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A quick overview of neutron stars (NSs)

Formed in core-collapse super-
novae of massive stars, NSs are
compact objects that combine
many extremes of physics.
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Global properties

PSR J0348+045%2

One way to characterise neutron
stars is by their global (macros-
copic) properties. These, in turn,
constrain the dense-matter EoS.
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Local properties

Besides global features, NSs are
also characterised by properties
that do not take a single value,
but typically vary across the
stellar cross-section.
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Neutron star diversity

e To probe (global & local) NSs properties,
we take advantage of the fact that NSs
are observed in a variety of environ-
ments across the EM spectrum, e.g..
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Ages and magnetic fields

e NS magnetic field strengths and ages are typically no
directly measured but instead inferred from pulsar
timing (i.e, via P and P measurements).

Characteristic
ages are only an
indication as
they neglect
field decay.
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Radio pulsar timing

e NSsemit regular electromagnetic pulses. We
track this emision with telescopes to build up
timing solutions and predict pulsar rotations.
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Neutron star mass spectrum

To date, high-precision pulsar timing has constrained 61 (65) NS masses. The

heaviest source, PSR J0740+6620 (2.08 + 0.07M09), rules out the softest EoSs.
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Pulse-profile modelling in the X-rays

NICER (Neutron Star Interior Composition Explorer) analyses the X-ray light

curves emitted from rotating hotspots on NS surfaces.

Picture of NICER on the ISS (left) and illustration of
the pulse profile emitted by hotspots in different
gravitational fields (right). Credit: NASA Goddard
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Mass-radius constraints

While NICER can constrain masses and
radii simultaneously, we obtain the best
radius measurements for those millisecond
pulsars where the mass is known from
radio timing, e.g., for PSR J0740+6620.




Binary neutron star mergers

e The “newest” way to extract NS masses is from the
gravitational waves signals of binary NS mergers.
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Macroscopic quantum states

e Mature NSs with temperatures between 10°-108K are cold in terms of their
high densities and well below the nucleon Fermi temperatures (~102K).
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Sudden spin-ups

e Pulsar timing shows that the regular electromagnetic spin-down of NSs can
be interrupted by sudden spin-ups, so-called pulsar glitches.
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Vortex dynamics |

° Superﬂuids are characterised by a wave func-
tion W=W e'? satisfying a Schrodinger equation.
This dictates v, .= h/m Ve and w =V xv_=0.
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Vortex dynamics lI

e SF spin-down is impeded by
pe— pinning vortices to the crustal
— @) nuclei. The crustal SF can thus
— ®B) provide the angular momen-
tum reservoir for the glitch.
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Crustal physics

e Glitch morphology is not only
affected by the properties of
the vortices themselves but
also the crustal physics.
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Better models
will be crucial to
use upcoming
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Internal superfluid, Qg

I AQy = Iy |AQ). Mol constraints

Glitch .

Angular velocity

While individual glitches encode local
physics, repeated large glitches con-
strain the NS moment of inertia (Mol).

Vela pulsar (PSR B0833-45)
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Burst mechanism

e NSs accreting from a main-sequence companion can accumulate so much
matter onto their surfaces that a runaway fusion reaction is ignited causing
thermonuclear bursts, observed in X-rays.
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Burst oscillations

e Oscillations with frequencies ~10-600Hz are
observed in the rises and decays of the bursts.
They are associated with the NS rotation rate.
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Burning ashes

e Ignition conditions and burst characteristics
depend strongly on the thermal properties
and composition of the crustal matter.
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Transient sources

e \We can track the thermal evolution post-outburst to probe additional physics.
In quiescence, luminosities drop significantly but are still much higher than
for isolated, old neutron stars due to burning ashes reacting with the existing
crust. This provides additional heat referred to as deep crustal heating.
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Quasi-persistent sources |

e These sources accrete from years to decades. Due to long accretion episodes,
the crust is heated more and brought out of equilibrium with the core. By
following the cooling, we can probe various aspects of crustal physics.

High temperatures .
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Quasi-persistent sources li

e The longer we observe quasi-persistent
sources cooling post outburst, the deeper
we probe into the star. For some sources,
we can even probe the core.

Cooling curves
are sensitive to SF. For
SF neutrons, the heatd
capacity is suppresse

|eading to faster

cooling.
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Long-term
monitoring suggests
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Cooling of isolated NSs

e Cooling observations also provide infor-
mation about interiors of isolated NSs.
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QPO observations

e Magnetars are those NSs with the strongest magnetic fields. Their decay and
evolution drives the enigmatic activity (bursts, flares, etc.) of these sources.
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Giant flare & QPO mechanism

e The exact physical mechanism is not
understood but we have an idea:
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Probing crustal physics

e Initially, QPOs were interpreted as (discrete) torsional shear modes in the NS
crust. QPO frequencies are, thus, sensitive to crustal physics. We can estimate
the frequency of the fundamental mode in the inner crust as follows:
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r speed is given as
(iJh/e p6;°-5,?/vhere the shear
Smodu\us is strongly
dependenton the

crustal microphysics.




Probing magnetic field strengths

e A second hypothesis assumes that QPOs are (continuum) Alfvén oscillations
of the strongly magnetised fluid core and thus probe the core magnetic field.
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Realistic mode calculations

e The crustal vibrations are strongly damped as
the B-field spreads the entire star and couples
crustal oscillations to the Alfvén continuum in
the core. QPOs are global magneto-elastic
oscillations (Gabler et al. 2011, 2013, 2016).
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Main issue: we
need to identify a
given frequency with
a specific mechanism.
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To summarise

Artist illustrations of the SKA (credit:

SKAOQO) and ET (credit NIKHEF).
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