

SURPRISING VORTEX DYNAMICS IN SUPERFLUID ³He: STRONG PINNING, VORTEX SHEETS AND WAVE TURBULENCE

Vladimir Eltsov

Department of Applied Physics, Aalto University, Finland

TYPICAL VORTEX DYNAMICS IN ROTATING SUPERFLUID

Multiplication of a vortex via turbulent burst

TOPOLOGICAL SUPERFLUID ³He

Fermi system with pairing in L = 1, S = 1 state: Several superfluid phases with multitude of topological defects including single-, double- and half-quantum vortices.

- Versatile flow measurements
- Frequency shift in NMR

- High viscosity of the normal component
 - $\eta \propto T^{-2}$, at 1 mK oil-like: Normal component is never turbulent - Clamped to walls in a typical experiment
- ullet Non-singular vortices with the core size \gtrsim 50 nm
 - Engineering pinning and surface friction including elimination
 - Link to the reference frame via volume interaction
- Mutual friction from the vortex-core-bound fermions
 - Wide range of friction from $\alpha \ll 1$ to $\alpha \gg 1$
 - Link to the physics of topological matter

- Andreev reflection of quasiparticles
 - Nanomechanics

$$\operatorname{Re}_{\alpha} = \frac{1 - \alpha'}{\alpha} = \frac{1 - D'/\kappa\rho_{s}}{D/\kappa\rho_{s}} = \omega_{0}\tau$$
$$T \to T_{c} : \omega_{0} \sim \Delta^{2}/E_{F} \to 0 \quad \Rightarrow \operatorname{Re}_{\alpha} \to 0$$
$$T \to 0 \quad : \tau \sim \tau_{n} \exp{\frac{\Delta}{T}} \to \infty \Rightarrow \operatorname{Re}_{\alpha} \to \infty$$

Applies: Straight vortex moving with constant velocity in infinite superfluid.

MUTUAL FRICTION FROM CORE-BOUND FERMIONS

Vortex motion leads to pumping of core-bound quasiparticles along anomalous branch with minigap ω_0 .

Relaxation (τ) towards equilibrium distribution via interaction with bulk quasiparticles \Rightarrow force $\mathbf{F}_{N} = D(\mathbf{v}_{n} - \mathbf{v}_{L})_{\perp} + D'\hat{\mathbf{z}} \times (\mathbf{v}_{n} - \mathbf{v}_{L})$

TALK FOCUS: LESS USUAL VORTEX DYNAMICS IN SUPERFLUIDS

• In the polar phase, created by nanostructured confinement of superfluid ³He, dynamics of single- and half-quantum vortices is drastically altered by strong pinning on the confining strands.

• In the A phase, double-quantum vortices are replaced by vortex sheets under strong dynamic drive.

• In the B phase at the lowest temperatures, Kelvin waves can be controllaby excited on vortcies and evidence for the Kelvin-wave cascade and overheating of vortex-core-bound states is obtained.

solid strand $\varnothing 9 \text{ nm}$

CONFINED ³He: SUPERFLUID WITH STRONG VORTEX PINNING

POLAR PHASE OF SUPERFLUID ³He

Stabilized with confinement between parallel nanostrands.

	open	d, nm	$\langle D angle$, nm	
nafen-90	98%	8	47	-
nafen-243	94%	9	32	

With random impurities of this density superfluidity in ³He will be completely suppressed!

Aoyama & Ikeda, PRB 73, 060504 (2006); Dmitriev et al, PRL 115, 165304 (2015)

EVIDENCE FOR ROBUST NODE LINE IN THE POLAR PHASE

With node line in the energy spectrum: $\Delta(T)/\Delta(0) = 1 - a (T/T_c)^3$, $T \ll T_c$, $a \sim 1$.

NMR frequency ω for **H** || $\hat{\mathbf{m}}$ is

Xu, Yip & Sauls, PRB **51**, 16233 (1995)

Thus $\frac{\omega(0) - \omega(T)}{\omega(0) - \omega_{I}} = 2a \left(\frac{T}{T_{c}}\right)^{3}$ $\omega(T) - \omega_{\rm L} \approx \frac{\Omega_{\rm P}^2(T)}{2\omega_{\rm L}} \propto \Delta(T)^2$ $[^{]} \alpha - (0) \alpha] / [(1) \alpha - (0) \alpha]$ O □ 0.1 bar NMR absorption, kHz⁻¹ 7 bar $\overline{T > T_{c}}$ 29.5 bar 8 $T = 0.21 T_{c}$ 0.1 bar
7 bar -29.5 bar -6 $= 0.31, \tau \Delta/\hbar = 1$ 4 2 15 5 10 0 $(\omega - \omega_{\rm I})/2\pi$, kHz 0 $\omega_{\rm L}/2\pi=363\,{\rm kHz}$ 0.04 0.06 0.08 0.02 0.1 $\mathbf{0}$ $(T/T_{c})^{3}$ Clean-limit BCS: $a = \frac{9\pi}{2} \zeta(3) \left(\frac{T_c}{\Lambda(0)}\right)^3 = 0.57$. In reality scattering is strong: $\tau \Delta/\hbar < 1$.

Nodal line is robust to impurity scattering due to extension of the Anderson theorem.

Kamppinen *et al*, Nature Commun. **14**, 4276 (2023)

FROM THE NODAL LINE TO A BOGOLIUBOV FERMI SURFACE

In a nodal-line superfluid Landau critical velocity $v_{cL} = 0$ but superflow is stable. Energy Energy Energy $v_{\mathsf{cL}} = \Delta / p_{\mathsf{F}}$ $\epsilon'_{\mathbf{p}} = \epsilon_{\mathbf{p}} + \mathbf{pv}_{s}$ $v_{\rm s} > v_{\rm cL}$ $v_{\rm cL} = \min(\epsilon_{\rm p}/p)$ $v_{cL} = 0$ nodal line Δ p_F p_F Momentum Momentum Momentum 40 n $\mathbf{n} = \left(\Delta p_z / p_{\mathsf{F}}, \mathbf{p} \cdot \mathbf{v}_{\mathsf{s}}, v_{\mathsf{F}}(p - p_{\mathsf{F}})\right)$ BEC relaxation rate (s 35 30 pseudo-Weyl 25 point pseudo-Weyl **V**s Non-zero superflow 20 point 15 $p_v - p_F$ 10 Magnon 5 **Bogoliubov Fermi surface** Vortices nucleated at $v_{c} \approx 0.2$ cm/s p_x 0 0.5 1.5 Ω (rad/s) Autti et al, Phys. Rev. Res. 2, 033013 (2020)

VORTICES IN THE POLAR PHASE

Order parameter $A = \Delta \hat{\mathbf{d}} \hat{\mathbf{m}} e^{i\phi} = \Delta (\cos \alpha \hat{\mathbf{e}}_1 + \sin \alpha \hat{\mathbf{e}}_2) \hat{\mathbf{m}} e^{i\phi}$

Single-quantum vortex

Half-quantum vortex

Spin-orbit interaction $\propto (\hat{\mathbf{d}} \cdot \hat{\mathbf{m}})^2 \Rightarrow$ Sine-Gordon equation

$$\nabla^2 \alpha = \frac{\sin^2 \lambda}{2\xi_D^2} \sin 2\alpha$$

VORTEX "DYNAMICS" WITH STRONG PINNING

ENABLED BY PINNING: KIBBLE-ZUREK MECHANISM (KZM) DENSITY AND KIBBLE WALLS

Non-equilibrium 2nd order phase transition: $T(t) = T_c (1-t/\tau_Q) \Rightarrow$ defect formation.

VORTEX SHEET IN SUPERFLUID ³He-A

VORTICITY IN ³He-A

Order parameter:

$$A_{\mu j} = \Delta \,\hat{\mathbf{d}}_{\mu} \left(\hat{\mathbf{m}}_{j} + i \, \hat{\mathbf{n}}_{j} \right) e^{i\phi}$$

⁽Mermin and Ho, 1976)

Continuous vorticity without suppressing superfluidity.

If \hat{l} is in plane then $\nabla \times \mathbf{v}_{s} = 0$ and circulation is quantized.

Zeeman energy $F_H \propto (\hat{\mathbf{d}} \cdot \mathbf{H})^2$ Spin-orbit interaction $F_D = -g_D (\hat{\mathbf{d}} \cdot \hat{l})^2 \sim 10^{-3} \Delta, \qquad \xi_D \sim 10^3 \xi \sim 10 \,\mu\text{m}$

DOUBLE-QUANTUM VORTEX IN EXPERIMENTS

Satellite peak in the NMR spectrum with characteristic frequency shift.

TRANSITION FROM VORTEX LINES TO VORTEX SHEETS

Experiment: Sheets replace lines when rotation varies sufficiently fast. Dynamically driven topological transition.

V.E. et al, PRL 88, 065301 (2002)

TOPOLOGY DETERMINES DYNAMICS

 $(p/s) \alpha_0$ Mutual friction coefficient $\alpha_{\perp} \sim (s/p) \alpha_0$ α_0 $\alpha = \kappa \rho_{\rm s} / D \propto \left[\int d^2 r (\nabla \hat{l})^2 \right]^{-1}$ α_0 S ά p $s\sim4\,\xi_{
m D}pprox40\,\mu{
m m}$ Standalone Vortex in VS vortex $p = \kappa/(2\Omega b) \gg s$ $lpha_{\parallel}: lpha_{0}: lpha_{\perp} \sim 5: 1: 1/5$ **Energy:** > Response time: <

Multiple radially aligned sheets \Rightarrow fastest response to Ω change.

Dynamic drive $\Omega(t)$ selects the fastest response.

VE et al, PRL 88,065301 (2002)

"ZERO-CHARGE" TRANSITION IN THE VORTEX SHEET STRUCTURE

In ³He-A, synthetic gauge field possesses QED features. Running coupling constant:

DYNAMICS OF KELVIN WAVES IN SUPERFLUID ³He-B

extent k_{end}/k_{start} 0.17 0.19 *T*/*T*_c 0.15 0.13

> 10⁻⁵ 10⁻⁴ 10⁻³ Mutual friction parameter α

Barquist et al, PRB 106, 094502 (2022); Guthrie et al, Nat. Commun. 12, 2645 (2021)

NEMS IN THE ROTA CRYOSTAT

Linear response in vacuum $B = 93 \,\mathrm{mT}$ *Q* = 17000 26.965 26.97 Frequency (kHz)

Kamppinen *et al*, PRB **105**, 035409 (2022)

Bare aluminum device suspended over window

QUANTIZED VORTICES IN ³He-B

New mode: twisting

-10

0

Rantanen & VE, PRR 6, 043112 (2024)

Doctoral researchers	(former and <u>present</u>):		
Risto Hänninen	Vladislav Zavyalov	Vladislav Zavyalov Juho Rysti	
Jere Mäkinen	Lingju Meng <u>Saba Khan</u>		
Doctoral students (fo	ormer and <u>present</u>):		
Antti Finne	Rob de Graaf	Rob de Graaf Jaakko Hosio	
Petri Heikkinen	Samuli Autti	Samuli Autti Timo Kamppine	
<u>Riku Rantanen</u>	<u>Atso Ikäheimo</u>		

Nikolai Matti Kopnin Krusius

Grigori Volovik

P

Collaborations:

Samuli Autti, *Lancaster University, UK* Vladimir Dmitriev, Arkady Soldatov, Alexey Yudin, *Kapitza Institute* Matthew Doyle, Andrei Golov, *University of Manchester, UK* Victor L'vov, *Weizmann Institute, Israel* Šimon Midlík, David Schmoranzer, *Charles University, Prague*

SUMMARY

- Vortex dynamics in superfluid ³He is dominated by Kopnin force. Its temperature dependence leads to transitions in superfluid hydrodynamics.
 PNAS 111, 4711 (2014) PRB 97, 014518 (2018)
- Nanoconfinemet of ³He stabilizes new topological phases and simultaneously provides strong pinning which drastically changes vortex dynamics.

PRR 2, 033013 (2020) NatComm 10, 237 (2019) NatComm 14, 4276 (2023)

- Anisotropic superfluid ³He-A responds to dynamic drive with topolog-
- ical transition leading to faster response. PRL 88, 065301 (2002) PRB 107, 104505 (2023)
- Kelvin waves and KW-cascade are demonstrated in ³He-B. KWs link to the vortex core physics including core overheating.
 NatPhys 19, 898 (2023) PRB 107, 014502 (2023) PRR 6, 043112 (2024)

