

Finanziato dall'Unione europea NextGenerationEU

VORTEX DYNAMICS IN STRONGLY-INTERACTING ATOMIC FERMI SUPERFLUIDS: FROM FEW TO MANY

Giulia Del Pace

University of Florence

13/05/2025 - ECT*

PE4 - NQSTI - spoke 3- CUP: B83C22004940006

400 Energy levels (MHz) 200 -200 -400

N ~ 10^5 at $T \sim 30$ nK

Magneto optical trap + D_1 molasses + Evaporative cooling

LITHUM-6 FERMI SUPERFLUIDS

 $a \rightarrow \text{Scattering length}$

Energy levels (MHz)

400

200

-200

-400

N ~ 10^5 at $T \sim 30$ nK

Magneto optical trap + D_1 molasses + Evaporative cooling

LITHUM-6 FERMI SUPERFLUIDS

BEC-BCS crossover

LITHIUM-6 FERMI SUPERFLUIDS @ LENS

TEM_{0,1} – like beam @ 532 nm

Squeeze the cloud along the vertical direction and create from oblate to quasi-2D geometries

Digital Micromirror Device (DMD) Vialux V-7000 1024 × 768 mirrors 13.68 μm pitch Maximum framerate: 22 kHz

High resolution microscope objective: NA = 0.45Effective Focal Length: 47mm Field Of View: 0.3 mm Working Distance: 25.1 mm Resolution: 0.9 μ m @ 670 nm, 0.7 μ m @ 532 nm

LITHUM-6 FERMI SUPERFLUIDS @ LENS

TEM_{0.1} – like beam @ 532 nm

Squeeze the cloud along the vertical direction and create from oblate to quasi-2D geometries

Digital Micromirror Device (DN Vialux V-7000 1024×768 mirrors 13.68 μ m pitch Maximum framerate: 22 kHz

High resolution microscope objective: NA = 0.45Effective Focal Length: 47mm Field Of View: 0.3 mm Working Distance: 25.1 mm Resolution: 0.9 μ m @ 670 nm, 0.7 μ m @ 532 nm

rotational

irrotational

Classical fluid

Superfluid

The motion of an inviscid fluid is irrotational

$$\nabla \times v = 0$$

Quantized circulation

$$\Gamma = \oint v \cdot dl = \frac{\hbar}{m} \Delta \phi = \frac{\hbar}{m} 2\pi w$$

For a superfluid: ħ $v = -\nabla \phi$ \mathcal{M}

 $\Delta \phi = 2\pi w \rightarrow \text{single-valuedness of wavefunction}$

 \rightarrow winding number W

Topological excitations in a multiply-connected geometry Vortices, (meta)stable currents in rings

TOPOLOGICAL EXCITATIONS IN ATOMIC SUPERFLUIDS

Quantized vortices in superfluids

Helium

From: G. Bewley, et al., Nature 441, 588 (2006).

Atomic condesates

From: J. R. Abo-Shaeer, et al., Science 292, Issue 5516, pp. 476-479 (2001)

Superconductors

topologically protected:

- \geqslant
- Quantum technologies

How can they **dissipate**?

041037 (2022)

Atomic BEC

Mutual friction determines the motion of single and many vortices

Moon et al., PRA **92**, 051601(R) (2015)

Mutual friction

The vortex interacts with quasiparticle excitations of the superfluid:

- * Delocalized quasiparticles (sound) \rightarrow bosons, fermions
- * Localized quasiparticle (bound states) \rightarrow fermions

Finite temperature effect

Superfluid Helium

Mutual friction is introduced as a phenomenological force to account for dissipation

> H. E. Hall and W. F. Vinen, *The rotation of liquid* helium II – II. The theory of mutual friction in uniformly rotating helium II, Proc. R. Soc. Lond. 238, 215 (1956).

P. M. Walmsley et al., PRL 99, 265302 (2007) J. T. Mäkinen, and V. B. Eltsov. Phys. Rev. B 97.1 014527 (2018)

From: V. B. Eltsov et al., PRL 99, 265301 (2007)

R. Sensarma, et al., *Phys. Rev. Lett.* 96.9 090403 (2006)

3D

Vortex reconnection, Kelvin waves

Stagg et al., PRA 94, 053632 (2016) Y. Minowa, et al., Nat. Phys. 21, 233–238 (2025). M. Tsubota et al., PRB 62, 11751 (2000)

Sound interaction

The **incompressible** energy of the vortex can be transformed into **compressible** energy of the superfluid: sound emission

Also at zero temperature

2D

Accelerating vortices <-> accelerating charges?

Picture taken from: E. Vallin et al., *Physics of Plasmas* **24**, 093101 (2017)

VORTICES IN ATOMIC FERMI SUPERFLUIDS

W. J. Kwon, et al. *Nature* **600**, 64–69 (2021).

Excitation of vortices

Chopstick method

With Bose superfluids: E. C. Samson, *Phys. Rev. A* **93**, 023603 (2016). T. Neely et al., arXiv:2402.09920v2

Detection of vortices

Chopstick ON In situ

Chopstick OFF *Time-of-fligth*

Without dissipation

 $E_i = E_f$

With dissipation

 $E_i > E_f$

$E \propto \log d$ $v \propto 1/d$

MUTUAL FRICTION IN A VORTEX DIPOLE

N. Grani, et al., arXiv:2503.21628 (2025)

Point Vortex Model (PVM)

$$\frac{d\vec{r}}{dt} = (1 - \alpha')\vec{v}_s^0 - \alpha\sigma\hat{z}\times\vec{v}_s^0$$

 $\sigma \rightarrow \text{Circulation}$ $v_s^0 \rightarrow \text{Superfluid velocity}$

SLDA simulation [1] Analytical model including local

— Analytical model including localized QP [2]

[1] A. Bulgac, Phys. Rev. A 76, 040502 (2007)[2] N. B. Kopnin, Reports on Progress in Physics 65, 1633 (2002)

MUTUAL FRICTION IN A VORTEX DIPOLE

N. Grani, et al., arXiv:2503.21628 (2025)

SLDA simulation [1]
Analytical model including localized QP [2]

[1] A. Bulgac, Phys. Rev. A 76, 040502 (2007)[2] N. B. Kopnin, Reports on Progress in Physics 65, 1633 (2002)

N. Grani, et al., arXiv:2503.21628 (2025)

Can we extract information on **microscopic quantities** given the **phenomenological** parameters α and α' ?

Hall angle: direction of the vortex motion with respect to the superfluid velocity

$$\Theta_H = \tan^{-1} \frac{1 - \alpha'}{\alpha} = \omega_0 \tau$$

_ocalized quasiparticle lifetime

$$\tau = \Theta_H / \omega_0 \qquad \qquad \hbar \omega_0 = |\Delta|^2 / E_F$$

Intrinsic superfluid parameter: regime for superfluid turbulence

$$q = \frac{\alpha}{1 - \alpha'}$$

M. Heyl, et al., Nat. Comm. 13, 6986 (2022). N. Kopnin and M. Salomaa, Phys. Rev. B 44, 9667 (1991). A. Finne, et al., Nature 424, 1022 (2003).

MICROSCOPIC DISSIPATION

Caroli, De Gennes, and Matricon. Phys. Lett. 9.4 307-309 (1964) R. Sensarma, et al., *Phys. Rev. Lett.* 96.9 090403 (2006)

Picture taken from: E. Vallin et al., *Physics of Plasmas* **24**, 093101 (2017)

Sound interaction

The **incompressible** energy of the vortex can be transformed into **compressible** energy of the superfluid: sound emission

Also at zero temperature

- Vortices at short distance
- Acceleration -> sound emission
- Vortex-dipole collisions

W. J. Kwon, et al. *Nature* **600**, 64–69 (2021).

To promote **sound dissipation** we work at T=0 and we engineer collisions between short-distance dipole

DIPOLE-DIPOLE COLLISIONS

SOUND DISSIPATION IN VORTEX COLLISION

W. J. Kwon, et al. *Nature* **600**, 64–69 (2021).

The sound dissipation increases for **fermionic** superfluids

For shorter dipole the probability of **annihilation** increases

VORTEX - ANTIVORTEX ANNIHILATION

W. J. Kwon, et al. *Nature* **600**, 64–69 (2021).

- GPE
- Vortex-antivortex annihilation via **sound emission**: the incompressible energy of the dipole is fully converted in compressible sound energy
- The sound emission is non-symmetric (rarefaction pulse)

- resolution
- trajectories

Mutual friction

- We observe an **increase of mutual friction** for increasing temperature, and extract the mutual friction coefficients
- We identify a role of **localized quasiparticles** in dissipation of vortices in Fermi superfluids

CONCLUSIONS

Ultracold atoms a an ideal platform for studying vortex dynamic in a bottom**up approach**: create on-demand vortex configuration, detect with micron-scale

We reconstruct the vortex configuration dynamics by following the **vortex**

D. Hernández-Rajkov, et al. Nat. Phys. 20, 939–944 (2024).

Double concentric ring geometry

We imprint opposite winding $w_i = -w_e$ in the two rings The relative velocity at the interface of radius R_0 is:

MORE VORTICES?

$$\frac{\hbar(w_e - w_i)}{mR_0}$$

Vortex necklace

With a number of vortices $N_v = \Delta w$

MORE FROM LILAB?

W. J. Kwon, et al. Science 369.6499: 84-88 (2020) G. Del Pace, et al., arXiv preprint arXiv:2409.03448 (2024)

$$I = I_c \sin(\phi)$$
$$\dot{\phi} = -\frac{\Delta \mu}{\hbar}$$

LITHUM TEAM @ LENS

Francesco Scazza

Woo Jin Kwon

Theory collaborators:

Pierbiagio Pieri, University of Bologna Michele Pini, University of Augsburg Piotr Magierski, Warsaw University of Technology Gabriel Wlazlowski, Warsaw University of Technology Keljdja Xhani, Politecnico di Torino Luca Galantucci, IAC-CNR

$$\begin{split} \vec{F}_N &= D(\vec{v}_n - \vec{v}_L) + D'\hat{z} \times (\vec{v}_n - \vec{v}_L), \\ \vec{F}_M &= \kappa \rho_s (\vec{v}_s - \vec{v}_L) \times \hat{z} \\ \vec{F}_N + \vec{F}_M &= 0, \end{split} \qquad \begin{array}{c} \mathbf{b} & 0.20 \\ 0.15 \\ \vec{s} & 0.10 \\ 0.05 \\ 0.00 \\ 0.0 \\ 0.0 \\ 0.2 \end{array}$$

$$\begin{split} \alpha &= \frac{d_{||}}{d_{||}^2 + (1 - d_{\perp})^2}, \\ \alpha' &= 1 - \frac{1 - d_{\perp}}{d_{||}^2 + (1 - d_{\perp})^2}, \\ d_{||} &= \frac{D}{\kappa_c \rho_s}, \qquad d_{\perp} = \frac{D'}{\kappa_c \rho_s}. \end{split} \qquad \qquad \alpha &= \frac{\rho_s}{\rho} \left(\omega_0 \tau \tanh \frac{|\Delta|}{2k_B T} \right)^{-1}, \\ \alpha' &= 1 - \frac{\rho_s}{\rho} \left(\tanh \frac{|\Delta|}{2k_B T} \right)^{-1}, \end{split}$$

FORCES ON VORTICES

$$\begin{split} d_{||} &= \frac{\rho}{\rho_s} \frac{\omega_0 \tau}{1 + \omega_0^2 \tau^2} \tanh\left(\frac{\Delta}{2k_B T}\right), \\ d_{\perp} &= 1 - \frac{\rho}{\rho_s} \frac{\omega_0^2 \tau^2}{1 + \omega_0^2 \tau^2} \tanh\left(\frac{\Delta}{2k_B T}\right) \end{split}$$

,