacuum
2. Generalisation to finite temperature
3. A thermal particle? — “Thermoparticle”

4. Thermal Goldstone bosons

5. Goldstone signatures from the lattice




1. Goldstone's theorem in vacuum

* In words: Goldstone's theorem states that the spontaneous breaking of a

continuous symmetry implies the existence of massless (Goldstone) bosons

* QFT language: if j* is the conserved current associated with the symmetry,
and A is some local field whose transformation under the symmetry has a

non-trivial vev: <6A> = limg_,  <[Qr A]>#0, then:
— The Fourier transform of <[j°(x), A(y)]> contains a 6(p?) singularity

* In fact... current conservation and field locality means that <6A>#0
implies the Fourier transform of <[j°(x), A(y)]> contains a 6(w) component
as p— 0. This is independent of the properties of the background state”

* The Goldstone “quasi-particle” 6(w) becomes a stable massless particle
state 6(p®) for relativistic QFTs

* See: [F. Strocchi, Symmetry Breaking, Lect. Notes Phys. 732 (2008)]



2. Generalisation to finite temperature

For T=1/B >0, one defines: <®(x,)...&(x,)>5 = Z7 Tr ePH &(x,)...d(x,)

There are some immediate implications:

> Lorentz invariance X — but can retain rotational invariance
> Spectral condition (H >0) X — replaced by KMS condition

- Field locality (causality) v — this is important!

* Since current conservation and field locality are unaffected by T, the
Fourier transform of <[j°(x), A(y)]>p still contains a 6(w) as p—0

Can we learn anything else about the properties of thermal Goldstone
modes, e.g. what happens for p>0 ?

Yes! The key is to determine how T modifies spectral functions

I
:
!
' pag(w,p), the Fourier transform of the thermal expectation values
| <[®(x), Pg(y)]>5 [Bros, Buchholz, PRD 58 (1998)]




2. Generalisation to finite temperature

* For (complex) scalar fields, the constraints imposed for T >0 imply that

the spectral function has the representation”

00 d371' 5 . _‘2_g . .
(w,ﬁ):./() ds'/(Qﬁ)2 e(w)d(w® — (p—1)* — s) Dg(, s)

L ————————.———.—.

This is the T > 0 generalisation of the

plw,p) = QWE(w)'/OOOds 5(p* — s) o(s)

textbook Kallén-Lehmann representation!

* T>0 effects amount to understanding: p(s) — Eﬁ(u,s), which tells us

about the possible excitations that can exist in a thermal medium

* The non-trivial u dependence of 5B(u,s) controls the extent to which the

spectral function can be off the mass-shell p>=s

* The s dependence determines whether the spectral function has energy w

thresholds, much like in the T=0 case

* See: [J. Bros and D Buchholz, Z. Phys. C 55 (1992); Ann. Inst. H.Poincare Phys. Theor. 64 (1996)]



3. A thermal particle? — “Thermoparticle”

Proposition: the medium contains “Thermoparticles”: particle-like

up as discrete contributions to Dg(u,s) [Bros, Buchholz, NPB 627 (2002)]
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- excitations which differ from collective quasi-particle modes, and show
\ \
\ \

— Thermoparticle components Bﬁ(u)é(s—mz) reduce to those of a vacuum particle

with mass m in the limit T— 0
— Non-trivial “Damping factor” 53(“) results s
in thermally-broadened peaks in the spectral Sty

function: this parametrises the effects of

collisional broadening

— Component 5C,B(u,s) contains all other

types of excitations, including those that

are continuous in s



3. A thermal particle? — “Thermoparticle”

* There is mounting evidence for low-energy thermoparticle excitations, e.g. spatial

correlator Co¢(2) of the pseudo-scalar meson operator

O%s = E"/Eﬁ %w

in lattice QCD

* Studies extracting pseudo-scalar spectral function in various channels:
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4. Thermal Goldstone bosons

* Using the extra information given by the T > 0 spectral representation, in
[Bros, Buchholz, 1998] the authors were able to prove that the SSB condition
<6A>=#0 implies that <[j°(x), A(0)]>; contains a massless thermoparticle

component, which in position space has the form:

D§ (#,s) = DG (2)d(s)

* This a thermal Goldstone boson: in the T— 0 limit D% x) — const, hence

the current-field spectral function contains a vacuum Goldstone component

6(p?), as expected!

* When the damping factor D¢(x) is non-trivial,
this causes the stable massless Goldstone peak

at p°=0 to become broadened

— Describes the dissipative effects of the Goldstone moving through the thermal medium



4. Thermal Goldstone bosons

* This analysis reveals some very important characteristics:
— The thermal Goldstone mode is never on-shell for T>0

— This component can persist at any temperature, even if the

symmetry is restored when T>T_

— The order parameter v depends entirely on the functional
form of the damping factor D°(x)

“Strong dissipation”, D%(x) — 0 for |[x|— oo, implies v=0, Restored phase

“Weak dissipation”, D¢(x) > 0 for |[x|— oo, implies v> 0, Broken phase

T=0 D%(x) = const, i.e. no dissipative effects, hence p> =0 mode

* This captures the physics! Sufficiently strong dissipative effects destroy the

long-range order and lead to symmetry restoration



4. Thermal Goldstone bosons

* The phase of the theory is determined entirely by the dissipative effects
experienced by the thermal Goldstone mode

* Only D%(x) — 0 for |[x|]— oo is required to ensure the symmetry is

restored, but this can happen at any rate

* If the damping factor has the functional form D%(x) ~ |x|© with some £>0

at large |x|, the two-point function decays as a pure power-law

I Interesting possibility: a symmetry could be restored at high
temperatures without there being a finite correlation length!

* Analysis of massive thermoparticle states [Bros, Buchholz, (2002)] demonstrates

that damping factors are fixed by the (asymptotic) dynamics of the theory

* If this is also the case for thermal Goldstone modes, this suggests that
universality arguments alone may not be sufficient to fully characterise

finite-temperature phase transitions



4. Thermal Goldstone bosons

If thermal Goldstone modes are present one can look for their signatures in

(Euclidean) correlation functions

For simplicity, consider the QFT of a single complex scalar field at finite

temperature, with two-point function C(7,%) = (¢(7,%)¢'(0))s

If a thermal Goldstone mode is present, it follows from the thermoparticle

structure, and the spectral function representation, that:

coth (ﬂTj’

4B

C%(0,%) = ) D§ (%)

The mode dissipation is determined by the damping factor D%(x)

) . - 1T —0 «Q
— For T— 0 the vacuum behaviour is recovered: |[C“(0,#) —= 42| )

For the spatial correlator 1

See: [PL,O. Philipsen, 2022]



5. Goldstone signatures from the lattice

* Now we know what the signatures of thermal Goldstone modes are, one

can look for them in lattice data

* Consider a simple model with SSB: U(1) complex scalar field theory

L =350,0'0"¢ — 3m?¢'o — 5 (¢'0)’

* In the broken phase at T=0 the model contains a massless Goldstone

boson and a resonance-like mode

— Model expected” to undergo a second-order phase transition: for T > T,

the U(1) symmetry is restored, and |v|* = <®><d'>= 0

* Investigate theory on a L. xL* lattice (L, =aN,,L=aN,) with action

2

/ 1 * : mg 4 ! ! Lk ! :
S =a* z\ lz (§Aﬁp (.’I;)Aﬁ@(.’f;)) + TOQ (x)o(x) + % (¢ (;I;)q.b(,-;;))z
xEN, I

— Avoid potential triviality by keeping lattice spacing fixed throughout,
hence T = (alN,)"' is varied in discrete steps

* See eg. [J. |. Kapusta and C. Gale, Finite-temperature Field Theory]



5. Goldstone signatures from the lattice

SSB does not occur in a finite spatial volume V= L3, i.e. there is no

notion of a “vev’ on the lattice

For the finite-volume correlator C,(T,x): | lim CL(7.%)

— One needs to perform an L— 00 extrapolation of lattice results!

|| =00 |’U‘2

L—oo

Based on this property there are different approaches™ for extracting |v|?

Given periodic spatial boundary conditions one can use: | [v]* = lim Cy(0,[7] = L/2)
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coth (%) Dg @

Use finite-volume version of Co0.) =

* See eg. [H. Neuberger, PRL 60,(1988).]



5. Goldstone signatures from the lattice

Broken phase (N, =8, 16, 32):

* In this case we fit the ansatz (assuming D%(x) ~ const):

coth | 2
: ’3)+{z—>(L_z)}

™~

CL(O, Z) = ¢y, + by,

- - .

* Functional form provides very good description of the data for each volume
considered (L/a =32, 64, 96, 128). Use this to do L—00 extrapolation:

0.010 . . 0.010- : 0.010-
0.008 ,,_,._—a—,/l/L 0.008} 1 0.008/
= 0.006- = 0.006 = 0.006) -
L] 5] 5] [ |
=) ) =)
& 0.004 3 0.004/ 3 0.004
& , . "z & | i |
— By/L* fit — |v|?+ B/L fit — |v)%+ B/Lfit
0.002" e+ Bl 0.002" vl B 0.002/ vl B |
a?lv|?= 0.00782(4) a?|v|?= 0.00683(8) a*|v|?= 0.0029(1)
0.000 - : - b s ] 0.000 - - 0.000 - - '
0.0000  0.0002  0.0004 0.0006 0.0008  0.0010 0.000 0.005 0.010 0.015 0.020 0.000 0.005 0.010 0.015 0.020
a’/I? a/L alL




5. Goldstone signatures from the lattice

Restored phase (N, =2, 4,6):

* As outlined previously, the Goldstone mode can still persist in this regime,

and would have the properties of a massless thermoparticle

* What is the structure of the damping factor D°(x)? Use spatial correlator:

- h (7l
Cr(z) =dg [e_m” +{z—(L-— z)}] - Dg(f) — ae 7| — C(0, 7) = COth( B )

471‘3‘?‘

* Spatial correlator fits provide excellent description of data over full range
[0,L/2] for each of the (large) volumes considered (L/a = 64,96, 128, 160)

oth(%#)

* Test damping by fitting: cL(o,z):bL[cfe_mHH(LZ)}}

* Consistency of the thermoparticle hypothesis

requires that the fit parameters y, and m, approach
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one another in the infinite-volume L— 00 limit
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5. Goldstone signatures from the lattice

Restored phase (N, =2, 4, 6):

* Data at each value of N consistent with the correlator being dominated by

an exponentially-damped massless thermoparticle — a thermal Goldstone!

* One can use the extracted damping factor
4o wry

w2 — |]3]2 _ ,}(2)2 + 4&)2’)/2

D¢(x) = aeY™ to compute the spectral function |pc(w.p) = (

pc(w,p) of the Goldstone mode

* Spectral properties are very different to the vacuum case p.(w,p) ~ 6(p?)

T~T. | | T1~15T. | T~3T. |

15000 | 15000 ! 15000 |

10000 | [ 10000 | | 10000 |
20 0.20

5000 5000 | 5000 |
t t > t

0L

* Broadened peak structure around p?=0 increases with temperature

— Represents the increasingly strong dissipative effects of the medium!



Summary & outlook

* Goldstone's theorem in vacuum has well-known consequences, but at finite

temperature there still remain open questions

* One can use the non-perturbative constraints imposed by causality to gain
new insights — p(w,p) have spectral representations. This narrows down the

potential excitations that exist = “Thermoparticles”

* SSB for T >0 implies existence of Goldstone modes which have the structure
of massless thermoparticles — these modes can persist at any temperature,
even if the symmetry is restored

* Phase structure is determined by the damping of the Goldstone mode:

(i) Weak dissipation — SSB, (ii) Strong dissipation — symmetry restoration

* We find evidence for the existence of such modes
in the U(1) complex scalar field theory on the lattice
below and above T. — General feature of T>0 QFTs




Backup: Rigorous definition of SSB

* In order to define SSB rigorously one needs to define a regularised charged

operator Qg, and this only converges for R— 00 within commutator [Qg, A]

(i) gr(x)=L1 for |x| = R, gr(x)=0 for |x| = R(1+¢€)

Qs = / 0z a5 (£) gr() o(t, T)

(ii) as(t) has compact support, and ag(t)—06(t)

* The condition: limg_, o, <[Qr, A]>=q is then always well-defined, and g=0 is
a necessary and sufficient condition for the existence of a charge operator @,
defined by: <u,Qv> = limp_, o <u,Qrv>

— If this is non-vanishing for any A then no such charge exists, i.e. SSB!

d—0 R—o0

* SSB condition: |lim lim / / d ‘”’ D (@,5)5(7) (m\/ (5/R) — )’ +e)—7qn(0)

* In the vacuum case this implies: D(t)(u,s) — ig (2r)° 5(u)5(s)

* Value of g is determined by Goldstone damping factor D(+)(x) for |x|—00



Backup: NRT theorem

* The NRT theorem implies that states with purely real dispersion relations

w = E(p) cannot exist in interacting theories when T >0

QFT reason: thermal states satisfy the KMS condition, and this gives rise

to very different spectral constraints than in the vacuum case

Physics reason: Dissipative effects of the thermal medium are everywhere-

present — always need to take these into account (i.e. always a width!)

* This has significant implications for perturbation theory: neither free field,
nor quasi-particle propagators with real poles can form the basis of finite-
temperature perturbative expansions [Landsman, Ann. Phys. 186, 141 (1988)]

2loop, N;=16
— 2loop, N;=2 |

* There is both analytic [Weldon, PRD 65 (2002)] and
now numerical [PL, O. Philipsen, JHEP 08, (2024)] :

evidence for this perturbative breakdown 02




Backup: Perturbation theory

How might one resolve inconsistencies of T > 0 perturbation theory?

In the vacuum theory we know that the basis of perturbation theory is the
Gell-Mann /Low formula [Landsman, Ann. Phys. 186, 141 (1988)]:

Gx, - xy= Tz g SRITLRL0) -+ Byx,) U0, —c0)]|@) | [ormeamecone v ve e
! " ! in <Q| U(GO, —OO) 'Q} ' =Tcxp(—i£2dtH,(i)),

il. to{n

* Correlation functions of interacting fields can be computed from correlators of
free fields — This is derived from the fact that at large times the interactions

between fields diminish: the asymptotic fields/states are free!

* The standard perturbative series is defined by expanding the exponential in
the evolution operator as a series in the coupling parameter — each term in
the expansion is determined by the propagators of the asymptotic fields

| Key point: free field propagators form the basis of perturbation theory at i

T =0 because the large-time states experience no interactions




Backup: Thermoparticles in QCD data

- Goal: Extract information about the finite T spectral function p{w,p) from

~ data of Euclidean correlator Cr(r,%)= (Or(r,%)Or(0,0))r O, = scalar operator

* Standard approach: extract p{(w,p) from temporal correlator C(1,p)

> dw CO“—’h 2 |T|) w} — Problem is ill-conditioned,
(1,9) = pr(w, p)

sinh (5 ) need more information!

* Instead, one can use the spatial correlator, where one integrates C{T,x) over

{T,x,y} and fixes a spatial direction z

* dp, . > dw
Cr(z) = / ——er / — pr(w, pz = py = 0,p2)
J —oo JO

2T W
* It turns out that if thermoparticles exist, then 1 [ R
T - Ce) [ dR e D, 5(R)
they will give a distinct contribution to C(z) 2 )}z

[P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]

— This component can be extracted directly from data



Backup: Thermoparticle characteristics

Given a specific QF T, what form should the damping factors take?

Idea: thermal scattering states are defined by imposing an asymptotic field
condition [Bros, Buchholz, (2002)]:

e In @*theory
| Asymptotic fields ®, are assumed to satisfy i .o o . A oo | |_>oo
» ° @ )+ o) 0

' dynamical equations, but only at large x,

* Since thermoparticles dominate the large-time behaviour of correlators, they
are natural candidates for describing such states. It turns out that their
damping factors 5m13(u) are uniquely fixed by the asymptotic condition

* In @' theory one finds (where K is a thermal width):

4
For g<0: D, d(“ET) = Zi(‘,'{|u| — K), For g> 0: D'Er:r::i( i) = ko (|72 + K2)’

| |

1 —k2 +m? )2 ~ (4 ( —k2+m? —i|p| + &
G5 ko, ) = In g—f—m + (|p] + k) Gf/;r}(kmﬁ) =5 —
4\plk —k§ +m? + (|p] — K)? | |ﬂ*""ﬂ vV —k§+m?+ipl+ k&




Backup: Robustness of spectral approach

* The robustness of the thermoparticle hypothesis can also be tested by
comparing with different causal models, e.g. a Breit Wigner

4wl

F—\/-:rng—i—f‘i |z|

AW = : : : 9N ¢ 919 3
pB“( :ﬁ) (wg_lﬂg_mz_rz)z+4wzrg,

Cew(z) =

WmZ+ T2

* Same procedure as with the thermoparticle case: (i) extract the width

parameter I and coefficient from the spatial lattice data (ii) use this to
predict the corresponding temporal correlator

—
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— Data is not consistent with a Breit-Wigner-type ground state!
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