Erbium atoms in optical tweezers

Arina Tashchilina, postdoctoral fellow at University of Innsbruck

Trento, May 2025

Trento 2025

- quantum art, fluid dynamics, quantum chaos
- Ising models, Bose-Hubbard models, LGT
- Quantum Monte Carlo, tensor networks, dynamical mean-field theory, quantum cellular automata

Tensor Train

Zeno effect (*), ground state of nucleus, neutrino oscillations, and many more!!!

arina.tashchilina@uibk.ac.at ∞

(*)wiki

1.5

Motivation

Quantum simulation

- Lattice gauge theories
- Artificial fields
- Dynamical fields
- Meth, Michael, et al. "Simulating 2D lattice gauge theories on a qudit quantum computer." *arXiv preprint arXiv:2310.12110* (2023).
- González-Cuadra, Daniel, et al. "Hardware efficient quantum simulation of non-abelian gauge theories with qudits on Rydberg platforms." *Physical Review Letters* 129.16 (2022): 160501.
- Ohler, Simon, et al. "Self-generated quantum gauge fields in arrays of Rydberg atoms." *New Journal of Physics* 24.2 (2022): 023017.

arina.tashchilina@uibk.ac.at 🖂

Illustration by Kharlamova

Agenda

1. Motivation

2. Why Erbium?

- Complex structure, Multiple transitions
- Rydberg states and advanced capabilities

3. LAC in lanthanides

- Monte Carlo model
- Which transition to use for LAC?
- 4. Rydberg states in lanthanides
 - First erbium Rydberg spectroscopy
 - Rydberg excitations in tweezers

Spherically symmetric

Anisotropic

Why Erbium

- Multivalent
- Highly-magnetic
- Tensorial polarizability
- Large angular momentum

[Core] $4f^{12}6s^2$

6s²

Multiple transitions

Multiple optical transitions

- Independent transition for different roles
- Rich level scheme with broad, narrow and ultra-narrow transitions

9

Huge manifolds ready to be 'superposed'

• Fermionic Er: 96 levels!

Rydberg states in lanthanides

Another atomic species on tweezers... why?

Main motivation: move **Rydberg** physics towards an enhanced level of capabilities

Excitation of one of the $6s^2 e^-$ [Xe]4 $f^{12}6s nl (l even)$

Excitation of one of the $4f^{12} e^{-1}$ [Xe] $4f^{11}6s^2 nl (l odd)$ Isolated Core Excitation (ICE)

Are Rydberg atoms trappable?

• Erbium atoms has trappable core for all principal numbers

14

Roadmap to the goal!

Platform ingredients

- Single atoms trapped in tweezers
- Efficient imaging
 - Destructive
 - Non-destructive
- Coherent control
 - Single qubit gates
 - Two-qubit gates
- Apply all to your Hamiltonian

Agenda

1. Motivation

2. Why Erbium?

- Complex structure, Multiple transitions
- Rydberg states and advanced capabilities

3. LAC in lanthanides

- Monte Carlo model
- Which transition to use for LAC?
- 4. Rydberg states in lanthanides
 - First erbium Rydberg spectroscopy
 - Rydberg excitations in tweezers

Imaging

Two types of imaging (yellow and blue)

Slow imaging while trapped

arina.tashchilina@uibk.ac.at ⊠

Grun, et al., PRL 133, 223402, (2024)

Light-assisted collisions in lanthanides

Can we use alkali as an example to follow?

- Loading into a tweezer is a stochastic process
- How loading happens in Alkali?
- What is a light-assisted collision?
- Which transition to use for this?

21

Monte Carlo model ingredients

- Study dynamics where atomic motion and internal-state changes happen on the same timescale
- What to include in the model?
 - tweezer potential
 - \circ up to 3 atoms
 - \circ up to 2 beams

Monte Carlo model

- Study dynamics where atomic motion and internal-state changes happen on the same timescale
- Which processes to include?
- Dipole-dipole interaction
 - Pair-ejection

Monte Carlo model

- Study dynamics where atomic motion and internal-state changes happen on the same timescale
- Which processes to include?
- Dipole-dipole interaction
 - Pair-ejection
 - Absorption/Excitation probability
 - Recoil heating

$$R_{\text{scatt}}(s_{0,q}, \Delta) = \frac{s_{0,q} \Gamma_{\text{L}}/2}{1 + s_{0,q} + (2\Delta_{i,q}/\Gamma_{\text{L}})^2}$$

where the saturation parameter $\, s_{0,q} \; = \; I_q/I_{
m sat}$

- Experimental sequence:
 - loading 3-4 atoms
 - Pulse of yellow light, variable duration
 - Ultrafast imaging
 - Analyze to find atom distribution for each experiment
- Great agreement for in-trap population
- But: after 20 ms single-atom population quickly declines

Recoil heating!!!

Solid Lines: parameter-free Monte Carlo simulations Scatter: experimental points Inset: the time-trajectory of the atom's position in the tweezer, which is spreading due to the recoil heating

- Introducing the beam along vertical direction helps to improve survival probability!
- No more bridge
- Our fidelities improved
 94.1 % □ 99.96 %

(a) Calculated two-dimensional intensity map of the product between single atom survival probability and normalized average photon scattering rate $(2/\Gamma_L)R_{scatt}$.

Horizontal

(b) Single-atom occupation probability vs. irradiation time. (c)-(d) Imaging histograms

What if we use other transition?

- f(t) function is minimal for $P_0 = P_1 = 0.5$ and $P_{2,3} = 0$
- 401 nm transition can prepare single atoms in tweezers fast, but at the expense of lower fidelities
- 841 nm line demonstrates high fidelities at a cost of duration of LAC pulse

 $f(t) = [P_0(t) - 0.5]^2 + [P_1(t) - 0.5]^2 + P_2(t)^2 + P_3(t)^2$

Some milestones are achieved

• Entanglement?

Can we just follow alkali as an example?

- Entanglement?
- Are there Ry states?
- Spectroscopy
- Is coherence preserved?
- Can we entangle two atoms?

Agenda

1. Motivation

2. Why Erbium?

- Multiple transitions
- Polarizability
- 3. LAC in lanthanides
 - Monte Carlo model
 - Which transition to use for LAC?

4. Rydberg states in lanthanides

- First erbium Rydberg spectroscopy
- Rydberg excitations in tweezers

Spectroscopy

- 500 states were assigned
 - \circ $\,$ 'ns' and 'nd' series were observed
 - principal numbers: 15 140
- Found coupling to 'ng' levels
- Zeeman spectroscopy at 10 G to assign J and g factor
- Two ionization thresholds

31

S and D series

We re-confirm the earlier found resonances in tweezers

10200 10000

arina.tashchilina@uibk.ac.at 🖂

Trautmann, et al., PRR 3, 033165 (2021)

Pulse sequence

- We cool atoms with yellow light
- We switch high electric field applied to in-vacuum installed electrodes
- We switch tweezer light-off for the duration of the pulse

ZS coils

Rabi oscillations

- We see coherent oscillations between ground and excited states
- Estimated effective Rabi frequencies allow us to start probing the 'second' photon transition

Clock transition

Patscheider ..Ferlaino Phys. Rev. Res. 3, 033256 (2021) Claude ... Mark, Ferlaino, Phys. Rev. Res. 6, L042016 (2024)

arina.tashchilina@uibk.ac.at ⊠

Summary •

.

.

Summary

- Lanthanides are interesting candidate for a quantum computing platform
- LAC and intercombinational line in erbium
- Rydberg spectrum and single atom excitation to Rydberg state

Thank you

arina.tashchilina@uibk.ac.at arinainphysics.com ⊕ arinainphysics@gmail.com ⊠

D. Grun

R. Donofrio

L.B. Giacomelli

M. Mark

F. Ferlaino

38