Restless Neutron Stars: Timing Noise and Pulsar Glitches

75

Marco Antonelli

CNRS, LPC-Caen antonelli@lpccaen.in2p3.fr

Wednesday, May 14, 2025 – ECT*, Trento

Pulsar glitches

- First detected in the Vela and Crab in 1969

- Diverse phenomenology: probably due to different age (temperature), mass, rotational parameters, magnetic field

- Detected in isolated objects: conservation of the total angular momentum must be satisfied

- Typical amplitudes: $\Delta\Omega\sim 10^{\text{-8}}-10^{\text{-4}}~\text{rad/s}$

Is there a unified explanation? Different causes for glitch subpopulations?

Analogy with type-II superconductors

The interpretation of **glitches** as events associated with **dissipation** of **persistent currents** derives from the phenomenology of type-II superconductors

Field et al. Superconducting Vortex Avalanches (1995)

Review: Antonelli, Montoli, Pizzochero arXiv:2301.12769 (2022)

Analogy with type-II superconductors

The interpretation of **glitches** as events associated with **dissipation** of **persistent currents** derives from the phenomenology of type-II superconductors

al. (2018)

Review: Antonelli, Montoli, Pizzochero arXiv: 2301.12769 (2022)

Nutron Stars – Type-II Superconductor

Crust's frame of reference – Frame of the lattice Delocalized neutrons – Electron sea Vorticity – magnetic field Vortices – Flux-tubes Neutron current – electric current Magnus force – Lorentz force

> Conservative regime: Pinned vortices – pinned flux-tubes

Dissipative regime: Moving vortices – Moving flux-tubes

Vortex motion in a pinning landscape

Vortices in the inner-crust are immersed in a complex **pinning landscape**

- \rightarrow pinned vortices: superfluid can not spin down
- \rightarrow the normal component spins down
- \rightarrow persistent superfluid current in the frame of the pinning landscape

The "lag" slowly increases in time (because of the steady spin-down)

- \rightarrow the pinning landscape is continuously "tilted"
- \rightarrow possible to trigger a **catastrophic unpinning** event?

Interesting features: complex evolution with possible avalanche dynamics and self-organized-criticality

Review: Antonelli, Montoli, Pizzochero arXiv: 2301.12769 (2022)

Glitch activity: time & slip predictability

Assume a nearly *constant driving force* and 2 "global" thresholds:

Upper threshold: the "stress release" starts **Lower** threshold: the "stress release" stops

- Upper threshold constant:
 observe the "slip" → predict the "time to the next slip"
- Lower threshold constant: measure time from last glitch \rightarrow predict the "slip"

Review: Antonelli, Montoli, Pizzochero arXiv:2301.12769 (2022)

Glitch activity: time & slip predictability

There is a quite stable unpinning threshold in Vela and J0537-6910: \rightarrow in both cases the "upper" thresholds is the most constant in time

Review: Antonelli, Montoli, Pizzochero arXiv:2301.12769 (2022)

Continuum description?

Not a simple fluid but many layers with different inhomogeneities, defects, currents

Inner crust

(Visco-)elastic lattice Neutron "scalar" superfluid Excitations (entropy/heat) Ideal gas of electrons B field Frame of the lattice: 3 currents

Outer core

Neutron superfluid Proton superconductor Excitations (entropy/heat) Ideal gas of electrons B field in fluxtubes (type II?)

Different phenomena may be well described with a smaller number of "fluids" e.g. cooling, glitches, oscillation modes, "mountains", B evolution...

...it is however true that the "mageto-thermo-rotational" evolution is coupled

Superfluid hydrodynamics

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Microscopic models needed:

Helium: stochastic GPE, mean field...

NS: effective classical fields (Ginzburg-Landau+GPE), TDLDA, HFB...

> Conserved baryon charge: # Baryons ~ $n_0 (10 \text{ fm})^3 \sim 10^3$

Tree-forest analogy: Barenghi's talk @INT, Seattle 2018

Inter-vortex scale: $\sim 10^{-3} \,\mathrm{cm}$ in a NS

Mescoscopic models needed:

Helium: Vortex filament model (K. Schwarz's 80s papers)

NS: the same but needs extension to non-homogeneous environment

Conserved baryon charge: # Baryons ~ $n_0 (10^{-3} \text{ cm})^3 \sim 10^{29}$

Fluid element: from $\sim mm$ in a NS

Macroscopic hydro:

Helium: HVBK hydro (Hall & Vinen 1956)

NS: extensions/decorations of HVBK hydro (more species, GR)

Conserved baryon charge: Not so relevant, need to include many vortices in the fluid element

Superfluid hydrodynamics

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Inter-vortex scale: $\sim 10^{-3}$ cm in a NS

Fluid element: from $\sim mm$ in a NS

Tree-forest analogy: C. Barenghi talk @INT, Seattle 2018

We can not take into account each vortex (~ 10^{16} in a pulsar) \rightarrow HVBK-like hydrodynamics

2 Euler-like equations + entrainment + mutual friction

 $\partial_t \rho_{\mathbf{x}} + \nabla_i (\rho_{\mathbf{x}} v_{\mathbf{x}}^i) = 0$ $(\partial_t + v_{\mathbf{x}}^j \nabla_j) (v_i^{\mathbf{x}} + \varepsilon_{\mathbf{x}} w_i^{\mathbf{y}\mathbf{x}}) + \nabla_i (\tilde{\mu}_{\mathbf{x}} + \Phi) + \varepsilon_{\mathbf{x}} w_{\mathbf{y}\mathbf{x}}^j \nabla_i v_j^{\mathbf{x}} = f_i^{\mathbf{x}} / \rho_{\mathbf{x}}$

The **dynamics of vortices** in a fluid element gives the form and strength of the macroscopic "**mutual friction**"

 $x, y=n \rightarrow$ superfluid neutrons $x, y=p \rightarrow$ normal component (electrons, excitations, protons, lattice...)

Superfluid hydrodynamics

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Inter-vortex scale: $\sim 10^{-3}$ cm in a NS

Fluid element: from $\sim mm$ in a NS

We can not take into account each vortex (~ 10^{16} in a pulsar) \rightarrow HVBK-like hydrodynamics

2 Euler-like equations + entrainment + mutual friction

The **dynamics of vortices** in a fluid element gives the form and strength of the macroscopic **"mutual friction"**

$$\rho_n D_t \mathbf{v}_n + \dots = \mathbf{F}_{MF}$$

$$\rho_p D_t \mathbf{v}_p + \dots = -\mathbf{F}_{MF}$$

 $x, y=n \rightarrow$ superfluid neutrons $x, y=p \rightarrow$ normal component (electrons, excitations, protons, lattice...)

Vortex motion \rightarrow HVBK friction (no pinning)

The mutual friction follows by balancing the Magnus force that acts on vortices with a resistive force:

$$\mathbf{f}_M + \mathbf{f}_D = 0 \qquad \qquad \hat{\boldsymbol{\kappa}} \times (\mathbf{v}_L - \mathbf{v}_n) - \mathcal{R}(\mathbf{v}_L - \mathbf{v}_p) = 0$$

Crust: drag force due to excitations of lattice phonons (Jones 1990) and Kelvin waves (Epstein & Baym 1992, Jones 1992, Graber+ 2018), $\mathcal{R}=10^{-5}-10^{-1}$

Core: drag force due to the scattering of electrons off of the magnetic field with which each vortex core is endowed (Alpar+ 1984, Mendell 1991, Andersson+ 2006), $\mathcal{R}=10^{-3}-10^{-4}$

$$oldsymbol{F}_n = -\kappa \, n_v \, \hat{oldsymbol{\kappa}} imes (\langle \dot{oldsymbol{x}}
angle - oldsymbol{v}_{np}) = \,
ho_n n_v \left[rac{\mathcal{R}}{1 + \mathcal{R}^2} \hat{oldsymbol{\kappa}} imes (oldsymbol{\kappa} imes oldsymbol{v}_{np}) + rac{\mathcal{R}^2}{1 + \mathcal{R}^2} oldsymbol{\kappa} imes oldsymbol{v}_{np}
ight]$$

Message: how to extract mutual friction?

- Solve for the vortex dynamics for a given "lag"
- Take an average over many vortices
 - \rightarrow Standard HVBK: simple algebraic EOM
 - \rightarrow With pinning: simulations needed

Point vortex orbits in a "repulsive" potential

$$\hat{\boldsymbol{\kappa}} \times (\dot{\boldsymbol{x}}(t) - \boldsymbol{v}_{np}) - \mathcal{R} \, \dot{\boldsymbol{x}}(t) + \boldsymbol{f} = 0$$

Just to build some intuition: streamlines for a "repulsive" (positive) potential

$$\dot{\boldsymbol{x}} = \cos\theta_d R_{\theta_d}^{-1} \left(\boldsymbol{v}_{np} + R_{\pi/2} \boldsymbol{f} \right) \qquad \qquad \boldsymbol{f} = -\nabla\Phi \qquad \Phi(\boldsymbol{x}) = \Phi_0 \left| e^{-|\boldsymbol{x} - \boldsymbol{r}_a|^2/2\sigma^2} \right|$$

 ${\sim}0.5$ critical lag

 ${\sim}0.7$ critical lag

 ${\sim}0.9$ critical lag

Critical lag \rightarrow stagnation

Point vortex orbits in an "attractive" potential

$$\hat{\boldsymbol{\kappa}} \times (\dot{\boldsymbol{x}}(t) - \boldsymbol{v}_{np}) - \mathcal{R} \, \dot{\boldsymbol{x}}(t) + \boldsymbol{f} = 0$$

Just to build some intuition: streamlines for an "attractive" (negative) potential

$$\dot{x} = \cos \theta_d R_{\theta_d}^{-1} (v_{np} + R_{\pi/2} f)$$
 $f = -\nabla \Phi$ $\Phi(x) = \Phi_0 |e^{-|x - r_a|^2/2\sigma^2}$

With friction (R>0)

 ~ 0.5 critical velocity

 ~ 0.7 critical velocity

 ${\sim}0.9$ critical velocity

Critical velocity

Vortex motion \rightarrow Mutual friction (with pinning)

Antonelli & Haskell, arXiv:2007.11720 (2020)

background neutron velocity

Vortex simulations: effect of disorder

Beyond hydrodynamics: hysteresis

Rate-dependent hysteresis: lag between an input and an output that disappears if the input is varied more slowly. If the input is reduced to zero, the output continues to respond for a finite time.

Instantaneous drop to null lag \rightarrow vortex velocity drops to zero immediately (if NO pinning forces) Instantaneous drop to null lag \rightarrow vortex velocity relaxes to zero (with pinning forces)

11-

2 2 (Φ_0/σ) (Φ_0/σ) 3 $\langle \mathbf{x} \rangle$ **x** -2-40.0 0.20.40.6 0.81.0 -2-10 1 23 t/T (Φ_0/σ) \mathbf{v}_{np}

Rate-independent hysteresis \rightarrow vortex-vortex interactions

Pinning energy (vortex – single nucleus)

Semiclassical approach: static LDA calculation (local Fermi momentum is a function of the neutron number density)

Hartree-Fock-Bogolyubov

Energy contributions to pinning:

- \rightarrow negative condensation energy of the order of $\Delta^2\,/$ $E_{_{\rm F}}$
- \rightarrow kinetic energy of the irrotational vortex-induced flow
- \rightarrow Fermi energy $E_{_{\rm F}}\, {\rm of}$ neutrons
- \rightarrow nuclear cluster energy (Woods-Saxon potential)

Uncertain pairing gap Δ : modifies the strength and location of the pinning energies (in-medium effects!) Maximum pinning energies < 3.5 MeV Significant pinning occurs only in a restricted range: 0.07 n₀ < n_B < 0.2 n₀

Pinning forces (inner crust)

Coherence length $\xi \sim {\rm vortex} \ {\rm core} \ {\rm radius}$

Strong pinning when $\xi <$ lattice spacing

Rigid (straight) vortices are "less pinned"

Coherence length ξ estimates: Mendell, ApJ 38 1991

Inner crust:

Problem: how to calculate the "vortex-lattice" interaction from the "vortex-nucleus" interaction ?

IDEA: consider a segment of vortex line (the length L is given by the tension) and average over translations and rotations of the total pinning force divided by L

Stationary test (glitch amplitude)

We can **test** theoretical single-vortex pinning forces with glitches of large amplitude:

- Consider the **critical current** everywhere in the crust and its associated angular momentum
- Solve the hydrostatic equilibrium in slow rotation and calculate:

$$\Delta\Omega_{\rm abs} = \frac{\pi^2}{I\kappa} \int_0^{R_d} dr \, r^3 \, e^{\Lambda(r)} \, \frac{\mathcal{E}(r) + P(r)}{m_n \, n_B(r) \, c^2} \, f_P(r)$$

- \rightarrow Theoretical **upper bound** based only on angular momentum balance
- \rightarrow No superfluid fraction and no entrainment
- \rightarrow No need to solve the internal dynamics
- \rightarrow No dependence on the assumed vortex configuration
- \rightarrow Pinning forces are just a "proxy" for the critical current

Compare with bounds on the **minimum** mass:

Observed: M=1.174 Mo Martinez+2015 arXiv:1509.08805

CCS simulations: M $\thickapprox1.15$ Mo Suwa+2017 arXiv:1808.02328

Vela's 2016 glitch

Palfreyman et al. Nature 556, 2018

 \rightarrow Glitch detected "in the act"

 \rightarrow TOA of single pulses

 \rightarrow Arrival time residual: tells us if the pulse arrives before or after the expected arrival time predicted by a spin-down model.

What can we learn from this observation?

Bayesian fit: spin-up timescale of ~10s Ashton+2019 arXiv:1907.01124 Montoli+2020 arXiv:2005.01594

Test of the friction parameters Graber+2018 arXiv:1804.02706

Minimal model for the "spin-up"

Model with **3 components**:

- Minimal model to go beyond pure exponential relaxation
- Natural idea because there is superfluid in the ${\bf crust}$ but also in the ${\bf core}$
- Allows us to resolve a ${\bf possible \ overshoot}$ during the spin-up

Equations of motion: "physical" parameters

$$egin{aligned} \dot{\Omega}_{p} &= -rac{1}{x_{p}}\left(x_{1}\dot{\Omega}_{1}+x_{2}\dot{\Omega}_{2}+|\dot{\Omega}_{\infty}|
ight)\ \dot{\Omega}_{1} &= -b_{1}\left(\Omega_{1}-\Omega_{p}
ight)\ \dot{\Omega}_{2} &= -b_{2}\left(\Omega_{2}-\Omega_{p}
ight) \end{aligned}$$

It is possible to solve analytically the system, in order to obtain the angular velocity of the normal component with respect to the spin down of the star.

$$\Delta\Omega_{p}(t) \,=\, \Delta\Omega_{p}^{\infty}\left[1-\omega\,e^{-t\lambda_{+}}-(1-\omega)\,e^{-t\lambda_{-}}
ight]$$

General exact solution: "agnostic" parameters

Bayesian fit of Vela 2016

Fit of the TOA residuals of Palfreyman+2018:

 \rightarrow Estimated moment of inertia fractions:

"active" $x_{2} \sim 0.1 - 0.3,$ "passive" $x_{1} \sim 0.5 - 0.7$

- \rightarrow Confirmed **overshoot** found by Ashton+2019, Pizzochero+2020
- \rightarrow Posteriors for **friction parameters** in agreement with the revised estimates of friction by Graber+2018
- → First "entrainment-independent" clue that the superfluid in the outer core is actively involved. Maybe a sign of pinning with fluxtubes?

$$\begin{split} x_p \dot{\Omega}_p &= -\mathcal{T}_1 - \mathcal{T}_2 - |\dot{\Omega}_\infty| \\ x_1 \dot{\Omega}_1 &= \mathcal{T}_1 \\ x_2 \dot{\Omega}_2 &= \mathcal{T}_2 \\ \mathcal{T}_i &= -x_i b_i (\Omega_i - \Omega_p) \qquad i = 1,2 \end{split}$$

Vortex – flux tubes pinning

Not vortex-flux tube interaction... ...but vortex-array interaction Result: pinning to flux-tubes greatly reduced

 $\begin{aligned} \xi_p &\approx 16 \, x_p^{1/3} \rho_{14}^{1/3} \Delta_p (\text{MeV})^{-1} \text{fm} \\ \xi_n &\approx 16 \, x_n^{1/3} \rho_{14}^{1/3} \Delta_n (\text{MeV})^{-1} \text{fm} \end{aligned}$ Coherence length estimates: Mendell, ApJ, 380 (1991)

Overlap of vortex line and flux tube is energetically favored because the volume of non-condensed fluid is **minimized** by such overlap (Srinivasan et al. 1990)

$$E_{\rm int} \sim n_n \, \frac{\Delta_p^2}{E_{F_p}^2} \frac{\Delta_n^2}{E_{F_n}} \, (\xi_n^2 \, \xi_p) \simeq 0.1 \, \, {\rm MeV}$$

A larger contribution to the interaction energy is the **magnetic** interaction between the vortex and a flux-tube. The magnetic field in a flux tube is $B \sim 10^{15} \text{ G}$

$$E_p(\theta) \simeq l \, \frac{E_0}{L} = \frac{\pi}{8} \, \boldsymbol{B}_v \cdot \boldsymbol{B}_{\Phi} \left(\Lambda_*^2 l \right) \ln \left(\frac{\Lambda_*}{\xi_n} \right)$$
$$E_p \approx 5 \, \text{MeV},$$

 $f = rac{F_p}{l_\phi} = rac{E_p}{\Lambda_p \, l_\phi}$ (Alpar et al 1984, Jones 1991, Link 2012)

Pulsar "timing noise"

Antonelli, Basu, Haskell arXiv:2206.10416

- \rightarrow we import physical ideas from "glitch theory" to model "timing noise"
- \rightarrow understanding the properties of timing noise is important also for Virgo/Ligo

NS emitting *continuous* GW is a "gravitational pulsar"

 \rightarrow need to keep track of pulsar timing (including glitches and noise) for "targeted" and "narrow-band" searches of continuous GW by Ligo/Virgo

General scheme for timing noise

State vector: normal component + m superfluid layers

 $\mathbf{\Omega}_t = \left(\Omega_p(t), \Omega_1(t), ..., \Omega_m(t) \right)$ superfluid normal

General m+1 components Ito stochastic process with linear friction:

 $\dot{\mathbf{\Omega}}_t = B \, \mathbf{\Omega}_t + \mathbf{A}_t + M \dot{\mathbf{W}}_t$ $\langle \dot{\mathbf{W}}_t \rangle = 0$ $\langle \dot{W}_{t}^{i} \dot{W}_{s}^{j} \rangle = \delta_{ij} \delta(t-s)$

There are 3 fundamental constraints:

 \rightarrow evolution of the **total angular momentum**: $\dot{L} = \mathbf{x}^{\top} \cdot \dot{\mathbf{\Omega}} = \mathcal{T}_{\infty} + \eta_t^{\infty} \rightarrow \mathbf{x}^{\top} \cdot \mathbf{A}_t = \mathcal{T}_{\infty} - \mathbf{x}^{\top} M \dot{\mathbf{W}}_t = \eta_t^{\infty}$

 \rightarrow "thermodynamic" equilibrium state at corotation:

 $B^{\mathsf{T}}\mathbf{x} = 0$ \rightarrow action-reaction principle for the internal torques:

Power Spectral Density of the angular velocity residuals: $P_p(\omega) \propto \langle |\delta \Omega_p(\omega)|^2 \rangle \leftarrow \text{PSD definition}$

$$P_{p}(\omega) = \left[(i\omega \mathbb{I} - B)^{-1} M M^{\top} (-i\omega \mathbb{I} - B^{\top})^{-1} \right]_{pp} \leftarrow \text{PSD general result}$$

Total angular momentum

$$L(t) = \mathbf{x}^{\top} \cdot \mathbf{\Omega}$$
Moment of inertia fractions

$$\sum_{i=1...m} x_i = 1 - x_p$$

Angular velocity residuals
$$\delta \mathbf{\Omega}_t = \mathbf{\Omega}_t - \langle \mathbf{\Omega}_t \rangle = \int_0^t e^{B(t-z)} M \, d\mathbf{W}_z$$

$$B(\Omega, ..., \Omega) = 0$$

The simplest model: 2 components

fluctuating external torque

Non-superfluid component (coupled to magnetosphere)

 $x_p \dot{\Omega}_p = -\mathcal{T} - \eta_t^{\mathcal{T}} + \mathcal{T}_\infty + \eta_t^\infty$

fluctuating internal torque

Superfluid component (not directly observable) $x_1 \dot{\Omega}_1 = \mathcal{T} + \eta_t^{\mathcal{T}}$

Independent noise processes for internal and external fluctuations

$$\eta_t^\infty = \sigma_\infty \, \dot{W}_t^\infty$$

$$\eta_t^{\mathcal{T}} = \sigma_{\mathcal{T}} \dot{W}_t^{\mathcal{T}}$$
$$\langle \dot{W}_t^i \dot{W}_s^j \rangle = \delta_{ij} \delta(t-s)$$

Why is it **important to distinguish** between *internal* and *external* fluctuations?

- \rightarrow Different physical processes (*external:* magnetosphere, emission *internal:* vortex motion, turbulence)
- \rightarrow Practical: fluctuations in the torques as **independent** noise processes
- \rightarrow Automatic implementation of **action-reaction** principle for the fluctuating mutual friction
- \rightarrow Clear physical interpretation of the **corner frequencies** in the Power Spectral Density (**PSD**)

$$\begin{split} P_{p}(\omega) \propto \frac{1}{\omega^{2}} \cdot \frac{\mu^{2} + \omega^{2}}{\xi^{2} + \omega^{2}} \propto \begin{cases} \mu^{2}/(\xi^{2} \omega^{2}) & \omega \ll \mu \\ 1/\xi^{2} & \mu \ll \omega \ll \xi \\ 1/\omega^{2} & \xi \ll \omega \end{cases} \quad \begin{aligned} & \text{Corner frequencies:} \quad 0 < \mu < \xi \\ \mu^{2} = \frac{b^{2} \sigma_{\infty}^{2}}{\sigma_{\infty}^{2} + \sigma_{T}^{2}} & \xi^{2} = \frac{b^{2}}{x_{p}^{2}} \\ b = 2\Omega \mathcal{B} = x_{p}/\tau \end{split}$$

component's angular velocity

The simplest model: 2 components

Non-superfluid component (coupled to magnetosphere)

$$x_p \dot{\Omega}_p = -\mathcal{T} - \eta_t^{\mathcal{T}} + \mathcal{T}_\infty + \eta_t^\infty$$

fluctuating external torque

fluctuating internal torque

Superfluid component (not directly observable)

$$x_1 \dot{\Omega}_1 = \mathcal{T} + \eta_t^{\mathcal{T}}$$

Antonelli, Basu, Haskell arXiv:2206.10416

-÷-~

Independent noise processes for internal and external fluctuations

$$\eta_t^{\infty} = \sigma_{\infty} W_t^{\infty}$$
$$\eta_t^{\mathcal{T}} = \sigma_{\mathcal{T}} \dot{W}_t^{\mathcal{T}}$$
$$\langle \dot{W}_t^i \dot{W}_s^j \rangle = \delta_{ij} \delta(t-s)$$

 \sim

Only *external* noise: PSD plateau shrinks \rightarrow pure Wiener process + "inertial" corrections

$$P_p(\omega) = \frac{\alpha_\infty^2 \,\Omega \dot{\Omega}}{x_p^2 \,\omega^2} \cdot \frac{\omega^2 + x_p^2 \tau^{-2}}{\omega^2 + \tau^{-2}} \approx \frac{\alpha_\infty^2 \Omega \dot{\Omega}}{\omega^2}$$

Only *internal* noise: plateau extends to the origin \rightarrow Lorentzian PSD (Ornstein-Uhlenbeck process)

$$P_p(\omega) = \frac{\alpha_{\mathcal{T}}^2 x_1^2 \dot{\Omega}^2}{2 x_p^2 \mathcal{B} \Omega} \cdot \frac{1}{\omega^2 + \tau^{-2}}$$

Simulations used to validate the approximate analytical result

 $P_a(\omega) \approx (\omega \Omega)^{-2} P_p(\omega)$

Times of arrival: PSD

To obtain the TOA in computer simulations we have to solve the **implicit** equation

 $\phi(t + \delta a_t) = \phi^{\text{mod}}(t) \quad (\text{root-finder needed, very slow!})$

Trick to simplify the problem: implicit differentiation of the above equation gives

$$\frac{d}{dt}\,\delta a_t = -\frac{\Omega_p^t - \dot{\phi}_t^{\text{mod}}}{\Omega_p^t} - \frac{\dot{\phi}_t^{\text{mod}}\dot{\Omega}_p^t}{\Omega_p^t}\,\delta a_t + O\left(\frac{\delta a_t^2}{T^2}\right)$$

Very good **approximation**: $\begin{aligned} \delta a_t &\approx -\frac{\delta \phi(t)}{\Omega} \\ \delta \phi_t &= \phi_t - \phi_t^{\text{mod}} \end{aligned}$ $P_a(\omega) &\approx (\omega \Omega)^{-2} P_p(\omega)$

Timing noise across the pulsar population

TN strength (analytical)

Antonelli, Basu, Haskell, MNRAS (2023), arXiv:2206.10416

 $\sigma^2 = \frac{1}{T_o} \int_{t_0}^{t_0 + T_o} dz \ |\delta a_z|^2$

 σ

Analytical results (arbitrary number
$$m$$
 of components)

$$\sigma^2 \approx a_{e0} \dot{\Omega} \Omega^{-1} T_0^3 + a_{e1} \dot{\Omega} \Omega^{-3} T_o$$
$$\sigma^2 \approx a_{i0} \dot{\Omega}^2 \Omega^{-5} T_o + a_{i1} \dot{\Omega}^2 \Omega^{-6}$$

(pure external noise) (pure internal noise)

References

Review: Antonelli, Montoli, Pizzochero arXiv:2301.12769

Stationary "activity" test ("effective moment of inertia of pinned region">"observed activity") Link+1999 arXiv:9909146, Andersson+2012 arXiv:1207.0633, Chamel 2013 arXiv:1210.8177, Montoli+2020b arXiv:2012.01539

Stationary "glitch size" test ("glitch from maximum lag">"observed glitch amplitude") Antonelli+2018 arXiv:1710.05879

Beyond the stationary tests (need to solve temporal evolution \rightarrow model dependent): Ho+2015 arXiv:1703.00932 (activity+cooling: need to integrate the thermal evolution), Pizzochero+2017 arXiv:1611.10223, Montoli+2020 arXiv1809.07834 (glitch size+activity: need to integrate the superfluid reservoir evolution)

GR corrections: Sourie+2017 arXiv:1607.08213 (2 rigid components), Antonelli+2018 arXiv:1710.05879 (fluid, corrections for the glitch size), Gavassino+2019 arXiv:2001.08951, arXiv:2012.10288 (fluid, corrections for the spin-up timescale)

Revisiting the starquake paradigm (Ruderman, Nature 223 1969): Giliberti+2019 arXiv:1902.06345, arXiv:1809.08542 (continuously stratified), Reconret+2021 arXiv:2106.12604 ("starquake is not enough" argument), Bransgrove+2020 arXiv:2001.08658 (quake and null pulses in Vela 2016)

Glitch overshoot: virtually any model with more degrees of freedom than Baym+ Nature 224 1969, namely all fluid models that are in the same class of Alpar+ ApJ 273 1984, e.g., Haskell+2012 arXiv:1107.5295, Antonelli+2017 arXiv:1603.02838, Graber+2018 arXiv:1804.02706, Pizzochero+2020 arXiv:1910.00066 (mathematical condition for the overshoot)

Vela's 2016 glitch (Palfreyman+ Nature 556 2018), Montoli+2020a arXiv:2005.01594 (theory of 3-component model, Bayesian fit of physical parameters), Ashton+2019 arXiv:1907.01124 (agnostic Bayesian fit), Sourie+2020 arXiv:2001.09668 (pinning in the core), Gügercinoğlu+2020 arXiv:2003.08724 (fit with the vortex creep model)

Beyond hydrodynamics & SOC: we are still "stealing" from Anderson&Itoh Nature 256 1975 (short but very dense paper!) Melatos+2018 arXiv:1809.03064 (correlations in glitches), Khomenko+2018 arXiv:1801.01413, Antonelli+2020 arXiv:2007.11720 (pinning/depinning transition, hysteresis loop), Howitt+2020 arXiv:2008.00365 (point vortex simulations), Haskell+2020 arXiv:2007.02748 (quantum turbulence), Carlin+2021 arXiv:2105.13588

Final considerations

Glitches provide us with some interesting theoretical challenges:

- \rightarrow vortex dynamics in non-homogeneous environments
- \rightarrow collective $\mathbf{avalanche}$ dynamics
- \rightarrow how to describe **pinning** at the microscopic scale?
- \rightarrow physics in the core: **superfluid-superconductor** mixture

Cross contamination between different fields is necessary. Some open questions:

- \rightarrow role of starquakes? (can we really have quakes in a NS?)
- \rightarrow role of entrainment (strong/weak? affected by disorder?)
- \rightarrow better understanding of dissipation at micro/meso scale
- \rightarrow collective aspects of vortex dynamics (Hysteresis? Collective pinning?)

How to probe NS interiors?

- $\rightarrow 2$ robust "tests":
 - Glitch amplitude \rightarrow pinning forces (marginally enough)
 - Glitch activity \rightarrow entrainment parameters ("crust not enough" if strong entrianment)
- \rightarrow Vela 2016: first entrainment-independent clue that the outer core is involved in the glitch
- \rightarrow Extend "glitch technology" to timing noise modeling: superfluid fingerprint in the PSD?

NS structure

Proton radius (e-p Rutherford scattering) $\sim 0.85~{\rm fm}$ Neutron r.m.s. radius $\sim 0.8~{\rm fm}$ Strong nuclear force range ${\sim}1~{\rm fm}{-}3~{\rm fm}$ (mesons)

Nuclear saturation density: $n_0 \sim 0.16 \text{ fm}^{-3}$ \rightarrow WS radius per nucleon at saturation $\sim 1.2 \text{ fm}$

Inside a neutron star:

Neutron drip (outer crust \rightarrow inner crust) ~2.5 \cdot 10⁻⁴ n_o

Pasta phase (inner crust \rightarrow outer core) $\sim 0.3 - 0.5 n_0$

Homogeneous npe⁻ matter ~0.5 n₀ – 1 n₀

Muons appear at ~1 $n_0~(e^{-} {\rm Fermi~energy} > 105.7~{\rm MeV})$

Hyperons appear at
$$\sim 2 n_0$$
 (inner core)

Reminder on notation: $^{\rm 2S+1}{\rm L_{J}}\,({\rm L=0,1,2,3...} \rightarrow {\rm S,P,D,F...})$

Superfluidity in NS

Fermi surface is unstable against pairing:

- Neutrons in the **crust** feel **attractive** components of the NN potential in the ${}^{1}S_{0}$ channel
- Core: $^1\!\mathrm{S}_{_0}$ NN force is repulsive above ${\sim}0.16~\mathrm{fm}^{\text{-3}}$

 ${}^{3}S_{1}-{}^{3}D_{1}$ binds the deuteron: but in NS **n** and **p** have very different Fermi surfaces \rightarrow **no n-p superfluid**

Pairing channels

Total angular momentum operator: $\mathbf{J} = \mathbf{L} + \mathbf{S}$ Notation: ^{2S+1}L₁ (L=0,1,2,3... \rightarrow S,P,D,F...)

 $^{1}S_{0}$ isotropic pairing: Δ = "energy gap" ~ 0.57 T_c

 $^3S_1\!-^3\!D_1$ binds the deuteron: but in NS ${\bf n}$ and ${\bf p}$ have very different Fermi surfaces \to no ${\bf n}\text{-}{\bf p}$ pairing

 ${}^{3}\mathrm{PF}_{2}$ partial–wave channel (Δ has contributions from both L=1,3) preferred at larger Fermi momenta, where ${}^{1}\mathrm{S}_{0}$ is repulsive. Uncertain gap, usually treated as free **parameter** in cooling simulations.

Band theory (inner crust VS "metal")

Due to the interactions with the periodic lattice, neutrons move in the inner crust as if they had an effective mass m^{*}.

At the highest energies of the valence band (or at the lowest energies of the conduction band), the band structure E(K) of an electron can be approximated as a "free electron" but with an "effective mass"

 $m^* \leftrightarrow crustal entrainment$

Usual metal: how to distinguish between a "conduction electron" and a "confined" one?

Neutron star inner crust: how to distinguish a "leaked neutron" from a "confined" one?

Entrainment coupling: crust and core

In the inner crust (lattice of ions & S-wave superfluid): Chamel, PRC 2012 Bragg scattering by crustal lattice entrains the "free" neutrons. Non-local effect: m* > 1

→ Consequence: the crustal superfluid is entrained by the normal component: reduced mobility of "free" neutrons is a potential problem for pulsar glitch theory. Chamel PRL 2013, Montoli, Antonelli et al, Universe 2020

In the core (S-wave superconductor & P-wave superfluid): Chamel & Haensel PRC 2006 Entrainment is due to the strong interaction between protons and neutrons. Local effect: m*<1

-Consequence #1: Scattering of electrons off vortex cores: the core is coupled to the crust on the timescale of a second Alpar et al, ApJ 1984

-Consequence #2: Dipole-dipole interaction with flux-tubes (core pinning?)

 $d\sin\theta = N\pi/k$

Pinning – Length scales

 $\mathbf{Core} \rightarrow$ "Abrikosov lattice" spacing between flux-tubes $\sim 1000~\mathrm{fm}$

Crust \rightarrow crustal lattice spacing $\sim 100 - 20$ fm

Vortex-nucleus interaction \rightarrow coherence length $\sim 10 - 100$ fm

Inter-vortex spacing

$$l_v = \frac{\sqrt{\kappa P}}{2\pi} \approx 7 \times 10^{-3} \sqrt{P} \text{ cm}$$

Vortex dynamics and vortex-*lattice* interaction \rightarrow "mesoscale" (inter-vortex spacing)

Inner crust structure

Density profiles of neutron and protons, at several average densities, along a line joining the centers of two adjacent unit cells (HF calculation of the GS in the **inner crust** with effective NN interaction, **no pairing correlations**)

Negele & Vautherin, Neutron star matter at sub-nuclear densities (1973)

Include **pairing correlations**: Baldo et al, *The role of superfluidity in the structure of the neutron star inner crust* (2005)

Band theory of solids: Carter et al, Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust (2006)

Stationary test (glitch activity)

 $\begin{array}{c} \begin{array}{c} s_{p} \\ r_{p} \\ r$

"Heteroscedastic" linear regression: uncertainties larger by a factor ~ 10 for the Vela (Montoli+2020 arXiv:2012.01539)

$$\mathcal{A}_{a} = \frac{\sum_{i} \Delta \Omega_{i}}{\sum_{i} \Delta t_{i}} = \frac{\sum_{i} \Delta \Omega_{i}}{t_{N_{\text{gl}}-1} - t_{0}} \qquad \text{Var}(\mathcal{A}_{a}) = \frac{1}{(N_{\text{gl}}-1)(t_{N_{\text{gl}}-1} - t_{0})} \sum_{i} \frac{(\Delta \Omega_{i} - \mathcal{A}_{a} \Delta t_{i})^{2}}{\Delta t_{i}} \qquad \begin{array}{c} \text{Unbiased} \\ \text{estimators for} \\ \text{cumulated data} \end{array}$$

Compare with bounds on the minimum mass of a NS:

Observed: M=1.174 Mo Martinez+2015 arXiv:1509.08805 CCS simulations: M≈1.15 Mo Suwa+2017 arXiv:1808.02328

Heteroscedastic linear regression

Montoli+2020 arXiv:2012.01539

$$\Delta\Omega_i = \mathcal{A}_a \, \Delta t_i + \varepsilon_i$$

$$\Omega_i = \mathcal{A}_a t_i + \sum_{j=1}^i \varepsilon_j$$

Usual regression: deviations i.i.d.

Cumulated data: deviations are not i.i.d.

Important: careful inclusion of the "intercept" may lower the estimated uncertainty.

Pulsar	$\mathcal{G}_{hom}(\%)$	$\mathcal{G}_{het}(\%)$
0534+2200	0.0079 ± 0.0007	0.008 ± 0.006
0537-6910	0.874 ± 0.003	0.85 ± 0.15
0631+1036	1.77 ± 0.18	2.03 ± 1.95
0835-4510	1.62 ± 0.02	1.6 ± 0.2
1341-6220	1.52 ± 0.10	1.9 ± 0.6
1740-3015	1.22 ± 0.04	1.3 ± 0.7

$$\mathcal{A}_{a} = \frac{\sum_{i} \Delta \Omega_{i}}{\sum_{i} \Delta t_{i}} = \frac{\sum_{i} \Delta \Omega_{i}}{t_{N_{\text{gl}}-1} - t_{0}} \qquad \text{Var}(\mathcal{A}_{a}) = \frac{1}{(N_{\text{gl}}-1)(t_{N_{\text{gl}}-1} - t_{0})} \sum_{i} \frac{(\Delta \Omega_{i} - \mathcal{A}_{a} \Delta t_{i})^{2}}{\Delta t_{i}} \qquad \begin{array}{c} \text{Unbiased} \\ \text{estimators for} \\ \text{cumulated data} \end{array}$$

Times of arrival

Timing irregularities: mismatch between **expected** (model) and **observed** TOA

To obtain the TOA in computer simulations we have to solve the **implicit** equation

$$\phi(t + \delta a_t) = \phi^{\text{mod}}(t)$$
 (root-finder needed, very slow!)

Trick to simplify the problem: **implicit differentiation** of the above equation gives

$$\frac{d}{dt}\,\delta a_t = -\frac{\Omega_p^t - \dot{\phi}_t^{\text{mod}}}{\Omega_p^t} - \frac{\dot{\phi}_t^{\text{mod}}\dot{\Omega}_p^t}{{\Omega_p^t}^2}\,\delta a_t + O\left(\frac{\delta a_t^2}{T^2}\right)$$

TOA formal definition
(observations)
$$(t_j^{\text{mod}} + \delta a_j) = \phi^{\text{mod}}(t_j^{\text{mod}})$$

TOA definition
(continuous model)

mo t c

φ

 $\phi(t + \delta a_t) = \phi^{\text{mod}}(t)$

Phase of the observable component $\phi_t = \int_0^t \Omega_p^z \, dz$

Very good **approximation**:

$$\delta a_t \approx -\frac{\delta \phi(t)}{\Omega}$$

$$\delta \phi_t = \phi_t - \phi_t^{\text{mod}}$$

$$P_a(\omega) \approx (\omega \Omega)^{-2} P_p(\omega)$$

Times of arrival: PSD

Antonelli, Basu, Haskell, MNRAS (2023), arXiv:2206.10416

Simulations used to validate the approximate analytical result

$$P_a(\omega) \approx (\omega \Omega)^{-2} P_p(\omega)$$

To obtain the TOA in computer simulations we have to solve the **implicit** equation

 $\phi(t + \delta a_t) = \phi^{\text{mod}}(t)$ (root-finder needed, very slow!)

Trick to simplify the problem: implicit differentiation of the above equation gives

$$\frac{d}{dt}\,\delta a_t = -\frac{\Omega_p^t - \dot{\phi}_t^{\text{mod}}}{\Omega_p^t} - \frac{\dot{\phi}_t^{\text{mod}}\dot{\Omega}_p^t}{\Omega_p^t}\,\delta a_t + O\left(\frac{\delta a_t^2}{T^2}\right)$$

Very good **approximation**:

$$\delta a_t \approx -\frac{\delta \phi(t)}{\Omega}$$

$$\delta \phi_t = \phi_t - \phi_t^{\text{mod}}$$

$$P_a(\omega) \approx (\omega \Omega)^{-2} P_p(\omega)$$