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Connection pbetween the Polyakov loop, used to distl

Ngu

1sh (qualitatively)

petween contined and deconfined phases of strongly in

‘[eracting matter ...

..and the (quantitative) nature of the relevant degrees of freedom

In each of these phases.


https://arxiv.org/abs/2504.06459

Purely Euclidean (sorry).

But some C-ity will be built in since [ will be discussing how the Polyakov
depends on the quark chemical potential (complex functional integral).




[t is well accepted that QCD admits different thermodynamical phases
depending on the value of temperature, chemical potential, ...
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Evidence from lattice simulations that the low temperature regime
1s dominated by hadronic degrees of freedom.
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Evidence from lattice simulations that the low temperature regime
1s dominated by hadronic degrees of freedom.
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Qn ne contrary, owing to asymptotic
freedSm, the relevant degrees of
freedom N1 The high temperature
regime are quarks and gluons.
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The two regimes are connected by a srmooth crossover.




The two regimes are connected by a srmooth crossover.

Becomes a sharp transition in
the formal limit of infinitely
heavy quarks, a.k.a. pure
Yang-Mills theory.
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In this case, the transition can be understood in terms of the breaking
ol a symmetry, known as center symmetry, probed by means of

an order parameter, the Polyakov loop £
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In this case, the transition can be understood in terms of the breaking
ol a symmetry, known as center symmetry, probed by means of

an order parameter, the Polyakov loop £
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[N QCD, the Polyakov is not a strict order parameter
as it is never exactly equal to O

But it can still be used to distinguish

petween two phases ¢
pyeither? < 1 or £ =~

This leads to a little paradox though ...

naracterized
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If the Polyakov loop is never O, this means that, in principle,
a quark can always be added to the medium, even in the
low temperature phase.
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If the Polyakov loop is never O, this means that, in principle,
a quark can always be added to the medium, even in the
low temperature phase.

How is this compatible with a picture where the low temperature
phase 1s made of hadrons?

This talks aims at answering this riddle, or, at least contributing
to a possible answer.



To that aim, [ will consider the following thought experiment.
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To that aim, [ will consider the following thought experiment. After
pringing a quark into the medium, [ will measure (or evaluate),
the (net) guark numiber gained by the system.
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To that aim, [ will consider the following thought experiment. After
pringing a quark into the medium, [ will measure (or evaluate),
the (net) guark numiber gained by the system.

This gain writes: ® ®
1 + AQ, \ %‘@ié’@g ®

(Net) quark number
response of the

Quark number of  medium
the quark probe ®-

Net quark number gain”




In the high temperature, decontined phase, it 1s usually found that the
response of the mediumis AQ, = 0andthus 1 + AQ, =1



In the high temperature, decontined phase, it 1s usually found that the
response of the mediumis AQ, = 0andthus 1 + AQ, =1

On the contrary, in the low temperature, contined phase,
[ will argue that the response of the medium can be

- either AQ, = — 1 corresponding to I + AQ, = 0. interpreted
as the quark prope being screened INto a meson-like state;

- or AQ, =2 corresponding to 1 + AQ, = 3. interpreted
as the quark probe being screened Into a baryon-like state.



[ say meson-like or baryon-like because the best [ will be aple to
conclude from this calculation is that the states that are formed
have the same net quark number as actual mesons or paryons.
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conclude from this calculation is that the states that are formed
have the same net quark number as actual mesons or paryons.

A refinement would involve computing the color charge, or better
the Casimir operator (color charge squared) on these states but
this is beyond the scope of this talk [work in progress|.




[ say meson-like or baryon-like because the best [ will be aple to
conclude from this calculation is that the states that are formed
have the same net quark number as actual mesons or paryons.

A refinement would involve computing the color charge, or better
the Casimir operator (color charge squared) on these states but
this is beyond the scope of this talk [work in progress|.

The net guark numbper gain will be extracted from the Polyakov loop.
Arguments will rely on very few, model-independent ingredients.




How come that this iInformation can be extracted from the Polyakov loop?
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How come that this iInformation can be extracted from the Polyakov loop?
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How come that this iInformation can be extracted from the Polyakov loop?

1.0f
- Many details are hidden in

0.8[ the region where £is small

. but non zero.
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To give more weight to this region, take the logarithm: u + T'In #
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To give more weight to this region, take the logarithm: u + T'In #
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To give more weight to this region, take the logarithm: u + T'In #
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To access the slopes take a u-derivative: - (u+TIn?)
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To access the slopes take a u-derivative: —(u + T In )
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0
Toaccess the slopes take a p-derivative: —(u + T'ln2) = 1 + AQ,
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0
To access the slopes take a p-derivative: - (M+TIn?)=1+AQ0,
H
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0
To access the slopes take a p-derivative: - (M+TInZ)=1+AQ,
H
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[I. Relating the Polyakov loop and the Net Quark Number Response

[1I. Quark Number Response at Low Temperatures

[VV. Generalization to Nc Colors



[I. Relating the Polyakov loop and the Net Quark Number Response



Basic thermodynamics

Consider a bath of quarks and gluons at temperature 1 and quark
chemical potential u. The partition function writes:

Z="Trexpi—f(H—-puQ);j

with Q the net quark number operator.



Basic thermodynamics

Consider a bath of quarks and gluons at temperature 1 and quark
chemical potential 4. The partition function writes:

Z="Trexp{—p(H—-uQ)} e — —

| —_ . —— - __ ___

|

The average net quark numbe f

l

with O the net quark number operator. .

—

| Is then given by:

|| ’
‘ 0lnZ oF |
- @=T—==-— |
Z O g‘

* with F the free onergy {k

T —— e _ — —  —— ———— — —_ —_ —_—




Quark numiper response of the patn

Recall now that the Polyakov loop gives access to the energy
cost for bringing a quark probe into the bath

Tlnzf:—AFq

This energy cost is just the difference in
the bath free energy before and after
pringing the probe



Quark NUMpPEer response o

Recall now that the Polyakov loop gives access to the energy
cost for bringing a quark probe into the bath

TIn¢ = — AF, T

This energy cost is just the difference in

the bath free energy before and after

bringing the probe. }
\
|

dln?
T —

" the bath

»r [t follows that the quark number |
response of the medium 1s

— z,—j

|




Quark numiper gain of the system

The net quark number gain when bringing one quark g is then

dln? 0
1+AQQ:1+T =—(Wu+TIn?)

ou ou

Similarly the net quark numlber gain when bringing one antiquark g
can be expressed in terms of the anti Polyakov loop. One finds:

dln? 0 _
—1+AQC—]=—1+T dlu =£(—/xt+TlIlf)




Quark numiper gain of the system

The net quark number gain when bringing one quark g is then

dln? 0
1 + AQq =147 o = a(,u +TIn?)

Similarly the net quark number gain when brmgine antiquark g
can be expressed in terms of the anti Polyakov loop finds:

e — — = —— ——————— e

oln? 0

—14+AQ; =— 14T = 0_(_ +TIn?) e Both gauge-invariant
K F | and RG invariant! i

| ST S —— T —




Polyakov loop potential

Toaccess the quark number gains 1 + AQ and -1 + AQ, we need
access to ¢ and ¢, and more precisely to their u-dependence.
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Polyakov loop potential

Toaccess the quark number gains 1 + AQ and -1 + AQ, we need
access to ¢ and ¢, and more precisely to their u-dependence.

As with any order parameter, the values of the Polyakov loops
are obtained from the extremization of a potential V(#, £)

Toaccess the behavior of 1 + AQ and -1 + AQ;in the

low temperature phase, we will only need a few,
well established properties of V(Z, £).



[1I. Quark Number Response at Low Temperatures



Matter contripution

At low T, quarks acquire a constituent mass. For Tmuch below this mass,

the matter contribution to V(Z, £) is well approximated by its one-loop
eXpression:

NeI

Vool EE) = — > J dgq g*1n [1 + 3L PE) 4 3P ETI) e—3ﬂ<8q—ﬂ>]
0
N,T (% )
- J dg g*1n ll + 3L Pt 4 3™ ETH) 4 e‘3ﬂ(8q+”>]
0

T2

for N; degenerate quarks of constituent mass M.

with e, = \/q2+M2 and p=1/T.




(Glue contripution

The glue contribution V., (7, £) is more complicated but I will not be needing

lue
it explicitly. I will just need to know that:

2 =

- 1t 1s center-symmetric (£, F) = (ele e 3L

glue glue

- its physical extremum at low Tis locatedatZ = ¢ =0



Simplified potential

At the end of the day, the relevant potential at low temperatures 1s:

V£, )=V

glue

N
T2

(¢,7)

dq g* In ll + 3Ce Pl 4 372 EH) 4 e—3ﬂ(6‘q—ﬂ)l
0

N

J dg g*1n ll 1 3P PEt) 4 372 1) 4 e_3ﬁ(5q+ﬂ)]

2
= Jo

with V

(6> €) center-symmetric and confining.



Simplified potential

Suppose first that |u| < M.

V£, )=V

glue

(¢,7)

N

[ dq qz ln ll + 3{6_,5(561_/1) + 326_2'6((%_”) + e—3ﬁ(8q—ﬂ)]

2
= Jo

N

[ dq g* In ll 1+ 3¢ PEth) 4 3pp—2P 1) e—3ﬁ(8q+ﬂ)]
2
T

0

with V

2ue(6> ©) center-symmetric and confining.



Simplified potential

Suppose first that |u| < M. Then all exponential are suppressed.

V(f, 2) — Vglue(fﬂ 2)

with Vy,.(¢, €) center-symmetric and confining

lue



Simplified potential

Suppose first that |u| < M. Then all exponential are suppressed.

V£, )=V

glue

(¢,7)

N

[ dq q* l3bﬂ e PEH) 4 3PP EH) 4 g—3ﬁ(8q—ﬂ)]

2
= Jo

N

[ dq q2 l3ge—ﬁ(8q+ﬂ) 4 3%6—2ﬂ(8q+//t) 4 e—3ﬁ(8q+ﬂ)]
2
U

0

with V

2ue(6> ©) center-symmetric and confining.



Equations of motion for Zand #

The equations fixing Z and £ are then

0 — anlué B 3]\971" dqq l —pe,—u) 4 6—2,5(8 ,u)]
ot > ),

. 8Vg1ue NI [ dq g l o =28, ~1) 4 e—ﬁ(eq+,u)]
0f > ),



Equations of motion for Zand #

The equations fixing Z and £ are then

oV AN T
O — glU.€ - / [ dqq l —ﬁeq eﬂ/,t 4 e—2ﬁeqe—2ﬁ,ul
ot > ),
oV AN
0=—25- = J dq q le_zﬁ% e*PH + e_ﬁgqe_ﬂﬂ]
ot > 0

Note that the u-dependence can be pulled out of the integrals.



Equations of motion for Zand #

This becomes

oV

glue _
O: af _CleﬂﬂfjﬁM‘l‘e 2ﬁﬂféﬁMl
OV gue P 2B

with C = 3N,TM 3 and

1 0
fy = —J dxx2e V¥ +T o > e fory - o0
0



Equations of motion for Zand #

This becomes Exponentially
. SUppressed
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Equations of motion for Zand #

This becomes Exponentially
. SUppressed
oV, P low T
glue _ at [low

(ngue 2 i‘ iopoa
0= —2<_ ¢ le_ﬂ” Fort + €2 fzﬁM] ) , f
ot | pure glue solution f4
= =0 %i
Wlth C — 3]\]JCTM3 and "}*’# =L e ;




Equations of motion for Zand #

This becomes Exponentially
. SUppressed

anlue
or

0 — oV,

0 =

!‘ ¢ and ¢ approach the §
| puregluesolution  §
| £=¢=0 %i
with C = 3N,TM? and e

lue

of

- C le —Pu fﬁ v +e 2pu £ ,BM]

| (o : y32 i: The equations can be §
_ _ (I . a

fy —2[ dxx2e Vo +1 o e fory - oo | linearized around |
/s 312 i .

0 V27 | that point! “

K




Center symmetry at play

The linearization proceeds by writing

Ve OV 0°V,, . _ 0V,

P pr—= b7 —2

ot ot ) 140,74 9404
r=t=0 £ =0=0 £=0=0

anlue anlue aZVglue — azVglue

— = - + 7 - + £ ———

ot ot ) 0 0¢ 940,74
r=t=0 £=0=0 £=0=0




Center symmetry at play

The linearization proceeds by writing

anlue

or

anlue

0F

But center symmetry V.

anlue

ot

anlue

0

£=£=0

£=£=0

+ 7

+ 7

62 Vglue

0t o

62 Vglue

0L 0f

(£,0) = Vyele' 5, e

0%V

+ 7

0%V

+ £
£=£=0

O -

glue

0L 0f

glue

0 0

e

£=£=0

"3¢) Imposes that the only

non-vanishing derivatives are those with equal number of £ and .



Center symmetry at play

The linearization proceeds by writing

anlue B f 62Vglue
ot ocof |
==
anlue B / azVglue
ot 0ot |
£=0=0

e 2T =

(Z,6) = lue(e’Tf e~ '3 ¢) imposes that the only

non-vanishing derivatives are those with equal number of Z and #.

But center symmetry V. olue



Back to the equations of motion

Back to the equations of motion, they become

V>

0=7 afil; = C [P fypg+ € frg
£=£=0
aZVglue _ 24
0=7 o7 —Cle ﬂ”fﬁM+e ”fzﬁMl
f=£=0




Back to the equations of motion

And are explicitly solved as

_ C
= leﬁ” + e~ K ]
w aé Vglue fBM fZﬂM
r = le U+ e PH ]
0,07 Vglue fﬁM fZIBM



Back to the equations of motion

And are explicitly solved as

_ C
= leﬁ” + e~ K ]
¢ aé Vglue fBM fZﬁM
£ = le PH o+ e PH ]
0,07 Vglue fﬁM fZﬁM

The u-derivatives are trivially evaluated

Yﬂa_Z — ¢ leﬂﬂf — ze_zﬁﬂf ]
ou 0,07 Vglue .- M
T% — C l _e_ﬂﬂf _|_ zezﬁﬂf ]
ou 0,07 Vglue - M



Quark NUMPEr resSponNses

And are explicitly solved as

= p aCV lgﬁﬂ fﬁM + o 2hu £ ﬂM] We deduce the quark number responses
V¢ glue f e
C _
‘= 0,07V le o + eZﬁﬂfzﬁMl
glue

The u-derivatives are trivially evaluated

Yﬂa_Z — ¢ leﬂﬂf — ze_zﬁﬂf ]
ou 0,07 Vglue .- M
T% — C l _e_ﬂﬂf _|_ zezﬁﬂf ]
ou 0,07 Vglue - M



Quark numper gains

From the quark numbper reponses ...

el fomr — 2e —2pu Foau

eﬁﬂfﬁM + e_zﬂ’ufZﬁM
_e_ﬂ'ufﬁM n 262ﬁﬂf2ﬁM

e—ﬁﬂfﬁM + ezﬁ’ufZﬂM

AQ, =

AQ, =



Quark number gains

From the quark numbper reponses ...

el fomr — 2e —2pu Foau

AQ- = |
1 eﬁ/_A fam + e—2ﬂg fopm .. we get the quark numbper gains
AQ. = —e ﬂ/"fﬁM+ 2e ﬁ”fzﬂM
1 e—ﬁﬂfﬁM + ezﬁ”fzﬂM —36_2'B'Mf
2pM
-1+ AQ; =

eﬂﬂfﬁM + e_zﬁﬂfZﬂM

2
+3e ﬁ”fzﬁM
e—ﬁﬂng + ezﬁﬂfzﬂM

l+AQ, =



Quark numper gains

From the quark numbper reponses ...

el fomr — 2e —2pu Foau

AQ, =

Pt fopg + € 2PH frn .. we get the quark numbper gains
AQ. = —e‘ﬂ/"fﬁM + 262ﬁ”f2ﬁM
1 e—ﬁﬂfﬁM + ezﬁﬂfZﬂM _3
-1+ AQ; =

1 + e3ﬁMfBM/]C2ﬂM

+3
1 + 6_35”]%M/f2ﬁM

l+AQ, =



Quark numper gains

From the quark numbper reponses ...

ePH fomr — 2e —2pu Fopm

AQ- =
Cs Pt fopg + € 2PH frg .. we get the quark numiber gains
AO —e‘ﬂ/"fﬁM + 262ﬁ”f2ﬁM
1 e~ P fors + €2 fr 3
-1+ AQ; =

| + e3ﬁMfBM/]C2ﬂM

— — _ R e —_— I
— = = == T = =

| N +3

! Recall that f(y) < e™ }4 14+ AQ, =

| " T 1+ e 3Pufyy,lf
pM1I2pM

}

s — = = — - _—— — - —_— -
R = e et S — — ——— = — .



Quark numper gains

From the quark numbper reponses ...

el fomr — 2e —2pu Foau

AQ, =

Pt fopg + € 2PH frn .. we get the quark numbper gains
AQ. = —e‘ﬂ”fﬁM + 262ﬁ”f2ﬁM
1 e—ﬁﬂfﬁM + ezﬁ’ufZﬂM _3
-1+ AQ; =

1 + cefCut+M)

————t +3
‘ Recall that Ay) x e™ | I+ AQ&I — 1 + ce—BBu—M)




Quark numper gains

From the quark numbper reponses ...

el fomr — 2e —2pu Foau

eﬁ’MfBM + e—zﬂﬂfzﬁM
—e_ﬂ”fﬁM n 262ﬁﬂf2ﬁM

e—ﬁﬂfﬁM + ezﬂﬂfZﬂM

AQ

q

AQ,

.. we get the quark numbper gains

e  —— - e ——— e
— = — —— ]

/O for u > —M/3

i
|

_3 ,
—1+A0Q; = 1 + cePBu+M) T3 for p< — M/3 I
|

4r

3 for u>M/3 |

+3 # |

1 +AQ, = < |

= ===

1 + ce—PGu=M) %0 for u < M/3 |



Quark number gains

—1 +AQE]’ 1 +AQq
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Quark numper gains

—1 +AQE]’ 1 +AQq
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Quark numper gains
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Quark numper gains
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Quark numper gains
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Quark numper gains

meson-like

paryon-like _
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Mesons vs Baryons

The value of u = M/3 above which a quark probe combines preterentially
INto a baryon-like state can be understood from basic thermodynamics.

Atlow T Z =Tr exp{—pf (H — u Q)} is dominated by those states that minimize H — uQ

When the quark probe combines

INnto a baryon-like state, one

H—pQ ~2M — u(+2) = 2(M — p)

(1dS

When the quark probe combines
INto a meson-like state, one has

H—pQ>M-—-pu(—1)=M+p

The two are equal when M + u = 2(M — n) that is precisely at uy = M/3.
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Large chemical potential

SO far, the discussion concerned |u| < M. What about |u| > M7
We expect the system to deconfine.

The discussion is more delicate since we also expect the formation of diquarks.
But our approximated V.. (Z, £) does not include that possibility

atter

[f we ignore this for the moment, do we get a picture in terms of 1 + AQ,

compatible with a decontined phase at large mu” The answer 1Is yes!
One Inds:

0ln?
£ T? | u|(u? — M*)Y? and thus AQ, =T . xT— 0

ou




Large chemical potential
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\/. Generalization to Nc Colors
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Fundamental representations

Horizontal Young tableaux: antisymmetrized product of v quarks

(Ne® Ny

(N, ®N ® N asym

Fundamental Polyakov loops A



Polyakov loop potential

Function of the tundamental Polyakov loops: V({Z,})

The glue contribution is center-symmetric: Vglue({ )= Vglue ({eifzv_z”fy })

The matter contribution is well approximated py:

N.T NV N !
___J 2 Z C —vp(e,~1)
V £ 1) = — d In £ e a H
matter {2,1) 2 L 19 - VIIN,—v)! °

N

NI [ c N |
/ 2 C’ —vp(e +1)
— d In E AV - gTH
2 [ 14 VIN. —p)!

0 v=0 ¢




Quark numper gains

We find that, bringing v quarks in the ftundamental representation v

NC NC
v+ AQ, = ~

1 —|— e CﬂﬂﬁﬁM/ﬁNc—U)ﬁM - 1 —I— Ce_ﬁ(Nc:M—(NC_ZV)M

Inthe Imit T — 0, one finds a step function equal to:

2v
-0 for % <1-— A the v quarks are apsorbed Into v meson-like states;
C
)7 2U | |
-N_.for — > 1 —— thev quarks are absorbed into 1 baryon-like state

M N,

C



Example of sU(4)

vcantakethevalues 1, 2or3andthus 1l —2v/N.equals 1/2.00r —1/2

4+ -

1+AQq, 2+AQ5, 3+AQ5
N

15 -10 -05 00 05 10 15



Conclusions

- We have identified a (theoretical) observable that is sensitive to the net
quark number content of the relevant degrees of [reedom in the
coniined and deconfined phases of strongly interacting matter.

- In particular, it points to the tact that the relevant degrees of freedom
N the confined phase have the same net quark number than
actual mesons or baryons.

- It would be Interesting to test this observable in other regions of the
phase diagram, such as for instance the super-conducting phases.

- [t could be possible to test our claims in the formal heavy-quark
regime of QCD where numerical simulations at finite u are possible.




Conclusions

- One out of many observables that one could consider to probe the nature of
the relevant degrees of freedom:

p
[9 A, w, ] & exp { iJ' dtA (7, Xt } X Onet quark number
0
p l
[@ [A, y, ] &P exp < i J drAy(z, X)t% > X Qany other conserved charge
0

p
_ - a )+ 2
or JQ[A, W, | P exp {l[o dtA (7, X)t } X Qany other conserved charge



THANK YOU



