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Connection between the Polyakov loop, used to distinguish (qualitatively) 
between confined and deconfined phases of strongly interacting matter …

Work in collaboration with Victor Tomas Mari Surkau. 
 arXiv:2504.06459 ⟶

… and the (quantitative) nature of the relevant degrees of freedom  
in each of these phases.

https://arxiv.org/abs/2504.06459


But some -ity will be built in since I will be discussing how the Polyakov 
depends on the quark chemical potential (complex functional integral).

ℂ

Purely Euclidean (sorry).



It is well accepted that QCD admits different thermodynamical phases 
depending on the value of temperature, chemical potential, …



Evidence from lattice simulations that the low temperature regime  
is dominated by hadronic degrees of freedom.



On the contrary, owing to asymptotic 
freedom, the relevant degrees of 
freedom in the high temperature 
regime are quarks and gluons.

Evidence from lattice simulations that the low temperature regime  
is dominated by hadronic degrees of freedom.



The two regimes are connected by a smooth crossover. 



The two regimes are connected by a smooth crossover. 

Becomes a sharp transition in  
the  formal limit of infinitely  
heavy quarks, a.k.a. pure 
Yang-Mills theory.



In this case, the transition can be understood in terms of the breaking  
of a symmetry, known as center symmetry, probed by means of  
an order parameter, the Polyakov loop .ℓ
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In this case, the transition can be understood in terms of the breaking  
of a symmetry, known as center symmetry, probed by means of  
an order parameter, the Polyakov loop .ℓ
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  and thus  
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In this case, the transition can be understood in terms of the breaking  
of a symmetry, known as center symmetry, probed by means of  
an order parameter, the Polyakov loop .ℓ



But it can still be used to distinguish 
between two phases characterized  
by either  or ℓ ≪ 1 ℓ ≃ 1

In QCD, the Polyakov is not a strict order parameter  
as it is never exactly equal to .0

This leads to a little paradox though …
ℓ ≪ 1

ℓ ≃ 1
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If the Polyakov loop is never 0, this means that, in principle,  
a quark can always be added to the medium, even in the  
low temperature phase.



How is this compatible with a picture where the low temperature 
phase is made of hadrons?

If the Polyakov loop is never 0, this means that, in principle,  
a quark can always be added to the medium, even in the  
low temperature phase.



This talks aims at answering this riddle, or, at least contributing  
to a possible answer.

How is this compatible with a picture where the low temperature 
phase is made of hadrons?

If the Polyakov loop is never 0, this means that, in principle,  
a quark can always be added to the medium, even in the  
low temperature phase.



To that aim, I will consider the following thought experiment. After 
bringing a quark into the medium, I will measure (or evaluate),  
the (net) quark number gained by the system.
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To that aim, I will consider the following thought experiment. After 
bringing a quark into the medium, I will measure (or evaluate),  
the (net) quark number gained by the system.

This gain writes:          

 1 + ΔQq

Quark number of 
the quark probe

(Net) quark number 
response of the 
medium

T

q

Net quark number gain?



In the high temperature, deconfined phase, it is usually found that the 
response of the medium is  and thus .ΔQq = 0 1 + ΔQq = 1



On the contrary, in the low temperature, confined phase,  
I will argue that the response of the medium can be :  

- either  corresponding to , interpreted                                                                           
as the quark probe being screened into a meson-like state; 

- or  corresponding to , interpreted                                                                    
as the quark probe being screened into a baryon-like state.

ΔQq = − 1 1 + ΔQq = 0

ΔQq = 2 1 + ΔQq = 3

In the high temperature, deconfined phase, it is usually found that the 
response of the medium is  and thus .ΔQq = 0 1 + ΔQq = 1



I say meson-like or baryon-like because the best I will be able to 
conclude from this calculation is that the states that are formed  
have the same net quark number as actual mesons or baryons.



I say meson-like or baryon-like because the best I will be able to 
conclude from this calculation is that the states that are formed  
have the same net quark number as actual mesons or baryons.

A refinement would involve computing the color charge, or better 
the Casimir operator (color charge squared) on these states but  
this is beyond the scope of this talk [work in progress].



The net quark number gain will be extracted from the Polyakov loop.  
Arguments will rely on very few, model-independent ingredients.

I say meson-like or baryon-like because the best I will be able to 
conclude from this calculation is that the states that are formed  
have the same net quark number as actual mesons or baryons.

A refinement would involve computing the color charge, or better 
the Casimir operator (color charge squared) on these states but  
this is beyond the scope of this talk [work in progress].



How come that this information can be extracted from the Polyakov loop?
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How come that this information can be extracted from the Polyakov loop?

Not so interesting function 
a priori beyond the “order 
parameter type behavior”
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How come that this information can be extracted from the Polyakov loop?

Many details are hidden in 
the region where  is small 
but non zero.

ℓ
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To give more weight to this region, take the logarithm: μ + T ln ℓ
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To give more weight to this region, take the logarithm: μ + T ln ℓ

0.0 0.1 0.2 0.3 0.4

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

μ

μ
+
T
ln
ℓ

Linear piecewise  
function at low T

T →
0



To access the slopes take a  -derivative: μ
∂
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To access the slopes take a  -derivative: μ
∂

∂μ
(μ + T ln ℓ) = 1 + ΔQq
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To access the slopes take a  -derivative: μ
∂

∂μ
(μ + T ln ℓ) = 1 + ΔQq

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

μ

μ
+
T
ln
ℓ  as a probe of the 

relevant d.o.f. in each phase?

1 + ΔQq

Mesons, baryons and free 
quarks in the same plot?



Outline

I. Motivation ✓

II. Relating the Polyakov loop and the Net Quark Number Response

III. Quark Number Response at Low Temperatures

IV. Generalization to Nc Colors



I. Motivation ✓

II. Relating the Polyakov loop and the Net Quark Number Response

III. Quark Number Response at Low Temperatures

IV. Generalization to Nc Colors



Basic thermodynamics

Consider a bath of quarks and gluons at temperature  and quark 

chemical potential . The partition function writes: 

 

with  the net quark number operator. 

T
μ

Z = Tr exp{−β (H − μ Q)}

Q



Basic thermodynamics

The average net quark number  
is then given by: 

         

with  the free energy.

⟨Q⟩ = T
∂ ln Z

∂μ
= −

∂F
∂μ

F

Consider a bath of quarks and gluons at temperature  and quark 

chemical potential . The partition function writes: 

 

with  the net quark number operator. 

T
μ

Z = Tr exp{−β (H − μ Q)}

Q



Quark number response of the bath

Recall now that the Polyakov loop gives access to the energy  
cost for bringing a quark probe into the bath 

 

This energy cost is just the difference in 
the bath free energy before and after  
bringing the probe.

T ln ℓ = − ΔFq



Quark number response of the bath

Recall now that the Polyakov loop gives access to the energy  
cost for bringing a quark probe into the bath 

 

This energy cost is just the difference in 
the bath free energy before and after  
bringing the probe.

T ln ℓ = − ΔFq
It follows that the quark number 
response of the medium is 

     T
∂ ln ℓ

∂μ
= −

∂ΔFq

∂μ
= ΔQq



Quark number gain of the system

The net quark number gain when bringing one quark  is then q

1 + ΔQq = 1 + T
∂ ln ℓ

∂μ
=

∂
∂μ

(μ + T ln ℓ)

Similarly the net quark number gain when bringing one antiquark  
can be expressed in terms of the anti Polyakov loop. One finds: 

q̄

−1 + ΔQq̄ = − 1 + T
∂ ln ℓ̄

∂μ
=

∂
∂μ

(−μ + T ln ℓ̄)



Quark number gain of the system

The net quark number gain when bringing one quark  is then q

1 + ΔQq = 1 + T
∂ ln ℓ

∂μ
=

∂
∂μ

(μ + T ln ℓ)

Similarly the net quark number gain when bringing one antiquark  
can be expressed in terms of the anti Polyakov loop. One finds: 

q̄

−1 + ΔQq̄ = − 1 + T
∂ ln ℓ̄

∂μ
=

∂
∂μ

(−μ + T ln ℓ̄) Both gauge-invariant 
and RG invariant!



Polyakov loop potential
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access to   and , and more precisely to their -dependence.
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ℓ ℓ̄ μ
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Polyakov loop potential
To access the quark number gains  and - , we need 

access to   and , and more precisely to their -dependence.

1 + ΔQq 1 + ΔQq̄

ℓ ℓ̄ μ

As with any order parameter, the values of the Polyakov loops 
are obtained from the extremization of a potential .V(ℓ, ℓ̄)

To access the behavior of  and -  in the  
low temperature phase, we will only need a few,  
well established properties of .

1 + ΔQq 1 + ΔQq̄

V(ℓ, ℓ̄)
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Matter contribution
At low , quarks acquire a constituent mass. For  much below this mass, 
the matter contribution to  is well approximated by its one-loop 
expression: 

 

                                  

for   degenerate quarks of constituent mass , 

with  and  

T T
V(ℓ, ℓ̄)

Vmatter(ℓ, ℓ̄) = −
NfT
π2 ∫

∞

0
dq q2 ln [1 + 3ℓe−β(εq−μ) + 3ℓ̄e−2β(εq−μ) + e−3β(εq−μ)]

−
NfT
π2 ∫

∞

0
dq q2 ln [1 + 3ℓ̄e−β(εq+μ) + 3ℓe−2β(εq+μ) + e−3β(εq+μ)]

Nf M

εq ≡ q2 + M2 β ≡ 1/T .



Glue contribution

The glue contribution  is more complicated but I will not be needing 
it explicitly. I will just need to know that: 

- it is center-symmetric :   ; 

- its physical extremum at low  is located at  .

Vglue(ℓ, ℓ̄)

Vglue(ℓ, ℓ̄) = Vglue(ei 2π
3 ℓ, e−i 2π

3 ℓ̄)

T ℓ = ℓ̄ = 0



Simplified potential
At the end of the day, the relevant potential at low temperatures is: 

            
                            

          

                                        

with  center-symmetric and confining. 

V(ℓ, ℓ̄) = Vglue(ℓ, ℓ̄)
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0
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−
NfT
π2 ∫

∞

0
dq q2 ln [1 + 3ℓ̄e−β(εq+μ) + 3ℓe−2β(εq+μ) + e−3β(εq+μ)]

Vglue(ℓ, ℓ̄)



Simplified potential
Suppose first that . Then all exponential are suppressed. 
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Suppose first that . Then all exponential are suppressed. 

            
                            

          

                                       

with  center-symmetric and confining. 

|μ | < M

V(ℓ, ℓ̄) = Vglue(ℓ, ℓ̄)

−
NfT
π2 ∫

∞

0
dq q2 [3ℓe−β(εq−μ) + 3ℓ̄e−2β(εq−μ) + e−3β(εq−μ)]

−
NfT
π2 ∫

∞

0
dq q2 [3ℓ̄e−β(εq+μ) + 3ℓe−2β(εq+μ) + e−3β(εq+μ)]

Vglue(ℓ, ℓ̄)



The equations fixing  and  are then 

            

     

Note that the -dependence can be pulled out of the integrals.

ℓ ℓ̄

0 =
∂Vglue

∂ℓ
−

3NfT
π2 ∫

∞

0
dq q2 [e−β(εq−μ) + e−2β(εq+μ)]

0 =
∂Vglue

∂ℓ̄
−

3NfT
π2 ∫

∞

0
dq q2 [e−2β(εq−μ) + e−β(εq+μ)]

μ

Equations of motion for  and ℓ ℓ̄



The equations fixing  and  are then 

            

     

Note that the -dependence can be pulled out of the integrals.

ℓ ℓ̄

0 =
∂Vglue

∂ℓ
−

3NfT
π2 ∫

∞

0
dq q2 [e−βεq eβμ + e−2βεq e−2βμ]

0 =
∂Vglue

∂ℓ̄
−

3NfT
π2 ∫

∞

0
dq q2 [e−2βεq e2βμ + e−βεq e−βμ]

μ

Equations of motion for  and ℓ ℓ̄
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y−3/2

2π3/2
e−y y → ∞

Equations of motion for  and ℓ ℓ̄
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pure glue solution 

 

ℓ ℓ̄

ℓ = ℓ̄ = 0

The equations can be 
linearized around  
that point!

Equations of motion for  and ℓ ℓ̄



Center symmetry at play
The linearization proceeds by writing 
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Back to the equations of motion
Back to the equations of motion, they become 

0 = ℓ̄
∂V2

glue

∂ℓ̄∂ℓ
ℓ=ℓ̄=0

− C [eβμ fβM + e−2βμ f2βM]

0 = ℓ
∂2Vglue

∂ℓ∂ℓ̄
ℓ=ℓ̄=0

− C [e−βμ fβM + e2βμ f2βM]



And are explicitly solved as 
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ℓ̄ =
C

∂ℓ∂ℓ̄Vglue
[eβμ fβM + e−2βμ f2βM]

ℓ =
C

∂ℓ∂ℓ̄Vglue
[e−βμ fβM + e2βμ f2βM]

The -derivatives are trivially evaluated 

  

μ

T
∂ℓ̄
∂μ

=
C

∂ℓ∂ℓ̄Vglue
[eβμ fβM − 2e−2βμ f2βM]

T
∂ℓ
∂μ

=
C

∂ℓ∂ℓ̄Vglue
[ −e−βμ fβM + 2e2βμ f2βM]

Back to the equations of motion



Quark number responses
And are explicitly solved as 

   

 

ℓ̄ =
C

∂ℓ∂ℓ̄Vglue
[eβμ fβM + e−2βμ f2βM]

ℓ =
C

∂ℓ∂ℓ̄Vglue
[e−βμ fβM + e2βμ f2βM]

The -derivatives are trivially evaluated 

  

μ

T
∂ℓ̄
∂μ

=
C

∂ℓ∂ℓ̄Vglue
[eβμ fβM − 2e−2βμ f2βM]

T
∂ℓ
∂μ

=
C

∂ℓ∂ℓ̄Vglue
[ −e−βμ fβM + 2e2βμ f2βM]

We deduce the quark number responses 

   

 

ΔQq̄ =
T
ℓ̄

∂ℓ̄
∂μ

=
eβμ fβM − 2e−2βμ f2βM

eβμ fβM + e−2βμ f2βM

ΔQq =
T
ℓ

∂ℓ
∂μ

=
−e−βμ fβM + 2e2βμ f2βM

e−βμ fβM + e2βμ f2βM

 has dropped!Vglue
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From the quark number reponses … 

   

 

ΔQq̄ =
eβμ fβM − 2e−2βμ f2βM

eβμ fβM + e−2βμ f2βM

ΔQq =
−e−βμ fβM + 2e2βμ f2βM

e−βμ fβM + e2βμ f2βM

… we get the quark number gains 

 

    

−1 + ΔQq̄ =
−3

1 + ceβ(3μ+M)

1 + ΔQq =
+3

1 + ce−β(3μ−M)Recall that f(y) ∝ e−y
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Mesons vs Baryons
The value of  above which a quark probe combines preferentially 
into a baryon-like state can be understood from basic thermodynamics.

μ = M/3

At low ,   is dominated by those states that minimize .T Z = Tr exp{−β (H − μ Q)} H − μQ

The two are equal when  that is precisely at .M + μ = 2(M − μ) μ = M/3

When the quark probe combines 
into a meson-like state, one has 

     H − μQ ≃ M − μ(−1) = M + μ

When the quark probe combines 
into a baryon-like state, one has 

   H − μQ ≃ 2M − μ(+2) = 2(M − μ)
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Large chemical potential
So far, the discussion concerned . What about  ?|μ | < M |μ | > M

The discussion is more delicate since we also expect the formation of diquarks. 
But our approximated  does not include that possibility. Vmatter(ℓ, ℓ̄)

So far, the discussion concerned . What about  ? 
We expect the system to deconfine.

|μ | < M |μ | > M

If we ignore this for the moment, do we get a picture in terms of  

compatible with a deconfined phase at large mu? The answer is yes!  
One finds: 

   and thus  

1 + ΔQq

ℓ ∝ T2 |μ | (μ2 − M2)1/2 ΔQq = T
∂ ln ℓ

∂μ
∝ T → 0



Large chemical potential
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quark and antiquarks 
provided by the bath
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I. Motivation ✓

II. Relating the Polyakov loop and the Net Quark Number Response ✓

III. Quark Number Response at High Temperatures ✓

IV. Quark Number Response at Low Temperatures ✓

V. Generalization to Nc Colors
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Nc

(Nc ⊗ Nc)asym

(Nc ⊗ Nc ⊗ Nc)asym

Horizontal Young tableaux: antisymmetrized product of  quarksν

ℓ1 ℓ2 ℓ3 ℓ4

ℓNc−1
Fundamental Polyakov loops



Polyakov loop potential
Function of the fundamental Polyakov loops: V({ℓν})

The glue contribution is center-symmetric: Vglue({ℓν}) = Vglue ({ei 2π
Nc

νℓν})
The matter contribution is well approximated by: 

 

                          

Vmatter({ℓν}) = −
NfT
π2 ∫

∞

0
dq q2 ln

Nc

∑
ν=0

Nc!
ν!(Nc − ν)!

ℓν e−νβ(εq−μ)

−
NfT
π2 ∫

∞

0
dq q2 ln

Nc

∑
ν=0

Nc!
ν!(Nc − ν)!

ℓNc−ν e−νβ(εq+μ)



Quark number gains
We find that, bringing  quarks in the fundamental representation  

  

ν ν

ν + ΔQν =
Nc

1 + e−Ncβμ fνβM /f(Nc−ν)βM
≃

Nc

1 + ce−β(Ncμ−(Nc−2ν)M

In the limit , one finds a step function equal to: 

 -  for , the  quarks are absorbed into  meson-like states; 

 -  for , the  quarks are absorbed into  baryon-like state.

T → 0

0
μ
M

< 1 −
2ν
Nc

ν ν

Nc
μ
M

> 1 −
2ν
Nc

ν 1



Example of SU(4)
 can take the values ,  or  and thus  equals ,  or .ν 1 2 3 1 − 2ν/Nc 1/2 0 −1/2
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Conclusions
- We have identified a (theoretical) observable that is sensitive to the net 

quark number content of the relevant degrees of freedom in the          
confined and deconfined phases of strongly interacting matter. 

- In particular, it points to the fact that the relevant degrees of freedom             
in the confined phase have the same net quark number than                       
actual mesons or baryons. 

- It would be interesting to test this observable in other regions of the          
phase diagram, such as for instance the super-conducting phases. 

- It could be possible to test our claims in the formal heavy-quark                     
regime of QCD where numerical simulations at finite  are possible.μ



Conclusions
- One out of many observables that one could consider to probe the nature of 

the relevant degrees of freedom: 

 

 

or 

∫ 𝒟[A, ψ, ψ̄] 𝒫 exp {i∫
β

0
dτAa

0(τ, ⃗x)ta} × Qnet quark number

∫ 𝒟[A, ψ, ψ̄] 𝒫 exp {i∫
β

0
dτAa

0(τ, ⃗x)ta} × Qany other conserved charge

∫ 𝒟[A, ψ, ψ̄] 𝒫 exp {i∫
β

0
dτAa

0(τ, ⃗x)ta} × Q2
any other conserved charge



THANK YOU!


