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• In the field of ultracold gases  the term polaron refers to a single mobile impurity 
interacting with the particles of a many-body system (bath).

• Fermi polaron: the bath is an ideal gas of identical fermions.

• Bose polaron: the bath is a weakly-interacting Bose gas. 

• Physically realized by having few atoms of one kind interacting with atoms of a 
different kind. They could be atoms of a different atomic species or atoms of the same 
atomic species but in a different internal state (different hyperfine level).

• Clearly, the statistics of  single impurity (i.e., whether it is a bosonic or fermionic 
atom) is irrelevant. It becomes relevant when the concentration of impurities 
becomes finite. 

• Main quantities: polaron energy, quasiparticle residue Z, effective mass, lifetime 
(when it is not an eigenstate: i.e., at finite momentum or for the ‘‘repulsive branch’’).

• Focus of this talk: fate of the Fermi polaron when the density of impurities 
becomes finite, particularly in 2D, and role of their statistics.

What is a polaron? 



• Quasiparticle residue: square modulus of overlap between interacting ground state
  (of system with N fermions + 1 impurity) with noninteracting ground state              . 
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Chevy ansatz and T-matrix 

• Simple variational ansatz (Chevy, 2006) describes surprisingly well several properties 
of the polaron.

• In terms of Feynman diagrams it corresponds to a resummation of ladder diagrams (T-
matrix) to construct the self-energy of a single impurity. 
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• Polaron energy: energy change due to adding a single impurity



4

Energy and quasiparticle residue 

• Good agreement between Chevy ansatz(=T-matrix) and  diagrammatic MC in both 
3D and 2D for both Ep and Z. Overestimate of dressed-molecule energy by T-matrix: 
polaron molecule transition shifted from 1/kFa = 0.9 to 1.3 in 3D, missed in 2D.  

3D:Vlietinck,Ryckebusch, Van Houcke (2013)

2D:Vlietinck,Ryckebusch, Van Houcke (2014)
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Repulsive and attractive polaron (3D) 

Figure adapted from Massignan, Zaccanti, Bruun, 
Rep. Progr. Phys. (2014)

Scazza et al.,  PRL (2017)

• Repulsive polaron: quasi-particle excitation formed by the impurity repelling the 
surrounding Fermi atoms for positive scattering length. It is not an exact eigenstate.  

• T-matrix self-energy also allows for the calculation of the properties of the repulsive 
polaron (Chevy ansatz limited to the attractive one). It works quite well also in this case. 
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Repulsive and attractive  polaron (2D) 

Schmidt et al. PRA (2012), 
T-matrix calculation

Schmidt et al. PRA (2012)

Koschorreck et al.,  Nature 
(2012) (RF spectroscopy on a 
nearly 2D higly polarized Fermi 
gas).

Repulsive polaron lifetime

Repulsive polaron energy
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Finite concentration of impurities  

Polaron energy

• Fermionic case: Fermi-Fermi mixture. The energy of the attractive polaron can be 
obtained in the zero concentration limit                           from the chemical potential   
of the minority species.  
Luttinger theorem for a Fermi liquid: 

                                 
When          :                    and 

• Bosonic case: Bose-Fermi mixture. Chemical potential of minority species (bosons) 
determined by Hugenholtz-Pines theorem:                                       

When          :            (the  condensate density vanishes) and

Luttinger theorem  for a Fermi liquid and Hugenholtz-Pines theorem for bosons are 
unified in the single impurity limit into the condition determining the polaron 
energy.  



• Fermionic case: Fermi-Fermi mixture. In a Fermi liquid the quasiparticle residue

 gives the height of the Fermi step: 

When          :             and

        
  

• Can Zp be similarly connected to some thermodynamic quantity also in the bosonic 
case (Bose-Fermi mixture)?

• More generally, how do the spectral properties of the polaron get modified at finite x?  
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Quasiparticle residue

Finite concentration of impurities  



When the Fermi polarons are 
bosons: Bose-Fermi mixtures 
(focus on 2D)   

L. Pisani, P. Bovini, F. Pavan, P. Pieri, SciPost Physics 18, 076 (2025)
 P. Bovini, L. Pisani, P. Pieri, work in progress
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Motivation for 2D resonant Bose-Fermi mixtures 

• Bose-Fermi dimers could be a platform to realize a p-wave superfluid according to a 
proposal by Bazak & Petrov:      

• (px + ipy) superfluid in 2D allows for zero-energy Caroli-Matricon-Saint James states in the 
vortex cores. These states provide the building blocks to construct topologically protected 
qubits. 



• We focus on equal masses mF=mB.
                                                                  Dimensionless coupling strengths in 2D: 
                         
                                                                                      for the (resonant) BF attraction
 
                                                                                   for the (weak) BB repulsion.   

The model (2D) 

• Two-component Hamiltonian with attractive contact interaction between bosons 
and fermions. 

• Bare contact-interaction  strength between bosons and fermions expressed in terms of  
2D  boson-fermion scattering length       .

• Boson-boson short-range (weak) repulsion:

11



Bosonic and fermionic self-energy diagrams for the condensed phase

Fermion self-energy
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Boson self-energy Boson-fermion T-matrix



Coupled equations for chemical potentials and condensate density n0

Green’s functions obtained from the self-energies through Dyson’s equations:

Integration over k + Hugenholtz-Pines relation         coupled eqs. for                : mB, mF,n0

Momentum distributions  obtained from the Green’s functions: 
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Universality of condensate fraction and boson momentum distribution (3D)

• Condensate fraction vanishes at a critical coupling: quantum phase transition.

• Condensate fraction almost independent from the boson concentration

• Universality also for the momentum distribution (once normalized by nB ). It suggests:

Lines: T-matrix self-energy 
Symbols: FN-DMC
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A. Guidini, G. Bertaina, D. Galli, P. Pieri (2015)



Surprising agreement between ‘universal condensate fraction’ and Fermi polaron
quasiparticle residue. Naïve explanation:

Comparison with polaron quasiparticle residue Z (3D)

Lines: T-matrix self-energy calculations at 
four different concentrations for zero Bose 
repulsion.

Circles: Diagrammatic MC results
for  Zp   [J. Vlietinck, J. Ryckebusch,
K. Van Houcke,  PRB 87, 115133 (2013)]
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in thermodynamic limit

A. Guidini, G. Bertaina, D. Galli, P. Pieri (2015)
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23Na-40K Bose-Fermi
mixture with broad
Feshbach resonance
( ).

Our prediction
(2015) for n0

Calculation of Zp by von Milczewski and
Schmidt

Experimental validation of theoretical approach in 3D

A. Guidini, G. Bertaina, D. Galli, P. Pieri (2015)



17

2D: condensate fraction and boson momentum distribution

• Like in 3D, condensate fraction and momentum distribution display nearly universal 
behavior when the concentration x is varied.

• However, in contrast with 3D,  the condensate does not identically vanish beyond a 
critical coupling. It remains finite (albeit exponentially small) at large BF coupling 
strength).

gBF = -4

gBF = 0

gBF = -2

L. Pisani, P. Bovini, F. Pavan, P. Pieri (submitted to SciPost Physics)



T-matrix  results for  Z  [R. Schmidt, 
      T. Enss, V. Pietilä,   E. Demler,  
      PRA 85, 021602 (2012)]

Diagrammatic MC results for  Z 
          [J. Vlietinck, J. Ryckebusch, K. Van
          Houcke  PRB 89, 085119 (2014)]
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2D: Comparison with polaron quasiparticle residue

• The universal condensate fraction does not agree with the polaron residue Z in 2D. 

• The T-matrix results for Z (   ) are based on the same self-energy as ours when restricted 
to the polaron limit → difference between condensate fraction and Z is not due to 
different levels of approximation.

• The ‘near degeneracy’ between condensate fraction and Z found in 3D was just accidental.



This is the weak step.

is defined in the thermodynamic limit: with fixed (no matter how
small we take it). Condensate fraction in limit:

First take and then. . So is always infinite.

For a single impurity instead, from the outset and only then .

There is no reason for the condensate fraction to coincide with the polaron residue Z,
even in the limit of vanishing boson concentration.

Back to the explanation for the connection between n0/nB and Z
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• Focus on the boson spectral function which, for a BF mixture, extends the Fermi polaron 
spectral function at a finite concentration x of the impurities.

• Neglecting BB interaction, start from the boson self-energy due to interaction with fermions 
on the imaginary frequency axis

and perform analytic continuation to real frequencies:                       to obtain 

with

20

Spectral functions: analytic continuation to real frequencies

• The spectral function is then obtained as  



Boson (minority species) spectral weight function 

P. Bovini, L. Pisani, P. Pieri, work in progress

Schmidt et al. (2012)

Increasing concentration
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Boson spectral weight function (larger concentrations)  

P. Bovini, L. Pisani, P. Pieri, work in progress

Increasing concentration
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Origin of different spectral features

Repulsive polaron

Attractive polaron

Molecule+Fermi atom hole

Two poles in the T-matrix due to hybridization,
mediated by the boson condensate, between 
bare BF molecules and bare atomic fermions.

Pole in T at lower frequency is mostly
atomic in nature. It is absent in the pure 
polaronic case (it requires a condensate).

It produces a downward band which could be
observed with RF spectroscopy.

Hyb. F atom hole + F atom 



When the FERMI polarons 
are fermions: the case of 
polarized Fermi gases 
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• Pairing between k and –k+Q  to compensate mismatch of Fermi surfaces: 
pairs acquire a finite center of mass momentum Q  

Polarized Fermi gases: search for FFLO phase

k-k+Q

Q

k-k
pairing

• Search for FFLO phase was one of the main motivations driving 
experiments with polarized Fermi gases

• Phase first proposed theoretically by Fulde & Ferrell and independently by 
Larkin & Ovchinnikov (1964) 
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Phase diagram at T=0 with self-consistent T-matrix approach (3D)

We vary dimensionless coupling            (with                      ,                  ) and determine 
critical polarization     [with                                   ].

Second order phase transition determined by:

                                                           diverging pairing susceptibility              ,

where      is the value of      minimizing

At the Lifshitz point (L) the transition changes from N/FFLO to N/pBCS where pBCS  is a 
polarized SF with standard BCS pairing             . 
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M. Pini, P. Pieri, G. C. Strinati, Phys. Rev. B 107, 054505 (2023)



Phase diagram at T=0: including phase separation (3D)

Relatively narrow region 
for observability of FFLO, 
still larger than within 
mean-field.  It includes a 
polarization range  at 
unitarity. Need boxlike trap 
for observability.

Lifshitz point is hidden by phase 
separation region. However, the 
L point could be reached in 
principle following a metastable 
N phase (we found a positive- 
definite compressibility matrix).

PS region combines exp. data
data from Shin et al., 2008 and 
Olsen et al., 2015  (symbols 
with error bars) with QMC 
results from Pilati et al., 2008 
(dotted lines)

At unitarity, critical 
polarization to FFLO: 
~0.435. This value agrees 
well with recent work 
(Tüzemen et al., 2023) by 
Warsaw group within a DFT 
approach. 
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M. Pini, P. Pieri, G. C. Strinati, Phys. Rev. B 107, 054505 (2023)



Quasi-particle residue and effective mass

When QCP is to standard BCS pairing, 
no breakdown of FL properties at QCP.   

Quasi-particle residue and effective mass at                 can be calculated directly on the 
imaginary frequency axis:

Vanishing quasi-particle residue and 
diverging effective mass at FFLO QCP: 
breakdown of FL properties analogous to
what is found in heavy-fermions in the 
proximity of an AFM QCP.  

Ç
√
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2D: Phase diagram

F. Pirolo, L. Pisani, P. Pieri, work in progress

Away from the polaronic limit, the non self-consistent T-matrix performs poorly.

We are now in the process of implementing fully-self-consistent T-matrix in 2D. 

First rough way of implementing self-consistency: insert a «mean-field shift» in the 
bare Green’s functions entering the T-matrix self-energy:

 
More sensible results for the critical are obtained in this way.
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2D: Quasiparticle residue Z

Quasiparticle residue Z rapidly decreases when 
approaching the QCP to FFLO phase. 

However, it does not exactly vanish because the 
absence of self-consistency hinders the validity of 
Luttinger theorem.   

F. Pirolo, L. Pisani, P. Pieri, work in progress



Conclusions 

• Luttinger theorem in Fermi liquids and Hugenholtz-Pines theorem for condensed
bosons are unified under the polaron perspective.

• Calculation of the condensate fraction in 2D Bose-Fermi mixtures reveals that the 
identification of the polaron residue with the condensate fraction, suggested by the 
3D behavior, is not valid. 

• Interesting features in the spectral weight function at finite concentration when the
impurities are bosons in a Fermi gas.

• When the polarons are fermions, the quasiparticle residue evolves from the
polaronic limit to the QCP to the superfluid phase phase. At FFLO QCP: vanishing 
quasi-particle residue and diverging effective mass: breakdown of FL properties 
analogous to what is found in heavy-fermions at AFM QCP.

• Work in progress for 2D polarized Fermi gases: Implementing self-consistency is
crucial.

Thank you!
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