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E. Madelung, Z. Phys. 40, 322 (1927).

v, (1,1 M
M ( ) — _V [(I)Q (’I", t) T (’I", t) 4+ —’U? (’l", t)] . D. Bohm, Phys. Rev. 85, 166 (1952).
2 T. Takabayasi, Prog. Theor. Phys. 8, 143 (1952).

n(r,t) = |y (r,t)|2, n(r,t)vs (r,t) =J(r,t) = %Im (" (r,t) Vi (r,t)],

& 5 h: V2 /n(r,t)
QTN ey
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= Letus write 9 (r,t) = v/n (r,t)e ™Y,
C ¢("’B,t):¢("°07t)-

- ¢ (ro,t) —o¢(rp,t) =2nq, q€Z.

21h
—— dl v, (r,t) = il
oA M
N, (A;t)

2mh
2 - . .
/dT [vas('r,t)]-el——M jEZl q;, 4qj €Z.
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= For a nonrotating 3D liquid “He without dissipation, vortices can be mapped to

electrodynamics (under the limit where n (7,?) is constant outside vortices + perturbation)

B. I. Halperin, Superfluidity, melting, and liquid-crystal phases in two dimensions (1979)
V. Ambegokar et al., Phys. Rev. B 21, 1806 (1980)

H. Kleinert, Gauge Fields in Condensed Matter (1989)

H. Kleinert, Multivalued Fields (2008)

= For a nonrotating scalar Bose-Einstein condensate (BEC) without dissipation, a similar

mapping exists under the following conditions:

* (1) When 7 (r,t) is approximately constant 3D system: U. R. Fischer, Ann. Phys. 278, 62 (1999)

Quasi-2D system: T. Simula, Phys. Rev. A101, 063616 (2020)
= (2) When n (r,t) is time-independent (it may change in space)
Quasi-2D system: E. G. Johansen, arXiv:2405.18090
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= From n(r,t)V xJ(r,t) and [Vn(r,t)] x J(r,t), n?(r,t)V xv,(r,t)=0.
mm) At the vortex core, n(r,t) =0.
mm) Those mappings hold for static vortices (vortex motions are negligible)
m=) \Vortex interaction Vi,int (r1,72) o< q1g2In (|ry — ra).

= |n the point-vortex model (PVM), for nonrotating dissipationless quasi-2D scalar BEC, vortices
do not collide

P. J. Torres, et al., Commun. Pure Appl. Math. 10, 1589 (2011).
A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A103, 023311 (2021).
T. C. Corso et al., arXiv:2404.02133.
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e=0.01, t=0.0

squared modulus phase

8'¢ (’I”,t) _ 1 2
ZT — _v2¢ (’I",t) + 6_2 (1 T |¢ (’I",t)|) :

Gif from Gaspard Kemlin’s homepage

https://gkemlin.pages.math.cnrs.fr/research/
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= In general, the number of vortices is not conserved.

= Phase transition
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Left figures are from L. Chomaz et al., Nat. Commun. 6, 6162 (2015).

‘ Vortex number growth can be explained via the Kibble-Zurek
mechanism

A. del Campo and W. H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014).

‘ Vortex number decay might be due to coarsening

G. Biroli, L. F. Cugliandolo, and A. Sicilia, Phys. Rev. E 81, 05101 (2010).
P. M. Chesler, A. M. Garcia-Garcia, and H. Liu, Phys. Rex. X 5, 021015 (2015).
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= SPGPE simulation for a nonrotating quasi-2D scalar BEC

) )
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= Vortices may collide in the damped-PVM, where vortices move with velocity
vp(r,t) =vs(r,t) —qle; xvg(r,t). S. Rica and E. Tirapegui, Phys. Rev. Lett. 64, 878 (1990).

Z. Mehdi et al., Phys. Rev. Res. 5, 013184 (2023).

= Rica and Tirapegui started from the Ginzburg-Landau equation in the 2D system with

0A (r,t)

D = A, )+ (1+i0) V2A () — (L4 38) [A (r, ) A(r,1)

= Mehdi et al. started from the SPGPE in the quasi-2D scalar BEC

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 10
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* Would the mapping between vortices in quasi-2D scalar BEC and electrodynamics exist in the

system with dissipation or under rotation?

‘ Yes! S.-H. Shinn and A. del Campo, Phys. Rev. Res. 7, 013217 (2025).

o
Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 11
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= (Starting point) The mean-field wavefunction ¢ (r,t) satisfies

Zhw =H (r,t)y (r,t), H"(r,t) # H(r,t) in general.
- )
Hepg (r,t) = —WV +Vir (ryt)+gn (r,t)—p(t), Hapg (r,t) = Hgpg (r,t).

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (2003).

Hacpe (r.t) = (1 —1y)Hepe, Hycpp (r.t) # Hacpre (r,1).

L. P. Pitaevskii, ZhETF 35, 408 (1959) [Sov. Phys. JETP 8, 282 (1959)].

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 12
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Ny (A;st)

2mh
= From the vortex quantization condition 7{ dl -vg (r,t) = - Z q; (1),
oA M =
Opy (r.1) Ny (A;t)
VX[fK(T,t)—I—FSf(T',t)]:27Th€J_ pva ’ , / d2T Pu (T,t): Z q; (t)
t A o
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= As vortices may collide, we need (at least) two different velocities

‘ Introduce the effective electric field, effective electric displacement field, and effective

polarization density

M M
57 UP (r,t)xey, Dg(r,t)=—vs(r,t)xer, Py (r,t):= Dy (r,t)—cssFEy (7,t).
Theést

E; 1) =
£ (r:t) 21h

W) Vo Pi(rt)=p,(rt) =) ¢;(0)6(r—r;(t), V-Ds(rt)=p,(rt).
j=1
= |In the PVM, the necessary conditionis V- Py (r,t) = 0.

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 14
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L . dp, (7, 1)
= From the vortex quantization condition, V x [f, (r,t) + Fy (r,t)] = 2whe pra
8IO’U (ra t) - J_ aPSf (ra t)
pr— S : ,t FS ,t - .

0D (’I“, t)

VXHSf(T,t):JSf(T,t)+ o

‘ Hg (r,t) = Ut {rt) — U @) €L,

2mh
W) V-Hg(rt)=0

-]

1
sf (t) = |_-A| /AdzT Ut (’r,t) .
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M e | 8 —
2
m,s ) = Py ) sy U) ™ PS ) a1+ a7 S yU) 7 Us .
‘ J ,f(’l“ t) Csf [%hqv ’Up(’l“ t) V X f(T t) —|—2ﬂ_hat [Uf(’l‘ t) Uf(t)]
‘ AVAREN SN (r, t) — 0. For more details, please refer to

S.-H. Shinn and A. del Campo,

. . . Phys. Rev. Res. 7, 013217 (2025).
= The effective Poynting vector is y (2025)

Se (r,0) = By (r,t) x Hy (r,t) = (%52 - Usg (r,t) — Uy (t)].

velocity of the vortex!

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 16




3. Applications — Equations of motion for vortices

[ FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE l"li.l“

UNIVERSITE DU
LUXEMBOURG

From the GPE (no dissipation), V- v, (r,t) = 0. H. Kleinert, Gauge Fields in Condensed Matter, 1989.

If the dissipation is small, V -wvg(r,t) ~ 0.

Inthe PVM, V. Py (r,t)=0. mmp Ps(r,t)~ci(t)vs(r,1).

21h
vp (r,t) ~ v (r,t) — %cl (t) e, x vs(r,t).

= The general motion can be obtained from the effective Lorentz force

f,(r,t)=py,(r,t) Eg (r,t) + st (r,t) X By (r,t), Bgr (7, t) = pge [Hgr (7,1) + My (r,t) e ].

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 17
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= In the PVM, D (T,t) = et Bt (T,t) , Vp (’l",t) = wej_ X Dgt (rv t) :
e=0.01, t=0.0
squared modulus phase

Dsf (’I°_|_, t) Dsf (’l”_ y t)

Gif from Gaspard Kemlin’s homepage
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= Inthe PVM, Dy (r,t) = e Eg (r,t), vp(r,t) = 7 &L % Dst (r,1).
£=0.01, t=0.0
squared modulus phase
vp (r-l-a t)
Dsf (’f'_|_, t)
Dsf (’I"_|_, t)

vp (r-l-v t)

0 1-m 0 T

Gif from Gaspard Kemlin’s homepage
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= The effective Poynting vector satisfies Sy (r,t) oc [Ugt (v, t) — Use (t)] vp (7, 1).

= Ug (r,t) =gn(r,t) — u(t). The result for n=1 is given in the figure.

_ ¢
) No effective radiation outside vortices as Us¢ (r,t) ~ U (2). /

T

P

05

= In the PVM, wvp(r,t) =

7 7

n
Lo

2 h 1 2 3 ¢ 5 E=rfk
7T
j[dl Vg (r,t) =

V. L. Ginzburg and L. P. Pitaevskii, ZhETP 34,

1240 (1958) [Sov. Phys. JETP 7, 858 (1958)].

= \ortices cannot collide in the PVM

‘ Effective radiation around any infinitesimal closed curve around the vortex is zero

No effective radiation. Vortices do not lose energy!

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 20
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= The effective Poynting vector satisfies Sy (r,t) oc [Ugt (v, t) — Use (t)] vp (7, 1).

* Usf (r,t):gn(r,t)—,u(t).

) No effective radiation outside vortices as Uy (7, t) ~ Us¢ ().

: . 2mh
= |n the damped PVM or other models where vortices can collide, vp (r,t) = v (r,t) — 7 et % Pt (r,1).
t n(x,0,t) t S
—> —»
0 x 0 A

m) Effective radiation around any infinitesimal closed curve around the vortex may not not zero

Effective radiation occurs when vortices are about to collide. Vortices lose energy!

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 21
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= |tis known that the phonon emission plays a role in the annihilation/creation of vortices

E. Kozik and B. Svistunov, Phys. Rev. B 72, 172505 (2005).
W. J. Kwon et al., Nature (London) 600, 64 (2021).

m) Phonons are emitted when the effective radiation occurs

)
Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 22
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3. Applications — Relation to 2D Coulomb gas and vortex spacing distribution
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= For vortices created by the phase transition, their initial spacing distribution follows the

Poisson point process (PPP).  A. del Campo, F. J. Gdmez-Ruiz, and H.-Q. Zhang, Phys. Rev. B 106, L140101 (2022).

(a) @ 10/() )
® : ) .08
¢ Zosl JIIN\ 206
= o
2, 0.4 Z 5\ 0.4
© 0.2 ¢ 0.2 ﬁ
0.0 0.0
o o 1 2 3 4 o 1 2 3 4
& ? s S
® 1.2{(c) L51(d) f
© 1.0
“ 08 & 1.0
@ 0. =
: : : : = 82 %05
FIG. 3. Schematic representation of the defect spacing s with 0‘ 5
respect to the reference vortex at the center of the circle in the case of 0.0 e 0.0
(a) P(s) = PV (s) and (b) P?(s). The black points represent vortices 0 1 2 3 4 0 1 2 3 4
without accounting for their topological charges. S S

Figures are from M. Thudiyangal and A. del Campo, Phys. Rev. Res. 6, 033152 (2024).
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= Spacing distribution of the 2D Coulomb gas follows PPP at infinite temperature.

This is our main result for the 2DCG at N = 2, shown

in Fig. |1 left for several values of (3. It correctly re-
produces the 2D Poisson distribution (red bottom curve)

when setting 5 = 0,

p Poisson

2D (s) = gg exp [—}1'@2] | (24)

From G. Akemann, A. Mielke, and P. PaRler, Phys. Rev. E 106, 014146 (2022).

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 24
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PHYSICAL REVIEW RESEARCH 7, 023107 (2025)

Spatial form factor for point patterns: Poisson point process, Coulomb gas, and vortex statistics

Matteo Massaro® ! and Adolfo del Campo®'-?

L Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
2Donostia International Physics Center, E-20018 San Sebastidn, Spain

(Received 11 October 2024; accepted 15 April 2025; published 1 May 2025)

Point processes have broad applications in science and engineering. In physics, their use ranges from quantum
chaos to statistical mechanics of many-particle systems. We introduce a spatial form factor (SFF) for the
characterization of spatial patterns associated with point processes. Specifically, the SFF is defined in terms

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 25
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= Vortices may be created or annihilated in nonequilibrium conditions (phase transition, ...)

= Vortices in a quasi-2D scalar BEC can be mapped to electrodynamics without using the

perturbative approach, even in the nonequilibrium conditions (dissipation, phase transition, ...)

= |s there a similar duality between topological defects and electrodynamics?

= Defects in crystalline solids in the Hermitian case of elastic media have similar duality

L. Tsaloukidis and P. Surowka, Phys. Rev. B 109, 104118 (2024).

= Multi-component BEC?

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025 26



4. Summary

[ FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE l"li.l“

UNIVERSITE DU
LUXEMBOURG

N, (M;t) Ny (M;t)

2 h
éMdl e (1) = 37 Z 40 = f [(dxe) D= ; Q;
8v38(:,t):fK( t) — VU (7,t) + Fes (1,1) & V x H (r,1) = Jf(r,t)+8Da(Z°,t)
Usf( t) Usf (t) B B
»}éM . [_ orh el] =0 ]{W (dlxey) H(rt)=0
Ne M) Ng(M;t)
/ d2’l“ Pu ( 7t) — Z q; (t) <:> d2?° Yy (’T‘,t) _ Z QJ
M Jj=1 M o
Dpy (1, 1)

SV T (r) =0 = W1l g gt =0

Seong-Ho Shinn (Seongho Shin), ECT*, May 12, 2025
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