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Resume

By considering initially immiscible configuration of binary
homogeneous Bose-Einstein condensates confined in a
two-dimensional circular box, I will report results of some

investigation we have done considering the emergence of
Rayleigh-Taylor (RT) and Kelvin-Helmholtz (KH) instabilities.

For the binary mixture, it has been considered the rubidium
isotopes ®°Rb and 3’Rb. Further, it will be also reported
instabilities that occur in the binary mixture when centrally and
axially phase separated states are submitted to sudden
transitions from immiscible to miscible regimes by reducing the
inter-species interactions.

In all these cases, it will be shown the associated kinetic energy
spectra as functions of the wave number k£, which roughly follow
the k=53 and k=2 scaling behaviors at specific time intervals.




Quantum turbulence in Bose-Einstein condensates

This is part of a project we are following on quantum turbulence
in Bose-Einstein condensates (BEC), in which we have recently
studied vortex dynamics and turbulence in perturbed binary
condensates (also considering dipolar BECs.):

® A.N. da Silva, R.K. Kumar, A.S. Bradley, L.T., Vortex
generation in stirred binary Bose-Einstein condensates, Phys.
Rev. A 107, 033314 (2023).

® S. Sabari, R.K. Kumar, L.T., Vortex dynamics and turbulence in
dipolar Bose-Einstein condensates, Phys. Rev. A 109, 023313
(2024).

@ L.T., AN. da Silva, S. Sabari, R.K. Kumar, Dynamical Vortex
Production and Quantum Turbulence in Perturbed
Bose-Einstein Condensates, Few-Body Systems 65, 13 (2024).

This presentation is based on the preprint arXiv:2503.13767
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Classical and Quantum Turbulence

Turbulence and vortices

As an old classical problem in physics, Leonardo Da Vinci
(1952-1519), by observing a turbulent flow, described it as
consisting of many vortices with different scales.

In his view, Turbulence is not a simple disordered state, but
having some structures with vortices.
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Classical and Quantum Turbulence
Vortex, superfluid and turbulence dynamics

@ Turbulent fluids is discussed in the Feynman Lectures on Physics
Ipgs. 3-9, Vol. I (1963)] as a very old problem that has not been
solved till now, because in physics no one has been able to
analyze it from first principles.

@ The dynamics of quantum fluids are governed by quantum
mechanics, rather than classical physics.

@ The connection of turbulence with a superfluid via the quantized
vortex lines was also first suggested by Feynman.

@ Now, due to some similarities found with the corresponding
classical theory, a lot of expectation exists that Quantum
Turbulence (QT) can shed some light on the general solution of
such an old classical problem.

@ QT actually is the name given to the turbulent flow of a fluid at
high flow rates, such as superfluids.



Classical and Quantum Turbulence

@ Quantum turbulence is an apparently random tangle of
vortex lines inside a quantum fluid, as indicated by experiments
and numerical solutions.

Some examples of quantum fluids include superfluid helium (*He
and Cooper pairs of *He), Bose-Einstein condensates (BECs),
polariton condensates.

It is being noticed that quantum fluids exist at temperatures
below the critical temperature at which Bose-Einstein
condensation takes place.

@ Two main questions in the study of quantum turbulence:

e Are vortex tangles really random, or do they contain some
characteristic properties or organised structures?

e How far one can compare quantum turbulence with classical
turbulence?




Classical and Quantum Turbulence

The fluid flow becomes more turbulent at high-velocity fields or when
it has a high Reynolds number, which is a well-known dimensionless
quantity to measure the differences in the fluid’s speed and direction.
For low Reynolds numbers, the flow tends to be more laminar,
delaying the transition point to a turbulent fluid

|[Reynolds, Philos. Trans. R. Soc. 174, 935 (1883)].

Most flows in physical systems in nature are turbulent. Turbulence in

low-temperature systems, which includes superfluid and Bose-Einstein
condensate (BEC), is named as quantum turbulence QT).
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The first experimental observation of QT was found in “He superfluid
[Vinen, Proc. R. Soc. 240, 128 (1957)|. In atomic BECs, the first
reported realization we have by Henn et al. [PRL 103, 045301 (2009)]

|
y
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Fig. 3 (Color online) (a)
Side-by-side images of a
regular, non-excited BEC and a
turbulent cloud showing the
aspect ratio inversion on the 150um
former case and the suppression
of that inversion in the turbulent
regime. (b) Aspect ratio (ratio 10ms
between main axes) of the BEC
and turbulent clouds evidencing
the inversion of the first and
maintenance of the latter
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FIG. 2: (a) Atomic optical density after 15ms of free expan- u :
sion showing vortex structures spread all around the cloud 0.6 ‘

resembling the vortex tangle regime proposed in and T T T T
(b) Schematic diagram showing the inferred distribution)of 4 6 8 10 12 14 16
vortices as obtained from image shown in (a). ,\( TOF (ms)

[ Kobayashi-Tsubota, PRAT6 (2007) 045603 ]
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The experiments with BEC have attracted more attention concerning
the properties of QT because of the actual advanced cold-atom
laboratory techniques, which are more helpful in controlling the
condensate parameters.

So, a few years later, other relevant experiments have been done, such
as by Navon et al. Nature 539 (2016) 72.

The evolution of large clusters with 8’Rb BECs has been also
demonstrated by

Gauthier et al., Science 364 (2019) 264;

and in Johnstone et al., Science 364 (2019) 1267, by considering 2D
superfluid.

These experiments on QT have also identified the emergence of a
Kolmogorov’s scaling [Kolmogorov1941| in the energy spectrum, with
vortex structures associated to a k*-(5/3 power law) in he infrared region.

w
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The studies on turbulence and vortex patterns in multicomponent
BECs are interesting due to different miscibility properties.
The binary mixtures show rich pattern varieties, that can lead to

Rayleigh-Taylor (RT) and Kelvin-Helmholtz (KH) instabilities

[for details and refs, see Sharp, Physica D12 (1984) 3 for a review,
Takeuchi et al, PRB81 (2010) 094517, and Kobyakov et al, PRA89
(2014) 01363L.]

The RT instability can be exemplified by the process started at the
interface between two plane-parallel immiscible fluids, under the
gravity field, with the denser fluid at the top of the less dense one.
Broken the equilibrium, the fluid at the top moves downward,
resulting in the formation of mushroom heads of the denser fluid
inside the space first occupied by the less dense one.

The KH instability occurs when there is a velocity difference across
the interface between the fluids.
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Model approach in BEC

In our study, we assumed QT binary BEC mixtures confined in a
quasi-2D circular box, assuming the coupled **Rb-*"Rb system. With
components spatially separated, the homogeneous density distribution
is prepared in the ground-state (gs), within immiscible conditions
(inter-species a12 larger than the intra-species interactions ai; = ag2).

The RT and KH instabilities are produced by starting with the
mixture in an immiscible regime. Next, we follow with the analysis of
associated patterns and vortex formations.

The RT instability is induced by the help of an initial
time-independent sinusoidal perturbation (in a short time interval),
which is applied to the ground-state solution, followed by linear forces
applied to the mixture components.

The KH instability is induced by a constant linear force perturbation,
providing attraction between the initially separated species.
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Next, we also consider a third approach to the binary mixture, by
investigating the dynamics response to a sudden transition between
immiscible to miscible system, obtained by fast reduction of the
inter-species interaction ajs.

In this case, two possible initial separated configurations are applied. )

All the above-mentioned scenarios induce plenty of vortex dipoles and
turbulent flow in the condensates. In order to analyze them, we
calculate the compressible and incompressible kinetic energy
spectrum, as to understand how these instabilities are developed in
the binary mixtures. Therefore, we search for kinetic energy regions,

in which some possible universal scaling law could emerge, which

could bring some consistency with the classical Kolmogorov’s scaling. P
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GP dimensionless 2D formalism

Mean-field model for binary BEC
GP dimensionless 2D formalism |

The coupled Gross-Pitaevskii (GP) equation for the binary
system is cast in a dimensionless 2D format, with energy and
length units given, respectively, by fiw, and [, = /A/(miw.),
in which the first species is being used as the reference for our
length unit. Correspondingly, r — [ r and t — t/w, .

We assume strongly pancake-shaped harmonic traps with fixed
aspect ratios A = w;,/w; |, where w;, and w; | are, respectively,
the longitudinal and transverse trap frequencies for the species
1. These frequencies are also assumed the same for both species,
with w| = 27 x 10Hz, and w, = 2w x 500Hz, such that

A = A; =50. In order to have both particles trapped with the
same aspect ratio, we need myw? = mows_, implying

W, = W1y ~ 0.99.



2D coupled dimensionless GP equation for the components:

-a% { —m

Ior = -V + Vi(z,y) + Z gz’j|¢j|2}¢z’

sz’ i—1.2

where 1); are normalized to one and the contact interactions, related
to the scattering lengths a;; (@11 = a22), are expressed by

m1ai; N ; ;M
[ Hoij
Mzt

Jig " mz-+mj

where A is the shape parameter.
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The 2D confining potential V;(z,y) is initially assumed identical
for both species ¢ = 1, 2, given by a uniform circular box with

fixed radius R and height V}:

Vo, for /22 + 942> R
Viiw,y) = 4 " /
(z9) {O, for \/xz—l—yzSR,

where Vj will be considered much larger than the chemical
potentials p;fw, (dimensionless, V) > p).
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Two-component miscibility

The condition to enter the immiscible regime, g7, > g11922, for
|6 — Q12 2\/m1m2
a11 = oo > 0, defines the threshold I — a1 mi+mao

Within a more general relation, the miscibility can be estimated by
the overlap between the densities. With 1/; normalized to one, the
overlap can be expressed by [Kumar et al., J. Phys.Com.1(2017)]

n = [ [¥1l[v2| dzdy The overlap is also commonly defined by

U 91?42 |? d:cdy}?
(f |4 |4 dedy) (f |12 |4 d:cdy)'

For complete immiscible cases, A = n = 0; and in the opposite
complete miscible case, A =n = 1.

A:

19



Kinetic energy spectrum decomposition

To analyze the turbulent behavior, the corresponding decomposition

of the kinetic energy spectrum is studied, following Ashton and

Anderson [PRX 2 (2012) 041001], with the 2D GP energy functional
decomposed as £ = K + Ey + E), where

Ewl,wz):/dwdy{z VUL vl + + 3 Gl }

7

In the fluid dynamics interpretation of the GP equation, we apply the
Madelung transformation, such that v, = . /n; expif;, where

n; = ni(x,y;t) are the species densities 7, with 6; = 6;(z, y;t) the fluid
macroscopic phase. With v;(z,vy;t) = V6, and respective
density-weighted velocities u; = \/n;vi(z, y;t), Ki = 5.+ [ drdy [u;[*.
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Compressible and Incompressible kinetic energies

The kinetic energy is further decomposed into compressible and
incompressible parts. The incompressible energy is related to
vorticity, with the compressible one originated from sound waves.
For the decomposition of the density-weighted velocity,

w; = u; s+ u; ¢, with u; y satisfying V.u, r = 0, and u; ¢ satisfying
V x u; ¢ = 0. So, the kinetic energy terms are decomposed as

K, = K; 1 + K; ¢. Using the Fourier transform,

o ml/ \f”(kx,k)ﬁ)
’ dk.dk ’ y
( Kic ) 2m; “ y< |Fio(kz, ky)|°

Fi1(k) 1 _ikyz—ik u; s
, EO dad ikyT—1ikyy , .
( Fic(k) ) 27 ST u; c

21



Within this procedure, we first obtain the spectral density in
k—space in polar coordinates, with the final total kinetic

energies obtained by integrating on k = \/ kZ + k2, as follows:

(xt) = [o( i)

( Ki (k) ) — Mk /2“d¢k( ’fi,l(kxaky)’:Z )
Kic(k) 2mi Jo Fi (ke ky)|* )
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Numerical Simulations: Ll 1stability

Rayleigh-Taylor instability in the binary 3°Rb-8"Rb mixture

RT instability occurs at the interface between two fluids having different
densities. It happens when the lighter fluid pushes the heavier one with the
support of the gravitational force. To simulate the occurrence of a similar
effect in ultra-cold systems, we assume an immiscible binary mixture, in
which the heavier element (®*’Rb) starts on the top of the lighter-mass one
(®*Rb), considering a constant force acting perpendicularly to each other.
Within this model, the ground state is prepared by considering an axially

phase-separated mixture, with the inter-species interaction larger than the
intra-species one, Withlalg = 105a0 and a;; = 100ao (6 = 1.05). |

To start the dynamical instability, a small sinusoidal xz—direction
perturbation, cos(0.5z), is applied to the first component for a short time
interval from ¢ = 0 till ¢ = 2, creating the density oscillation. The
simulation follows with the sinusoidal perturbation replaced by a linear
perturbation v; y, which provides a constant force v; in the y—direction.
This linear force is introduced to simulate some grav1tat10nal force to
develop the RT instability at the interface.
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RT instability

Ll L4 L v L hd L) hd

® 33 $

= “
]
: | o
i "
| ! P Sound-waves contr. |
|
' ¥ . 2AR g ) -
: e — l\ / ,['. coew l\ I Kb
1.0F B .
] 4 . » \
1\ ¥ 4 - I Rb . Ko(*'Rb
m ’ '

(.0 41

-

S
S
]
3
@)

L S A
S
~
Q.
S
<
=
o
S

Upper: Time evolution of the incompressible and
compressible kinetic energies for both components.

Left: Densities evolution of RT instability, shown by
snap-shots, for the Rb (left panels) and 8’Rb (right

the simulation.

panels). The interaction ratio is kept in a;,/a;;=1.05 along
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Rayleigh-Taylor Instability in binary BEC mixture
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The kinetic energy spectra (incompressible and compressible),
K(k) (units of hw,l,), are shown for RT instability generated in

the binary mixture as shown in the previous results. -




Numerical Simulations: KH instability

Kelvin-Helmholtz instability in the binary 3°Rb-3"Rb mixture

KH instability occurs usually due to velocity difference across the
interface in a classical fluid. It is significantly influenced by the
topology of the interface. This can be simulated by introducing velocity
difference between the immiscible mixtures. We consider a situation similar
as the one to develop the KH instability.

For that, a linear force is applied along the x-direction, implying in a
perturbation v; x in the confining potential, such that a wavy perturbation
is introduced at the interface. By considering v = 0.7 and v = —0.7, the
surface instability that can be observed is shown in the next results.
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KH instability
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Upper: Time evolution of the incompressible and
compressible kinetic energies for both components.

Left: Densities evolution of KH instability, shown by
snap-shots, for the ¥Rb (left panels) and 8’Rb (right
panels). The interaction ratio is kept in a;,/a;;=1.05 along
the simulation.
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. Kc (*Rb)

The kinetic energy spectra (incompressible and compressible),
KC(k) (units of hw,l,), are shown for KH instability generated in
the binary mixture as shown in the previous results.
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Miscibility dynamics (RT and KH instabilities)

) 10 20 30 10 50

Time evolution of the density overlaps, A (dimensionless), for

the RT (solid line) and KH (dashed line) instabilities observed
in the 3°Rb-3"Rb binary mixture.
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Instabilities for immiscible to miscible transition

We consider two initial configurations for the ground state of the
mixture, applying a sudden reduction of the interspecies
interaction, such that the system goes from immiscible to
miscible.
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Iimmiscible to miscible transition
(nitial centrally serarated case)

- - L - L] - L] L] -
(O0.5F g
i»

iy Sound-waves contr.
| NP S S SRS
WAL A D

\

R

(Rb ——t-= K;(*'Rb)?

“'"Rb et-=- Kc(5RD)]

Vortex contribution

. 1 a
S0 1) 50)

Upper: Time evolution of the incompressible and
compressible kinetic energies for both components.

Left: Densities evolution in the immiscible to miscible
transition for the 3Rb (left panels) and 8’Rb (right panels)
mixture, with ground-state centrally separated at t=0. The
initial a,,/a;;=1.05 is changed to 0.75 in the simulation.
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t= 1) [ky
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Instability in BEC mixture due to immiscible to miscible sudden transition
(centrally separated initial configuration)
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The kinetic energy spectra (incompressible and compressible),
K(k) (units of w1, ), are shown for instability generated by
immiscible to miscible transition considering the initial condition
with centrally separated binary system.
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Number of vortices in the immiscible to miscibility transition
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The number of vortices generated during the time evolution of both
elements of the binary mixture, for the case of immiscible to miscible
transition considering the initial condition with the centrally
separated binary system.
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Iimmiscible to miscible transition

(lnitial axially separated case)
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Upper: Time evolution of the incompressible and
compressible kinetic energies for both components.

Densities evolution in the immiscible to miscible
transition for the 3Rb (left panels) and 8’Rb (right panels)
mixture, with ground-state axially separated at t=0. The
nitial a;,/a;;=1.05 is changed to 0.75 in the simulation.
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Instability in BEC mixture due to immiscible to miscible sudden transition
(axially separated initial configuration)
[In this animation the lighter species is at the right]
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The kinetic energy spectra (incompressible and compressible),
K(k) (units of fw, 1, ), are shown for instability generated by

immiscible to miscible transition considering the initial condition

with the axially separated binary system.
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Number of vortices in the immiscible to miscibility transition
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The number of vortices generated during the time evolution of both
elements of the binary mixture, for the case of immiscible to miscible
transition considering the initial condition with the centrally

separated binary system.
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Miscibility transition dependence on initial conditions
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Time evolution of the density overlaps A, for the two initial
conditions, centrally (solid line) and axially (dashed line) separated,

for the binary mixture. As shown, the densities overlap from
immiscible to an averaged miscible configuration.
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Conclusions

Instability dynamics and QT analyses

@ In our numerical simulations, using GP coupled formalism, we have
studied the instability dynamics that occur in a mass-imbalanced
BEC mixture, considering the rubidium isotopes **Rb and ®*"Rb. For
each case, the system was confined in a uniform 2D spherical box with
a fixed radius, prepared in an immiscible configuration.

@ Following spectral analyses applied to all the cases being considered
for the binary mixture, the quantum turbulence behavior is studied
from the time evolutions of the incompressible and compressible parts
of the kinetic energy.

@ The classical Kolmogorov’s scaling k>’ behavior can be
approximately verified at short-time intervals in all the cases,
considering the kinetic energy interval in which the wave number is
smaller than the inverse of the healing length (k < 1/£).

@ The observed vortex interactions are responsible for the appearance of
sound waves, which is verified by the enhancement of the compressible
kinetic energy. So, the internal energy of the turbulent condensate is
increased by its kinetic energy.



Conclusions

@ The time evolution of the miscibility is verified for both
Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which shows that
no spontaneous transition occurs from immiscible to miscible systems.
Only noticed is a tendency for the system to become slightly more
miscible in the RT instability case, with an increase in the overlap of
about 20%, but returning to immiscible configuration for larger times.

@ In case of fast reduction of the inter-species interaction strength, with
two different initial configurations (centrally and axially
space-separation), we have verified the instability that occurs in the
transition from immiscible to miscible systems.

® The number of spontaneous productions of vortices are studied. An
asymmetric initial production occurs in case of centrally separated
initial configuration, in which the lighter component is at the center,
with less vortices being produced by the component at the center.
When the components are axially separated, similar production of
vortices can be verified along the evolution.
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For more details, see the preprint:

Kumar, Sabari, Gammal, and LT, arXiv:2503.13767
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