Strongly dissipative vortex dynamics in the holographic superfluid

Heidelberg University & EMMI/GSI

Nonequilibrium phenomena in superfluid systems ECT*, May 13, 2025 Holographic Duality

AdS/CFT Correspondence

Juan Maldacena, 1997

Discovery made with help of string theory

Duality between AdS and CFT: Anti-de-Sitter space and Conformal Field Theory AdS/CFT Correspondence

- not yet strictly proven, but successfully tested in many special cases
- independent of question whether string theory is fundamental theory of nature

AdS/CFT - a Strong-Weak Duality

AdS/CFT correspondence maps strong coupling in one theory to weak coupling in the other, and vice versa.

Difficult problems are mapped to simple problems: weakly coupled gravity describes strongly coupled gauge theory!

AdS/CFT - the Full Conjecture

Maldacena

$\mathcal{N} = 4$ super Yang-Mills SU(N) theory in 3+1 dimensions

Typ IIB string theory on AdS₅ × S⁵

Simplification in Limits

number of colors N_c, 't Hooft coupling $\lambda = g^2 N_c$

Classical gravity describes quantized gauge theory!

AdS Space, Temperature and Black Holes

Anti-de-Sitter Space AdS₅

space-time with 4+1 dimensions with constant negative curvature

solution of Einstein equations of general relativity with negative cosmological constant

Anti-de-Sitter Space AdS₅

AdS_5 metric

Holographic Dictionary

Gubser, Klebanov, Polyakov Witten

I-to-I translation of AdS- to CFT quantities

examples: observables in CFT as boundary values of fields in AdS space

→ "Gauge theory lives on boundary of AdS space"

Finite Temperature

CFT with temperature in AdS/CFT mapped to AdS space with black hole, more precisely: black brane

Physics of thermal systems completely encoded in physics of black holes in higher dimensions!

Temperature of field theory equals Hawking temperature of black hole.

Finite Temperature

zero temperature: AdS₅

$$\mathrm{d}s^2 = \frac{L^2}{z^2} \left(-\mathrm{d}t^2 + \mathrm{d}\vec{x}^2 + \mathrm{d}z^2 \right)$$

finite temperature T: AdS₅ with black hole

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-h(z)dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h(z)} \right)$$
$$h(z) = 1 - \frac{z^{4}}{z_{h}^{4}} \qquad T = \frac{1}{\pi z_{h}}$$

Gauge-/Gravity Duality or Holography

Extensions of the Correspondence

CFT in AdS/CFT is supersymmetric and not realistic.

Many extensions of the correspondence:

- non-conformal
- spatially anisotropic
- with chemical potential
 - → electrically charged black hole!
- non-relativistic
- other number of dimensions

→ Gauge-/Gravity Duality or Holography

Applications of Holography

Aspects of the Applications

- model theories of strong coupling, search for new phenomena
- particularly successful for collective phenomena (microscopic theory often not essential)

- search for universal behavior in classes of holographic theories
- important observation: universality of strongly coupled systems

Viscosity and Expansion

very small n/s, strongly coupled systems!

N/s and Holography

KSS bound:

Kovtun, Son, Starinets

quark-gluon plasma: about 0.2

Key Problem for Applications of Holography

- Lagrangian, field content and parameters of dual field theory in general unknown (in particular for bottom-up models)
- difficult to determine applicability to real-world materials
- We address this for the holographic superfluid.

Gubser Hartnoll et al Herzog et al

(d+l+l)-dimensional action:

- AdS-Schwarzschild space-time
- gauge field + complex scalar in bulk
 D=d+1

$$S = \frac{1}{16\pi G_{\rm N}^{(D+1)}} \int \mathrm{d}^{D+1}x \sqrt{-g} \left(\mathcal{R} - 2\Lambda + \frac{1}{q^2} \mathcal{L}_{\rm gauge-matter}\right)$$
$$\mathcal{L}_{\rm gauge-matter} = -\frac{1}{4} F_{MN} F^{MN} - |(\nabla_M - \mathrm{i}A_M)\Phi|^2 - m^2 |\Phi|^2$$

• superfluid density $n = |\langle \psi \rangle|^2$ from (d=2)

$$\Phi(t, \vec{x}, z) = \eta(t, \vec{x}) z + \langle \psi(t, \vec{x}) \rangle z^2 + \mathcal{O}(z^3)$$

order parameter <

 $\eta=0$ chosen by boundary condition

Gubser Hartnoll et al Herzog et al

dictionary:

boundary: (d+1)-dimensional

bulk: (d+I+I)-dimensional

thermal background @ μ , T complex scalar field operator Ψ U(1) conserved current j^{μ}

bulk equations of motion:

$$(D^2 - m^2) \Phi = 0$$
$$\nabla_M F^{MN} = \mathcal{J}^N(\Phi)$$
$$G_{MN} - \Lambda g_{MN} = \frac{1}{q^2} T_{MN}$$

charged black hole
complex scalar field
$$\Phi$$

 $U(1)$ gauge field A_M

- Holographic superfluid captures dynamics on all relevant length scales.
- Relation to Tisza-Landau model:

black hole corresponds to normal component, gauge-matter sector to superfluid component

Implementation

 probe approximation: solve gauge-matter sector on fixed AdS-BH background:

$$\begin{split} \mathrm{d}s^2 &= \frac{L_{\mathrm{AdS}}^2}{z^2} \left(-h(z) \mathrm{d}t^2 + \mathrm{d}\boldsymbol{x}^2 - \mathrm{d}t \mathrm{d}z \right) \\ h(z) &= 1 - \left(\frac{z}{z_{\mathrm{h}}}\right)^D \end{split} \\ \end{split}$$
Eddington-Finkelstein coordinates

• chem. potential via boundary condition:

 $A_t(z=0)=\mu$ canonical or grand-canonical ensemble possible $A_t(z=z_{
m h})=0$

• superfluid coupled to heat bath with $T = \frac{D}{4\pi z_{\rm b}}$

2D Equilibrium Configuration

 Choose temperature and chemical potential in the superfluid phase

- scalar condenses, $\Phi = \Phi(z)$
- cloud of charge in the bulk, $\sqrt{-g}|\mathcal{J}^0|$

Numerical Simulations of the Holographic Superfluid

Team

Gregor Bals Finn Tillinger Paul Wittmer Thomas Gasenzer Davide Proment Andreas Samberg Christian-Marcel Schmied Markus Karl

Holographic Superfluid in 2 Dimensions

Turbulence: Simulation

CE, T. Gasenzer, M. Karl, A. Samberg JHEP 05 (2015) 070 [arXiv:1410.3472]

Adams, Chesler, Liu Du, Niu, Tian, Zhang

Turbulence: Results

- Kolmogorov-like scaling (Adams et al) at intermediate times - only transient
- universal turbulent behavior at late times

 first observations of non-thermal fixed point in strongly coupled system

Bulk View of Vortex Pair

- momentum modes fall into black hole
- strong energy flux at vortex cores, mostly UV modes dissipated

Adams, Chesler, Liu

Vortex-Antivortex Pair

CE, A. Samberg, P. Wittmer JHEP11 (2021) 199 [arXiv:2012.08716]

P.Wittmer, C. Schmied, T. Gasenzer, CE Phys.Rev.Lett. 127 (2021)101601 [arXiv: 2011.12968]

- idea:
 match solutions of dissipative GPE to holographic vortex trajectories
- DGPE:

$$\partial_t \psi(\mathbf{x}, t) = -(\mathbf{i} + \gamma) \left[-\frac{1}{2M} \nabla^2 + g |\psi(\mathbf{x}, t)|^2 - \mu \right] \psi(\mathbf{x}, t)$$
or after some rescaling

or after some rescaling ...

$$\partial_t u(\mathbf{x}, t) = \frac{\mathbf{i} + \gamma}{2\tau} \left[\nabla^2 + 2\mu \left(1 - |u(\mathbf{x}, t)|^2 \right) \right] u(\mathbf{x}, t)$$

• We tune only DGPE parameters (not holographic ones).

DGPE has three free parameters for vortex-pair solution

 $\xi = (2\mu)^{-1/2}, \tau, \gamma$

- ξ : healing length, controls vortex size τ : time rescaling parameter γ : quantifies dissipation
- We tune these parameters independently to match holographic vortex trajectories.

• First match vortex size to fix ξ :

• After matching size, shapes are in excellent agreement.

• Then match trajectories in space (fixes γ) and time (fixes τ)

Excellent agreement except shortly before annihilation

 Late-time discrepancy probably due to different UV dynamics.

- From matching: $\gamma\simeq 0.3$ for holographic superfluid
- typical BECs with Alkali atoms at $T\sim 100\,{\rm nK}$: $\gamma\simeq 10^{-4}\dots 10^{-3}$
 - Holographic superfluid strongly dissipative!

Quantifying Dissipation: Friction (HVI)

 Compare trajectories to Hall-Vinen-Iordanskii (HVI) equations describing mechanical motion of point vortices:

vortices move in flow field of resp. other vortex:

$$\mathbf{v}_i = \frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t} = (1 - C)\,\mathbf{v}_{\mathrm{s}}^i - w_i\,C'\,\hat{\mathbf{e}}_{\perp} \times \mathbf{v}_{\mathrm{s}}^i$$

with friction coefficients C, C'.

• Determine C' by matching, then compare to real-world values.

- Holographic vortex dynamics: $C' \simeq 0.03 \dots 0.1$
- Experiment: superfluid helium films: $C' \simeq 10^{-2} \dots 1$ (at about 1K) thermally excited BECs: $C' \simeq 0.01 \dots 0.03$
- Holographic vortex dynamics might be applicable to superfluid helium films and thermal BECs.

Landau Instability

- Induce superfluid velocity by boundary value for A_x
- Instability above critical velocity

Multi-Vortex Decay

 Use flat trap potential to observe decay of vortex of multiple winding

Vortex Shedding: Moving Obstacle

Holographic Superfluid in 3 Dimensions

P.Wittmer, CE

Vortex Rings

density and flow

self-induced velocity depending on radius

Vortex Rings

bulk view

Vortex Ring Motion

Non-Equilibrium Dynamics

P.Wittmer, CE [arXiv: 2410.22410]

grid size: 128 x 128 x 128,
 32 points in holographic direction

Time: 005

Turbulence: First Scaling Regime

- times $50 \leq t \leq 110$: scaling $E(k) \sim k^4 n(k) \sim k^{-1.7}$
- Kolmogorov-like
- universal (for all initial conditions)

Turbulence: Second Scaling Regime

- times $150 \leq t \leq 300$: scaling $n(k) \sim k^{-5.1}$
- universal (for all initial conditions)

Turbulence: Late Times

- times $t \gtrsim 350$: no (quasi-)stationary scaling
- spectrum gradually flattens
- universal (for all initial conditions)
- flattening agrees with spectrum of single vortex ring

Dynamics of Vortex Lines and Rings

Time: 005

Dynamics of Vortex Lines and Rings

- Fast formation of closed rings due to reconnections.
- Quick shrinking and disappearing of vortex rings indicates strong dissipation.
- Also rarefaction and sound waves observed.

Summary

- Holography relates weakly coupled gravity in higher dimension to strongly coupled quantum system.
- Matching of DGPE to 2d vortex dynamics in holographic superfluid shows strong dissipation.
- Holographic vortex dynamics applicable to superfluid helium films and to thermal BECs.
- First direct determination of parameters from dynamical process for any holographic system.

Summary

- 2d: turbulence, Landau instability, vortex decays, ...
- 3d: turbulence, vortex line reconnections, ...

Thank you for your interest!

