Excited charm/charmonium mesons and exotics from lattice QCD

Christopher Thomas, University of Cambridge c.e.thomas@damtp.cam.ac.uk

ECT* workshop on "The complex structure of strong interactions in Euclidean and Minkowski space" 26 – 30 May 2025

Hadron spectroscopy

Intriguing observations, e.g. X(3872), Y(4230), $Z_c^+(4430)$, $Z_c^+(3900)$, X(6900), $T_{cc}(3875)$, $D_{s0}(2317)$, $T_{cs}(2900)$, Z_b^+ , light scalars, $\pi_1(1600)$ [J^{PC} = 1⁻⁺], P_c , Roper, other baryon resonances

Hadron spectroscopy

Lattice QCD

Systematically-improvable first-principles calculations in QCD

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow i t$)

Note:

- Finite *a* and *L*
- Possibly heavy u, d quarks
 - (\rightarrow unphysical m_{π})

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$
$$= \sum_n \frac{e^{-E_n t}}{2 E_n} \left\langle 0 \left| \mathcal{O}_i(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Lower-lying hadrons in each flavour sector are well determined (including isospin breaking, QED).

Excited states: in each symmetry channel compute matrix of correlators for **large bases of interpolating operators** with appropriate variety of structures.

Variational method (generalised eigenvalue problem) $\rightarrow \{E_n\}$

Scattering and resonances in infinite-volume continuum

Most hadrons are resonances and decay strongly to lighter hadrons

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

c.f. 1-dim:
$$k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$$
 (periodic b.c.s)

Scattering and resonances in lattice QCD

Can't directly compute scattering amplitudes in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

det
$$\begin{bmatrix} 1 + i \ \rho(E_{cm}) \ t(E_{cm}) \ (1 + i \ \mathcal{M}^{\vec{P}}(E_{cm}, L)) \end{bmatrix} = 0$$

Elastic
Couple
But we
 $S = 1 + 2i \ \sqrt{\rho} \ t \ \sqrt{\rho}$
(ach E_{cm} constrains *t*-matrix at that E_{cm})

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles. Demonstrated in calcs. of ρ , light scalars, b_1 , charm mesons, ...

The ρ resonance in $\pi\pi$ scattering

 $(J^{PC} = 1^{--}, I = 1)$

Experimentally ${\sf BR}(
ho o \pi\pi) \sim 100\%$

Use many different operators $\bar{\psi} \Gamma D \dots \psi$

 $\sum_{\vec{p_1}, \vec{p_2}} C(\vec{P}, \vec{p_1}, \vec{p_2}) \pi(\vec{p_1}) \pi(\vec{p_2})$

 $\sum_{\vec{p_1}, \vec{p_2}} C(\vec{P}, \vec{p_1}, \vec{p_2}) K(\vec{p_1}) \bar{K}(\vec{p_2})$

built from *optimised* $\pi \& K$ ops

Wilson *et al* (HadSpec) [PR D92, 094502 (2015)] and Dudek, Edwards, CT (HadSpec) [PR D87, 034505 (2013)]

The ρ resonance: **elastic** $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

T_{cc}^+ seen in $D^0 D^0 \pi^+$ at LHCb [2109.01038, 2109.01056] Close to DD^* threshold, J^P=1⁺, I=0, **exotic flavour** (cc $\bar{u}\bar{d}$)

What about higher energies (coupled DD^* , D^*D^*)?

Other lattice calcs:

- Padmanath & Prelovsek
 [2202.10110, PRL];
- Chen *et al* [2206.06185, PLB];
- Lyu *et al* (HAL QCD) [2302.04505, PRL];
- Collins *et al* [2402.14715, PRD];
- Meng *et al* [2411.06266, PRD]; See also:
- Du *et al* [2303.09441, PRL];
- Meng *et al* [2312.01930, PRD].
- Gil-Domínguez & Molina
 [2409.15141, PRD].
- Dawid *et al* [2409.17059, JHEP].

Coupled DD^* , D^*D^* scattering

First lattice QCD calculation of coupled DD^* , D^*D^* scattering

 $m_{\pi} \approx 391 \text{ MeV}, m_D \approx 1890 \text{ MeV},$ $m_{D^*} \approx 2010 \text{ MeV} (D^* \text{ is stable}),$ 3 lattice volumes ($L \approx 2 - 3 \text{ fm}$)

Matrices of correlation functions with many meson-meson-like DD^* and D^*D^* ops (I = 0)

Coupled DD^* , D^*D^* scattering

[2405.15741]

Use 109 energy levels

[2405.15741]

Coupled DD^* , D^*D^* scattering

Partial wave amplitudes for
$$J^P = 1^+$$
:
 $DD^* \ ^{3}S_1 \ (l = 0, S = 1), \ ^{3}D_1 \ (l = 2, S = 1)$
 $D^*D^* \ ^{3}S_1 \ (l = 0, S = 1), \ ^{3}D_1 \ (l = 2, S = 1)$
and 'background' partial waves

K-matrix param. – respects unitarity (conserve prob.) and flexible

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s) \qquad \text{Im}[I_{ij}(s)] = -\delta_{ij}\rho_i(s)$$
$$\rho_i(E_{\text{cm}}) = \frac{2k_i}{E_{\text{cm}}}$$

In this work
$$K(s)_{\ell SJa,\ell'S'Jb} = \sum \gamma_{\ell SJa,\ell'S'Jb}^{(n)} s^n$$
,

T_{cc} and T'_{cc} in coupled DD^* , D^*D^* scattering

Effect of left hand cut from π exchange (≈ 18 MeV below DD^* thresh)?

[2405.15741]

Experimental situation:

- Ground state $\chi_{c0}(1P)$ (0⁺⁺) and $\chi_{c2}(1P)$ (2⁺⁺) below $D\overline{D}$ threshold. Above that it is less clear...
- $\chi_{c0}(3860) \rightarrow D\overline{D}$ (Belle). Not seen in $B^+ \rightarrow D^+D^-K^+$ (LHCb). Theoretical reanalyses: may be from pole below $D\overline{D}$ thresh.
- $\chi_{c0}(3930) \rightarrow D\overline{D}$ (LHCb)
- $\chi_{c0}(3960) \rightarrow D_s \overline{D}_s$ (LHCb)
- $X(3915) \rightarrow J/\psi\omega$ (Belle)
- $\chi_{c2}(3930) \rightarrow D\overline{D}$ (Belle, BABAR, LHCb)

Charmonium 0⁺⁺ and 2⁺⁺ resonances

 $m_{\pi} \approx 391 \text{ MeV},$ 3 lattice volumes ($L \approx 2 - 3 \text{ fm}$) No $c - \overline{c}$ annihilation.

Use many fermion-bilinear ($\overline{c} \Gamma D \dots c$) and meson-meson-like ops ($\eta_c \eta, D\overline{D}, \eta_c \eta', D_s \overline{D}_s, D\overline{D}^*, D_s \overline{D}_s, \psi \omega, D^* \overline{D}^*, \psi \phi, \eta_c \sigma$, $D_s \overline{D}_s^*, \psi \omega, D^* \overline{D}^*, \psi \phi, \eta_c \sigma$, $\chi_{c0,2}\sigma, \dots$)

First 'complete' lattice study of this energy region.

[Wilson, Thomas, Dudek, Edwards (HadSpec), 2309.14070 (PRL), 2309.14071 (PRD)]

0⁺⁺ and 2⁺⁺ scattering amplitudes

[2309.14070, 2309.14071]

Use more than 200 energy levels

Charmonium 0⁺⁺ and 2⁺⁺ resonances

- Only one 0⁺⁺ and one 2⁺⁺ resonance up to ≈ 4100 MeV,
 c.f. quark model (2P states)
- No large scattering amps in channels with $\bar{c}c$ + light meson (OZI)
- Above ground state χ_{c0} no other 0⁺⁺ bound states or near-DD̄ / D_sD̄_s threshold resonances.
 c.f. claims for extra χ_{c0}(3860) by Belle [1704.01872], lattice calc (m_π ≈ 280 MeV) [Prelovsek *et al*, 2011.02542], some models, ...)
- (Also bound state in 2⁻⁺ and narrow resonance in 3⁺⁺.)

Charm (D) and charm-strange (D_s) mesons

SU(3)_F flavour symmetry (
$$m_u = m_d = m_s$$
)
 $D_{\overline{3}}$ (D, D_s) \approx 1960 MeV; η_8 (π , K, ...) \approx 690 MeV
 $\eta_1 \approx$ 940 MeV

Elastic $D_{\overline{3}} \eta_8$ scattering: $\overline{\mathbf{3}} \otimes \mathbf{8} = \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{15}}$ (S-wave, $J^{PC} = 0^{++}$) Exotic flavour (can't be just $\overline{q}c$)

- Study dependence of DK/π scattering on light-quark mass
- Disentangle different SU(3)_F multiplets

[See also PR D87, 014508 (2013) (1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); *PR D*98 014510 (2018) (1801.10122); *EPJ C79, 13 (2019)* (1811.05585); arXiv:2106.15391; PR D107, L031505 (2023)]

DK/π with SU(3)_F sym

[**Yeo**, Thomas, Wilson (HadSpec), 2403.10498 (JHEP)]

DK/π – dependence on m_{π}

[HadSpec, 1607.07093, 2008.06432, 2102.04974, 2403.10498]

DK/π – dependence on m_{π}

[HadSpec, 1607.07093, 2008.06432, 2102.04974, 2403.10498]

See Lang and Wilson, 2205.05026 (PRL) and 2502.04232 for some recent work on axial-vector (D_1) charm mesons ($m_\pi \approx 391$ MeV).

Summary

- Significant progress in LQCD calculations of excited/exotic hadrons.
- Some recent examples:
 - T_{cc} and T'_{cc} in coupled DD^* , D^*D^* scattering.
 - Scalar (0⁺⁺) and tensor (2⁺⁺) charmonium resonances.
 - $[DK/\pi \text{ at SU(3)}_{F} \text{ sym. point and dependence on } m_{\pi}]$
- Many other calcs, e.g. D_1 , π_1 (exotic $J^{PC} = 1^{-+}$), b_1 , light scalars.
- Outlook:
 - Other channels and vary light-quark mass.
 - Effect of left hand cut?
 - Three (or more !?) hadron scattering.
 - Probe structure, e.g. transitions and form factors.

Science and Technology Facilities Counci

Dirac

