Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

He II Thermal Flows

Quantum vortices leave a macroscopic signature in the thermal background FOUCAULT

L. Galantucci

ECT*, Trento

13 May 2025

IAC - CNR, Roma

in solidarity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Collaborators

Observatoire de la Cote d'Azur

Giorgio Krstulovic

Newcastle University

Peter Stasiak

Newcastle University

Carlo Barenghi

Andrew Baggaley

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Collaborators

Università La Sapienza

Carlo Casciola

Florida Natl. Lab

Wei Guo

LG, A. Baggaley, C. Barenghi, G. Krstulovic, *Eur. Phys. J. Plus* **135**, 547 (2020) LG, G. Krstulovic, C. Barenghi, *arXiv:2501.08309* (2025)

LG, C. Barenghi, G. Krstulovic, *Phys Rev Fluids* **8**, 014702 (2023) Stasiak, LG, *et al., arXiv:2411.08942*, PNAS, in press (2025) Stasiak, LG, *et al., arXiv:2503.04450* (2025)

Introduction

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Collaborators

Università La Sapienza

Carlo Casciola

Florida Natl. Lab

Wei Guo

LG, A. Baggaley, C. Barenghi, G. Krstulovic, *Eur. Phys. J. Plus* **135**, 547 (2020) LG, G. Krstulovic, C. Barenghi, *arXiv:2501.08309* (2025)

LG, C. Barenghi, G. Krstulovic, *Phys Rev Fluids* **8**, 014702 (2023) Stasiak, LG, *et al., arXiv:2411.08942*, PNAS, in press (2025) Stasiak, LG, *et al., arXiv:2503.04450* (2025)

Introduction

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Collaborators

Università La Sapienza

Carlo Casciola

Florida Natl. Lab

Wei Guo

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

LG, A. Baggaley, C. Barenghi, G. Krstulovic, *Eur. Phys. J. Plus* **135**, 547 (2020) LG, G. Krstulovic, C. Barenghi, *arXiv:2501.08309* (2025)

LG, C. Barenghi, G. Krstulovic, *Phys Rev Fluids* **8**, 014702 (2023) Stasiak, LG, *et al., arXiv:2411.08942*, PNAS, in press (2025) Stasiak, LG, *et al., arXiv:2503.04450* (2025)

Introduction

Classical modeling of \mathbf{F}_{ns}

He II Thermal Flows

Overview

- **2** Mutual Friction Force \mathbf{F}_{ns}
- 3 Classical modeling of \mathbf{F}_{ns}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction	
000000	

Mutual Friction Force **F**_{ns}

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Overview

2 Mutual Friction Force **F**_{ns}

3 Classical modeling of F_{ns}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	Mutual Friction Force \mathbf{F}_{ns}	Classical modeling of \mathbf{F}_{ns}	He II Thermal Flows
○●○○○○○	0000	00000000	

Helium-4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Mutual Friction Force F_{ns}

Classical modeling of **F***ns* 0000000

He II Thermal Flows

Helium II - TWO FLUID MODEL

Tisza (1938), Landau(1941)

SUPERFLUID

- ~ condensate
 - related to BEC
- ho_s , \mathbf{v}_s
- no entropy
- inviscid $v_s = 0$
- ~ Euler fluid

NORMAL FLUID

- thermal excitations
 - phonons
 - rotons (1.5K < T < 2.1K)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

- ρ_n , \mathbf{v}_n
- entropy $s \neq 0$
- viscosity $v_n \sim 10^{-8} m^2/s$
- ~ Navier-Stokes fluid

Introduction 000●000 Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns* 0000000

He II Thermal Flows

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Helium II vs BECs: lenghtscales

LENGHTSCALES	He II	BECs
vortex core	$a_0 \sim 10^{-10} \mathrm{m}$	$\xi \sim \mu m$
<i>mfp</i> excitations	$\lambda_{mfp} \sim 10^{-10} \mathrm{m} \div 10^{-9} \mathrm{m}$	$\lambda_{mfp} \lesssim D$
intervortex distance	$\ell \sim 10^{-4} \mathrm{m} \div 10^{-5} \mathrm{m}$	$\ell \lesssim D$
system size	$D \sim 10^{-1} \mathrm{m} \div 10^{0} \mathrm{m}$	$D \sim 100 \mu \mathrm{m}$

He II Thermal Flows

Helium II *vs* BECs: lenghtscales

Introduction 00000●0 Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Helium II vs BECs: lenghtscales

continuum mechanics

$$Kn = \frac{\lambda_{mfp}}{d_{prob}} < 0.01$$

- T = 1.5K, $d_{prob} > 0.2 \ \mu$ m
- T = 2.1K, $d_{prob} > 0.02 \ \mu$ m
- $\ell \gg d_{prob}$
- $r_p \gg d_{prob}$

solid H/D_2 tracking particles

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Helium II - Quantised Vortices

- topological defects of the superfluid
- one-dimensional structures $a_0 \sim 1\text{\AA}$ • $\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$
 - $D \sim 10^{-2} \text{ m} \div 10^{0} \text{ m}$
- $\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$ confined to vortex lines $\mathbf{s}(\zeta, t)$ $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-2} \text{ m} \div 10^{0} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-2} \text{ m} \div 10^{0} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-2} \text{ m} \div 10^{0} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-2} \text{ m} \div 10^{0} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-2} \text{ m} \div 10^{0} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

Introduction

Mutual Friction Force F_{ns} ••••• Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Overview

2 Mutual Friction Force \mathbf{F}_{ns}

3 Classical modeling of F_{ns}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへ⊙

Mutual Friction Force \mathbf{F}_{ns} $0 \bullet 00$ Classical modeling of F_{ns}

He II Thermal Flows

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Mutual Friction Force \mathbf{F}_{ns} : pioneerings and a review

The rotation of liquid helium II II. The theory of mutual friction in uniformly rotating helium II

BY H. E. HALL AND W. F. VINEN The Royal Society Mond Laboratory, University of Cambridge

Proc. R. Soc. London A 215, 215 (1956)

Mutual Friction in Bosonic Superfluids: A Review

Yuri A. Sergeev¹

J. Low Temp Phys 212, 251 (2023)

Mutual Friction Force F_{ns} 0000 Classical modeling of **F***ns* 0000000

He II Thermal Flows

Helium II - Mutual friction force \mathbf{F}_{ns}

- pioneering work Hall & Vinen (1956)
 - probed lengthscales $\Delta \gg \ell$
 - friction coefficients calculation
 - HVBK Eqs.
- Schwarz (1978)
 - probed lengthscales $\delta \lesssim \ell$
 - no backreaction of vortices on **v**_n
 - $\mathbf{v}_n(\mathbf{x}, t) = \hat{\mathbf{V}}_n$, VFM, 1-WAY
- Barenghi *et al.* (1999)
 - probed lengthscales $\delta \lesssim \ell$
 - backreaction of vortices on \mathbf{v}_n
 - $\mathbf{v}_n(\mathbf{x}, t)$, VFM + NS, 2-WAY

Mutual Friction Force F_{ns} 0000 Classical modeling of **F***ns* 0000000

He II Thermal Flows

Helium II - Mutual friction force \mathbf{F}_{ns}

- pioneering work Hall & Vinen (1956)
 - probed lengthscales $\Delta \gg \ell$
 - friction coefficients calculation
 - HVBK Eqs.
- Schwarz (1978)
 - probed lengthscales $\delta \lesssim \ell$
 - no backreaction of vortices on **v**_n
 - $\mathbf{v}_n(\mathbf{x}, t) = \hat{\mathbf{V}}_n$, VFM, 1-WAY
- Barenghi *et al.* (1999)
 - probed lengthscales $\delta \lesssim \ell$
 - backreaction of vortices on \mathbf{v}_n
 - $\mathbf{v}_n(\mathbf{x}, t)$, VFM + NS, 2-WAY

Mutual Friction Force F_{ns} 0000 Classical modeling of **F***ns* 0000000

He II Thermal Flows

Helium II - Mutual friction force \mathbf{F}_{ns}

- pioneering work Hall & Vinen (1956)
 - probed lengthscales $\Delta \gg \ell$
 - friction coefficients calculation
 - HVBK Eqs.
- Schwarz (1978)
 - probed lengthscales $\delta \lesssim \ell$
 - no backreaction of vortices on **v**_n
 - $\mathbf{v}_n(\mathbf{x}, t) = \hat{\mathbf{V}}_n$, VFM, 1-WAY
- Barenghi *et al.* (1999)
 - probed lengthscales $\delta \lesssim \ell$
 - backreaction of vortices on \mathbf{v}_n
 - $\mathbf{v}_n(\mathbf{x}, t)$, VFM + NS, 2-WAY

Classical modeling of F_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Helium-II: models

credits: Giorgio Krstulovic

Introduction

Classical modeling of F_{ns} ••••••

He II Thermal Flows

Overview

2 Mutual Friction Force **F**_{ns}

3 Classical modeling of \mathbf{F}_{ns}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction

Classical modeling of \mathbf{F}_{ns} $\odot \odot \odot \odot \odot \odot \odot$ He II Thermal Flows

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

FOUCAULT

FOUCAULT

Fully cOUpled loCAl model of sUperfLuid Turbulence

- more *realistic* classical model of \mathbf{F}_{ns}
- **e** distribution of \mathbf{F}_{ns} on \mathbf{v}_n grid points *physically motivated*
- higher parallelisation solve wider range of scales

USE tools from Classical Turbulence

Introduction

Classical modeling of \mathbf{F}_{ns} $\odot \odot \odot \odot \odot \odot \odot$ He II Thermal Flows

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

FOUCAULT

Fully cOUpled loCAl model of sUperfLuid Turbulence

- more *realistic* classical model of \mathbf{F}_{ns}
- **e** distribution of \mathbf{F}_{ns} on \mathbf{v}_n grid points *physically motivated*
- higher parallelisation solve wider range of scales

USE tools from **Classical Turbulence**

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000

He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

•
$$\mathbf{f}_D \propto (\mathbf{v}_n - \dot{\mathbf{s}}) \sim \text{Stokes drag}$$

• vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $D = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|v_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{\nu_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{\nu_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

• $\mathbf{f}_D \propto (\mathbf{v}_n - \dot{\mathbf{s}}) \sim \text{Stokes drag}$

• vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $D = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 000000

He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $\mathbf{D} = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|v_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta}\mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}'\mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• Re=
$$\frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $D = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|v_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $D = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|v_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $\mathbf{D} = \frac{4\pi \rho_n \mathbf{v}_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4\mathbf{v}_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $\mathbf{D} = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

• $\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $\mathbf{D} = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $\mathbf{D} = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{\nu_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{\nu_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics [Kivotides, *Phys. Rev. Fl.* **3**, 104701 (2018)]

- $\mathbf{f}_D \propto (\mathbf{v}_n \dot{\mathbf{s}}) \sim \text{Stokes drag}$
- vortex locally ~ cylinder

•
$$R_c \gg \delta \gg a_0$$

• $\operatorname{Re} = \frac{|\mathbf{v}_n - \dot{\mathbf{s}}| a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_D = \mathbf{D} \left(\mathbf{v}_n - \dot{\mathbf{s}} \right)$$
, $\mathbf{D} = \frac{4\pi \rho_n v_n}{\left[\frac{1}{2} - \gamma - \log\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n} \right) \right]}$

•
$$\mathbf{f}_D + \mathbf{f}_I + \mathbf{f}_M = 0$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns} 0000000

He II Thermal Flows

F_{ns}: *fully coupled* local model

• $\mathbf{v}_n(\mathbf{x}, t)$ self-consistently with NS Eqs. + tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_n}$

$$\rho_n \left[\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n \right] = -\frac{\rho_n}{\rho} \nabla p + \eta \nabla^2 \mathbf{v}_n + \oint_{\mathscr{L}} \delta(\mathbf{x} - \mathbf{s}) \mathbf{f}_{ns}(\mathbf{s}) d\xi ,$$

$$\nabla \cdot \mathbf{v}_n = 0$$

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• $\mathbf{v}_n(\mathbf{x}, t)$ self-consistently with NS Eqs. + tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$

$$\rho_n \left[\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n \right] = -\frac{\rho_n}{\rho} \nabla p + \eta \nabla^2 \mathbf{v}_n + \sum_{i=1,\dots,N_p} \delta[\mathbf{x} - \mathbf{s}_i(t)] \mathbf{f}_{ns}^i(t) \delta_i ,$$

$$\nabla \cdot \mathbf{v}_n = 0$$

*W*ζ,μ,χ

•
$$\sum_{\zeta,\mu,\chi=0}^{1} w_{\zeta,\mu,\chi} = 1$$

- nearest neighbours tri-linear extrapolation
- Filtering
 - moving avg N_{filter} points
 - Gaussian kernel

$$\sigma = N_{filter} \Delta x$$

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns} 0000000 He II Thermal Flows

F_{ns}: *fully coupled* local model

• $\mathbf{v}_n(\mathbf{x}, t)$ self-consistently with NS Eqs. + tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$

$$\rho_n \left[\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n \right] = -\frac{\rho_n}{\rho} \nabla p + \eta \nabla^2 \mathbf{v}_n + \sum_{i=1,\dots,N_p} \delta[\mathbf{x} - \mathbf{s}_i(t)] \mathbf{f}_{ns}^i(t) \delta_i ,$$

$$\nabla \cdot \mathbf{v}_n = 0$$

- $w_{\zeta,\mu,\chi}$ • $\sum_{\zeta,\mu,\chi=0}^{1} w_{\zeta,\mu,\chi} = 1$
- nearest neighbours tri-linear extrapolation
- Filtering
 - moving avg N_{filter} points
 - Gaussian kernel

$$\sigma = N_{filter} \Delta x$$

Classical modeling of Fns 00000000

He II Thermal Flows

F_{ns}: fully coupled local model

- physically consistent regularisation
- active matter systems strongly localised response of point-like agents
 - particles (PIV, PTV)
 - bacteria
 - swimmers

[Gualtieri et al., J Fluid Mech 773, 520 (2015)] [Gualtieri et al., Phys Rev Fl 2, 034304 (2017)]

- Re~ $10^{-4} \div 10^{-5}$
- generation localised vorticity ω_n
- diffused by viscosity v_n [LG et al., Eur. Phys. J. Plus 135, 547 (2020)]

Mutual Friction Force **F**_{*ns*}

Classical modeling of F_{ns} 0000000

He II Thermal Flows

Numerical Architecture

- $\mathbf{v}_n(\mathbf{x}, t)$ on 512³
- past: 128^3 (40³)
- $N_p \sim 2 \times 10^5$
- wider range of scales

Introduction	Mutual Friction Force \mathbf{F}_{ns}	Classical modeling of F_{ns}
0000000	0000	00000000

He II Thermal Flows

Numerical Architecture

- $\mathbf{v}_n(\mathbf{x}, t)$ on 512^3
- past: 128^3 (40³)
- $N_p \sim 2 \times 10^5$
- wider range of scales

Introduction	Mutual Friction Force F _{ns}	Classical modeling of \mathbf{F}_{ns}
0000000	0000	00000000

He II Thermal Flows

Numerical Architecture

- $\mathbf{v}_n(\mathbf{x}, t)$ on 512^3
- past: 128^3 (40³)
- $N_p \sim 2 \times 10^5$
- wider range of scales

Mutual Friction Force **F**_{ns}

Classical modeling of \mathbf{F}_{ns} 0000000 He II Thermal Flows

Shrinking vortex ring in quiescent normal fluid

Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation

[Tang et al, Nat Comms 14, 2941 (2023)]

・ロト・国ト・ヨト・ヨー シタの

Introduction
0000000

Classical modeling of \mathbf{F}_{ns}

He II Thermal Flows •••••••

Overview

2 Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns} 0000000

He II Thermal Flows

Helium II - COUNTERFLOWS

- He II thermically driven
 - heater placed in a channel
 - $-\Delta T \Rightarrow \Delta p = \rho s \Delta T$
 - normal fluid transports heat , $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$
 - $\bar{\mathbf{v}}_{ns} = \bar{\mathbf{v}}_n \bar{\mathbf{v}}_s = \mathbf{q} / (T \rho_s s)$
 - Laminar T I T II
- $q_{lam} \propto \nabla T$, $q_{tur} \propto \nabla T^{1/m}$
- Dissipation Excess $E_n(k) \sim k^{-m}, m > 5/3$ [Gao et al., Phys Rev B (2017)]
- T I T II transition [Tough, Superfluid Turbulence (1982)]
- large turbulent intensity [Gao et al., Phys Rev B (2017)]

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns} 0000000

He II Thermal Flows

Helium II - COUNTERFLOWS

- He II thermically driven
 - heater placed in a channel
 - $-\Delta T \Rightarrow \Delta p = \rho s \Delta T$
 - normal fluid transports heat , $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$
 - $\bar{\mathbf{v}}_{ns} = \bar{\mathbf{v}}_n \bar{\mathbf{v}}_s = \mathbf{q}/(T\rho_s s)$
 - Laminar T I <mark>T II</mark>
- $q_{lam} \propto \nabla T$, $q_{tur} \propto \nabla T^{1/m}$
- Dissipation Excess $E_n(k) \sim k^{-m}, m > 5/3$ [Gao et al., Phys Rev B (2017)]
- T I T II transition [Tough, Superfluid Turbulence (1982)]
- large turbulent intensity [Gao et al., Phys Rev B (2017)]

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Helium II - COUNTERFLOWS

Motivations

Helium II counterflows studied since 1957, nonetheless:

- **1** statistics of \mathbf{v}_n fluctuations
- 2 more information needed on v_s (profiles)
- **o**nly coarse-grained information on $L(\mathbf{x})$
- more insight is needed to interpret Particle Tracking Velocimetry Exps.

[LG et al, arXiv:2501.08309 (2025)]

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns} 0000000

He II Thermal Flows

COUNTERFLOWS: normal fluid structures

- v⁽¹⁾_{ns} = 0.27cm/s
 L⁽¹⁾ = 7.2 × 10² cm⁻²
- $\Omega(\mathbf{x}) = \frac{|\boldsymbol{\omega}_n(\mathbf{x})|^2}{2}$ • $\Delta v_n(x, z) = \frac{||\delta \tilde{\mathbf{v}}_n||}{|\tilde{v}_n^2|}$
- $v_{ns}^{(2)} = 0.94 \text{ cm/s}$ • $L^{(2)} = 1.1 \times 10^4 \text{ cm}^{-2}$

Mutual Friction Force **F**_{ns}

Classical modeling of **F**_{ns}

He II Thermal Flows

COUNTERFLOWS: $PDF(\delta v_n)$

T=1.5 K

 $v_{ns}^{(1)} = 0.27 \text{ cm/s}$

$$v_{ns}^{(2)} = 0.94 \,\mathrm{cm/s}$$

• $\sigma_z \approx 2\sigma_x$

• $\delta v_n^z = v_n^z - \bar{v}_n^z$

• $\sigma_z > \sigma_z$

• $\delta v_n^x = v_n^x$

• $\sigma_x > \sigma_x$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Mutual Friction Force **F***ns*

Classical modeling of F_{ns}

He II Thermal Flows

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

SINGLE VORTEX EXPERIMENT

Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns* 0000000

He II Thermal Flows

SINGLE VORTEX EXPERIMENT

T=1.5 K

 $v_{ns}^{(1)} = 0.27 \text{ cm/s}$

▲□▶▲□▶▲臣▶★臣▶ 臣 のへぐ

Classical modeling of F_{ns} 0000000

He II Thermal Flows

Oseen's classical solution

[Lamb, Hydrodynamics (1932)]

- straight vortex $a_0 \ll R_c$
- $Re \sim 10^{-5}$
- $\Delta x \lesssim a_0 / Re$
- $\mathbf{V} = \mathbf{U} + \mathbf{v}$
- $U \frac{\partial}{\partial z} \mathbf{v} = -\frac{1}{\rho} \nabla p + v \nabla^2 \mathbf{v}$
- far field correction in 3D Stokes
- 2D necessary !
- for $r \rightarrow a$ error $\sim -\log(Re)^{-1}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical modeling of F_{ns} 0000000

He II Thermal Flows

Oseen's classical solution

[Lamb, Hydrodynamics (1932)]

- straight vortex $a_0 \ll R_c$
- $Re \sim 10^{-5}$
- $\Delta x \lesssim a_0 / Re$
- $\mathbf{V} = \mathbf{U} + \mathbf{v}$
- $U\frac{\partial}{\partial z}\mathbf{v} = -\frac{1}{\rho}\nabla p + v\nabla^2 \mathbf{v}$
- far field correction in 3D Stokes
- 2D necessary!
- for $r \rightarrow a$ error $\sim -\log(Re)^{-1}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mutual Friction Force F_{NS} 0000 Classical modeling of F_{ns} 0000000

He II Thermal Flows

Oseen's classical solution

[Lamb, Hydrodynamics (1932)]

- straight vortex $a_0 \ll R_c$
- $Re \sim 10^{-5}$
- $\Delta x \lesssim a_0 / Re$
- $\mathbf{V} = \mathbf{U} + \mathbf{v}$
- $U\frac{\partial}{\partial z}\mathbf{v} = -\frac{1}{\rho}\nabla p + \nu\nabla^2\mathbf{v}$
- far field correction in 3D Stokes
- 2D necessary!
- for $r \to a$ error $\sim -\log(Re)^{-1}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of F_{ns}

He II Thermal Flows

Oseen's classical solution: far field solution

$r \gg a_0/Re$

•
$$\omega = \frac{C_0 Re}{2} \sin \theta e^{-\frac{\tilde{r}}{2}(1-\cos\theta)} \sqrt{\frac{\pi}{\tilde{r}}}$$

• $C_0 = -\frac{2}{0.5 - \gamma - \log(\epsilon/2)}$

•
$$\nu'_r = C_0 \sqrt{\frac{\pi}{\tilde{r}}} e^{-\frac{\tilde{r}\theta^2}{4}} - \frac{C_0}{\tilde{r}},$$

• $\nu'_{\theta} = -\frac{C_0}{2} \sqrt{\frac{\pi}{\tilde{r}}} \theta e^{-\frac{\tilde{r}\theta^2}{4}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

He II Thermal Flows

Oseen's classical solution: far field solution, PDFs

・ロト・日本・日本・日本・日本・

Mutual Friction Force F_{ns}

Classical modeling of **F**_{ns}

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Experimental signature of wakes

- 'fast particles' $\approx v_n^z$
- 'slow particles' ≈ ν^z_L [Yui et al., Phys Rev Lett 129, 025301 (2022)]

Mutual Friction Force **F**_{ns}

Classical modeling of **F**_{ns}

He II Thermal Flows

Experimental signature of wakes

[Svancara et al, JFM 911, A8 (2021)]

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Experimental signature of wakes

- $v_L^z(\mathbf{s}) = \frac{\varepsilon_1}{\varepsilon_1} (\bar{v}_s^z + v_{BS}^z(\mathbf{s})) + \frac{\varepsilon_2}{\varepsilon_1} v_n^z(\mathbf{s})$
- $\varepsilon_1 + \varepsilon_2 = 1$, $\varepsilon_1(T)$, $\varepsilon_2(T)$
- $\delta v_L^z(\mathbf{s}) = \varepsilon_1 \delta v_{BS}^z(\mathbf{s}) + \varepsilon_2 \delta v_n^z(\mathbf{s})$
- $\mathscr{S}(v_L^z) = [\delta v_L^z(\mathbf{s})]^3 = -2.3 \times 10^{-4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

- $\mathscr{S}(v_{BS}^z) = -1.8 \times 10^{-4}$
- $\mathscr{S}(v_n^z) = -8 \times 10^{-4}$

WAKE SIGNATURE!

Mutual Friction Force **F**_{ns}

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

Experimental signature of wakes

- $v_L^z(\mathbf{s}) = \frac{\varepsilon_1}{\varepsilon_1} (\bar{v}_s^z + v_{BS}^z(\mathbf{s})) + \frac{\varepsilon_2}{\varepsilon_1} v_n^z(\mathbf{s})$
- $\varepsilon_1 + \varepsilon_2 = 1$, $\varepsilon_1(T)$, $\varepsilon_2(T)$
- $\delta v_L^z(\mathbf{s}) = \varepsilon_1 \delta v_{BS}^z(\mathbf{s}) + \varepsilon_2 \delta v_n^z(\mathbf{s})$
- $\mathscr{S}(v_L^z) = \overline{\left[\delta v_L^z(\mathbf{s})\right]^3} = -2.3 \times 10^{-4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

- $\mathscr{S}(v_{BS}^{z}) = -1.8 \times 10^{-4}$
- $\mathcal{S}(v_n^z) = -8 \times 10^{-4}$

WAKE SIGNATURE!

Mutual Friction Force **F***ns*

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- large scale structures (wakes) in sea of thermal excitations
- probe the Iordanskii force f_i ?
- **v**_n can be described as
 - uniform flow
 - +
 - 2D flow structures
 - vortex dipoles
 - parabolic wakes

Mutual Friction Force **F***ns*

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- large scale structures (wakes) in sea of thermal excitations
- probe the Iordanskii force \mathbf{f}_i ?
- **v**_n can be described as
 - uniform flow
 - +
 - 2D flow structures
 - vortex dipoles
 - parabolic wakes

Mutual Friction Force **F**_{*ns*}

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- large scale structures (wakes) in sea of thermal excitations
- probe the Iordanskii force \mathbf{f}_i ?
- **v**_n can be described as
 - uniform flow
 - +
 - 2D flow structures
 - vortex dipoles
 - parabolic wakes

Mutual Friction Force **F**_{*ns*}

Classical modeling of \mathbf{F}_{ns} 0000000

He II Thermal Flows

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- large scale structures (wakes) in sea of thermal excitations
- probe the Iordanskii force \mathbf{f}_i ?
- **v**_n can be described as
 - uniform flow
 - +
 - 2D flow structures
 - vortex dipoles
 - parabolic wakes

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application to fermionic systems and Neutron stars

- fermions: hydrondynamic description at core level?
- neutron stars:
 - dissipative motion of vortices
 - intrinsic spin down by viscosity
 - add a pinning mechanism [Antonelli & Haskell, *MNRAS* **499**, 3690 (2020)]
 - how to relate macrosopic hydrodynamics to mesocale quantised vortex dynamics

Mutual Friction Force \mathbf{F}_{ns} 0000 Classical modeling of **F***ns* 0000000

He II Thermal Flows

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Helium II - Vortex Reconnections

Peter Stasiak