Quantum Science Generation QSG 2025

Structure Characteristics of Light Nuclei Calculated within the Variational Approach

B. E. Ginyuk

Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

> May 5 – 9 ECT*, Trento

- Statement of the problem
- Hamiltonian and potentials for the five-particle model of ¹⁴C, ¹⁴O, and ¹⁴N nuclei
- Method (variational method in Gaussian representation)
- R.m.s. radii and r.m.s. distances between particles
- Charge density distributions, and charge formfactors
- Pair correlation functions
- Momentum distributions
- Probability density and two spatial configurations
- Formfactors of ¹²C, ¹⁶O, and ²⁰Ne nuclei within the *α*-cluster model
- Conclusions

B. E. Grinyuk, D. V. Piatnytskyi. Ukr. J. Phys. **61**, No. 8, 674 (2016) doi: 10.15407/ujpe61.08.0674

B. E. Grinyuk, D. V. Piatnytskyi. Ukr. J. Phys. **62**, No. 10, 835 (2017) doi: 10.15407/ujpe62.10.0835

B. E. Grinyuk, D. V. Piatnytskyi, V. S. Vasilevsky. Nucl. Phys. A **1030** (2023) 122588 doi: 10.1016/j.nuclphysa.2022.122588

Structure of 6He nucleus

$E = -0.9734 \pm 0.0010 MeV$	G.Audi, A.H.Wapstra. Nucl.Phys. A595 (1995) p.409.
$\left< R_{ch}^2 \right>^{1/2} = 2.054 \pm 0.014 fm$ = 2.068 ± 0.011 fm	<i>Li-Bang Wang.</i> Phys. Rev. Lett. 93 , 142501 (2004). <i>P.Mueller, I.A.Sulai, A.C.C.Villari et al.</i> , Phys. Rev. Lett. 99 , 252501 (2007).
$\left< R_m^2 \right>^{1/2} = 2.57 \pm 0.10 fm$ =2.59 ± 0.05 fm	L.V.Chulkov, B.V.Danilin, V.D.Efros, A.A.Korsheninnikov and M.V.Zhukov, Europhys. Lett. 8 (1989) 245. B.V.Danilin, S.N.Ershov, and J.S.Vaagen, Phys. Rev. C 71, 057301 (2005)

Structure of ⁶Li nucleus

$E = -3.699 \pm 0.001 MeV$	G.Audi, A.H.Wapstra. Nucl.Phys. A595 (1995) p.409.
$\left\langle \mathbf{R}_{ch}^{2} \right\rangle^{1/2} = 2.56 \pm 0.05 fm$ $= 2.51 \pm 0.04 fm$	<i>C.W. de Jager, H. De Vries, and C. De Vries, At. Data Nucl. Data Tables</i> 36 , 495 (1987). <i>W. Nörtershäuser, A. Dax, Guido Ewald et al.,</i> Kluwer Academic Publishers, Netherlands, 2005. Noertershaeuser-Laser2004.tex; 12/04/2005; 10 p.
$\left\langle R_m^2 \right\rangle^{1/2} = 2.45 \pm 0.07 fm$	P. Egelhof et al., Eur. Phys. J. A 15, 27-33 (2002).

Structure of 6He nucleus

The structure of the wave function

$$P(r,\rho) = r^2 \rho^2 \int d\Omega |\Phi(\mathbf{r},\boldsymbol{\rho})|^2$$

6

5 ρ_{α} , fm

Light cluster nuclei ¹⁰C and ¹⁰Be

B. E. Grinyuk, I. V. Simenog. Physics of Atomic Nuclei 77, 415 (2014). doi: 10.1134/S1063778814030090

The wave function of ¹⁰Be nucleus

$$\widetilde{P}(r,\rho) = r^2 \rho^2 \int d\Omega \int d\mathbf{r}_{\alpha\alpha} \left| \Phi(\mathbf{r}, \boldsymbol{\rho}, \mathbf{r}_{\alpha\alpha}) \right|^2$$

$$\widetilde{P}(r,\rho) = r^2 \rho^2 \int d\Omega \int d\mathbf{r}_{NN} \left| \Phi(\mathbf{r}_{NN}, \boldsymbol{\rho}, \mathbf{r}) \right|^2$$

What is the structure of the mirror nuclei ¹⁴C and ¹⁴O? And that of ¹⁴N?

Isotope	Half-life	Spin	Isospin	Core + Valence
¹⁴ C	5730 ± 40 y	0^{+}	1	$3\alpha + 2n$

Isotope	Half-life	Spin	Isospin	Core + Valence
¹⁴ O	70.6 s	0^+	1	$3\alpha + 2p$

 $\hat{H} = \sum_{i=1}^{2} \frac{\mathbf{p}_{i}^{2}}{2m_{p}} + \sum_{i=3}^{5} \frac{\mathbf{p}_{i}^{2}}{2m_{\alpha}} + U_{pp}(r_{12}) + \sum_{j>i=3}^{5} \hat{U}_{\alpha\alpha}(r_{ij}) + \sum_{j>i=1}^{2} \sum_{j=3}^{5} \hat{U}_{p\alpha}(r_{ij}) + \sum_{j>i=1}^{5} \frac{Z_{i}Z_{j}e^{2}}{r_{ij}}.$

Similar form has the Hamiltonian for ¹⁴C (less number of Coulomb terms)

Parameters of the singlet V_{nn} potential (energies in MeV, radii in fm).

Potential $V_{nn}(r)$: $a_{nn,s}$ $r_{0nn,s}$ $V_{nn}(r) = \sum_{k=1}^{3} V_{0k} \exp\left(-(r/r_{0k})^2\right)$ -18.92.75 $V_{02} = 952.15, r_{02} = 0.440,$ $V_{02} = -79.39, r_{02} = 0.959,$ 2.75 $V_{03} = -37.89, r_{03} = 1.657.$ -18.9 $2.75 \pm \pm 0.05$

Hamiltonian for ¹⁴N

$$\hat{H} = \frac{\mathbf{p}_1^2}{2m_p} + \frac{\mathbf{p}_2^2}{2m_n} + \sum_{i=3}^5 \frac{\mathbf{p}_i^2}{2m_\alpha} + U_{pn}\left(r_{12}\right) + \sum_{j>i=3}^5 \hat{U}_{\alpha\alpha}\left(r_{ij}\right) +$$

$$+\sum_{j=3}^{5} \hat{U}_{p\alpha}(r_{1j}) + \sum_{j=3}^{5} \hat{U}_{n\alpha}(r_{2j}) + \sum_{j>i=1}^{5} \frac{Z_i Z_j e^2}{r_{ij}}$$

Parameters of the triplet V_{np} potential (energies in MeV , radii in fm).						
Potential $V_{np}(r)$ in the	a _{np,t}	r _{onp,t}	\mathcal{E}_{d}	R _d	6	
triplet state:						
$V_{np}(r) = \sum_{k=1}^{2} V_{0k} \exp\left(-\left(r/r_{0k}\right)^{2}\right)$ $V_{0I} = 840.545, \ r_{0I} = 0.440,$	5.424	1.783	-2.224576	2.140		
$V_{02} = -146.046, r_{02} = 1.271.$						
Experiment:	5.424±	1.760±	-2 224575(9)	2.1402±		
	± 0.003	± 0.005	2.221373(3)	±0.0028		
	[12]	[12]	[13]	[14]	2	

$n\alpha$ -interaction potential $\hat{V}_{n\alpha} = V(r) + g|u(r)\rangle\langle u(r_1)| \equiv V(r) + gu(r)\int u(r_1) \dots d\mathbf{r}_1$

12

$$-50.208 \exp\left(-\left(\frac{r}{2.32}\right)^2\right), \quad g = 135.0, \quad u(r)$$

V(r) = -

pα-interaction potential

$$\hat{V}_{p\alpha}\Psi(r) = V(r)\Psi(r) + gu(r)\int u(r_1)\Psi(r_1)d\mathbf{r}_1$$

αα-interaction potential

$$\hat{V}_{\alpha\alpha} = V(r) + g|u(r)\rangle\langle u(r_1)| \equiv V(r) + gu(r)\int u(r_1) d\mathbf{r}_1$$

Potentials used for ¹⁴C and ¹⁴O nuclei

V _{nn}	952.15 exp $\left(-\left(r / 0.44\right)^{2}\right)$ - 79.39 exp $\left(-\left(r / 0.959\right)^{2}\right)$ - 37.89 exp $\left(-\left(r / 1.657\right)^{2}\right)$						
$V_{n\alpha}$		– 43.95 exp	$(-(r/2.25)^2)+$	$-140.0 \exp(-(r$	$(2.79)^2)$		
$V_{\alpha\alpha}$	-46.5e	$\exp\left(-\left(r/2.55\right)^{2}\right)$	$^{2})+240.0\exp(-$	$(r/1.3)^2) + 60.0$	$\exp\left(-\left(r/1.765\right)^{2}\right)\right)\left\langle \dots\right $		
V_{pp}	952.15	$952.15 \exp\left(-\left(r / 0.44\right)^2\right) - 79.39 \exp\left(-\left(r / 0.959\right)^2\right) - 37.89 \exp\left(-\left(r / 1.657\right)^2\right)$					
$V_{p\alpha}$		– 44.757 exp	$p(-(r/2.27)^2)$	$+140.0 \exp(-(n$	$r/2.79)^{2})\rangle\langle $		
$V_{\alpha\alpha}$	$-46.5 \exp\left(-\left(r / 2.55\right)^{2}\right) + 240.0 \exp\left(-\left(r / 1.3\right)^{2}\right) + 60.0 \exp\left(-\left(r / 1.765\right)^{2}\right)\right) \left\langle \dots \right $						
100 100 100 100 100 100 100 100 100 100							
Ν	Juclei	E	E_{exp}	$R_{ m ch}$	$R_{ m ch,exp}$		
	$^{14}\mathrm{C}$	-20.398	-20.398	2.500	2.496 [17]		
					2.503 [12]		
	¹⁴ O	-13.845	-13.845	2.415	_		

Potentials used for ¹⁴N nucleus

V_{np}	$-146.046 \exp\left(-\left(r/1.271\right)^{2}\right)+840.545 \exp\left(-\left(r/0.44\right)^{2}\right)$					
$V_{n\alpha}$	$-43.85 \exp(-(r/2)$	$(.25)^2$ + 140.0 exp(-($(r/2.79)^2$) ()			
V_{plpha}	$-44.757 \exp(-(r/2.27)^{2}) + 140.0 \exp(-(r/2.79)^{2})) \langle \dots $					
$V_{\alpha\alpha}$	$-43.5 \exp(-(r/2.746)^2) + 240.0 \exp(-(r/1.53)^2) + 60.0 \exp(-(r/1.765)^2) \rangle \langle \dots $					
		_	_	_		

Nucleus	E	$E_{\rm exp}$	$R_{ m ch}$	$R_{ m ch,exp}$
^{14}N	- 19.772	- 19.772	2.558	2.5582

$n\alpha$ -, $p\alpha$ - and $\alpha\alpha$ - phase shifts

$$V_0(r,r') \equiv 2\pi r r' \int_{-\pi}^{\pi} \hat{V}(\mathbf{r},\mathbf{r}') P_0(\cos\theta) d(\cos\theta), \quad \hat{V}(\mathbf{r},\mathbf{r}') \equiv V(\mathbf{r}) \delta(\mathbf{r}-\mathbf{r}') + g|u(r)\rangle \langle u(r')|$$

Variable phase approach leads to an equation with singularities:

$$\frac{d}{dr}\delta_0(r) = -\frac{2}{k}\sin(kr + \delta_0(r))\int_0^r dr' V_0(r, r')\sin(kr' + \delta_0(r')) \times \exp\left(-\int_{r'}^r ds \frac{d\delta_0(s)}{ds}ctg(ks + \delta_0(s))\right);$$

F.Calogero. Nuovo Cimento 33, 352 (1964)

An approach without singularities:

$$u_{0}''(r) + k^{2}u_{0}(r) - \int_{0}^{\infty} V_{0}(r, r_{1})u_{0}(r_{1})dr_{1} = 0;$$

$$u_{0}(r) = c_{1}(r)\sin(kr) + c_{2}(r)\cos(kr);$$

$$\begin{cases} c_1'(r) = \frac{\cos(kr)}{k} \int_0^\infty V_0(r, r_1) (c_1(r_1) \sin(kr_1) + c_2(r_1) \cos(kr_1)) dr_1; \\ c_2'(r) = -\frac{\sin(kr)}{k} \int_0^\infty V_0(r, r_1) (c_1(r_1) \sin(kr_1) + c_2(r_1) \cos(kr_1)) dr_1; \\ c_1(0) = 1, c_2(0) = 0, \qquad tg(\delta_0) = \lim_{r \to \infty} \frac{c_2(r)}{c_1(r)}. \end{cases}$$

$$c_{1}'(r) = \int_{0}^{\infty} V_{0}(r, r_{1})(c_{1}(r_{1}) \cdot r_{1} + c_{2}(r_{1}))dr_{1}; \qquad u_{0}(r) = c_{1}(r) \cdot r + c_{2}(r); c_{1}(0) = 1, \quad c_{2}(0) = 0, c_{2}'(r) = -r\int_{0}^{\infty} V_{0}(r, r_{1})(c_{1}(r_{1}) \cdot r_{1} + c_{2}(r_{1}))dr_{1}; \qquad a_{0} = \lim_{r \to \infty} \left(-\frac{c_{2}(r)}{c_{1}(r)} \right).$$

An approach without singularities:

$$u_{l}''(r) + \left(k^{2} - \frac{l(l+1)}{r^{2}} - \frac{\frac{2\mu}{\hbar^{2}}Z_{1}Z_{2}e^{2}}{r}\right)u_{l}(r) - \int_{0}^{\infty}V_{l}(r,r_{1})u_{l}(r_{1})dr_{1} = 0$$

$$u_{l}(r) = C_{1}(r)F_{l}(kr,\eta) + C_{2}(r)G_{l}(kr,\eta), \qquad \eta = \frac{\mu Z_{1}Z_{2}e^{2}}{\hbar^{2}k}$$

$$C_{1}'(r) = \frac{G_{l}(kr,\eta)}{k}\int_{0}^{\infty}V_{l}(r,r_{1})(C_{1}(r_{1})F_{l}(kr_{1},\eta) + C_{2}(r_{1})G_{l}(kr_{1},\eta))dr_{1},$$

$$C_{2}'(r) = -\frac{F_{l}(kr,\eta)}{k}\int_{0}^{\infty}V_{l}(r,r_{1})(C_{1}(r_{1})F_{l}(kr_{1},\eta) + C_{2}(r_{1})G_{l}(kr_{1},\eta))dr_{1};$$

$$C_{1}(0) \neq 0 \text{ (in particular, } C_{1}(0) = 1) \text{ and } C_{2}(0) = 0; \qquad tg(\gamma_{l}(k)) = \lim_{r \to \infty} \frac{C_{2}(r)}{C_{1}(r)}.$$

$$\delta_{l} = \gamma_{l} + \beta_{l}, \text{ where } \beta_{l} \text{ is the Coulomb phase shift}$$

An approach without singularities:

$$\frac{2\pi\eta}{\exp(2\pi\eta)-1}k\,\operatorname{ctg}(\gamma_{0}(k))+2k\eta\,h(\eta)=-\frac{1}{a_{p}}+\frac{1}{2}r_{0p}k^{2}-P_{p}r_{0p}^{3}k^{4}+\dots,\,\,(\text{for }l=0)$$
where $h(\eta)=\eta^{2}\sum_{n=1}^{\infty}\frac{1}{n(n^{2}+\eta^{2})}-\ln(\eta)-\gamma$, and $\gamma=0.5772...$ is the Euler constant.

$$\widetilde{C}_{1}(r)\equiv C_{1}(r)\frac{2\pi\eta}{\exp(2\pi\eta)-1},\quad \widetilde{C}_{2}(r)\equiv\lim_{k\to0}\frac{C_{2}(r)}{k},\quad a_{p}=-\lim_{r\to\infty}\frac{\widetilde{C}_{2}(r)}{\widetilde{C}_{1}(r)}.$$

$$\begin{cases} \widetilde{C}_{1}'(r)=H_{1}\left(\frac{r}{R}\right)\int_{0}^{\infty}V_{0}(r,r_{1})\left(\widetilde{C}_{1}(r_{1})r_{1}L_{1}\left(\frac{r_{1}}{R}\right)+\widetilde{C}_{2}(r_{1})H_{1}\left(\frac{r_{1}}{R}\right)\right)dr_{1},\\ \widetilde{C}_{2}'(r)=-r\,L_{1}\left(\frac{r}{R}\right)\int_{0}^{\infty}V_{0}(r,r_{1})\left(\widetilde{C}_{1}(r_{1})r_{1}L_{1}\left(\frac{r_{1}}{R}\right)+\widetilde{C}_{2}(r_{1})H_{1}\left(\frac{r_{1}}{R}\right)\right)dr_{1};\\ \widetilde{C}_{1}(0)\neq0\,\,(\text{in particular},\,\,\widetilde{C}_{1}(0)=1)\,\,\text{and}\,\,\widetilde{C}_{2}(0)=0;\quad\frac{1}{R}\equiv\frac{2\mu Z_{1}Z_{2}e^{2}}{\hbar^{2}};\\ L_{1}(x)\equiv\frac{1}{\sqrt{x}}I_{1}(2\sqrt{x}),\,\,H_{1}(x)\equiv2\sqrt{x}K_{1}(2\sqrt{x}), \end{cases}$$

where I_1 and K_1 are the modified Bessel functions.

Variational method

$$\begin{split} \Phi_{3} &= \hat{S} \sum_{k=1}^{K} D_{k} \varphi_{k} \equiv \hat{S} \sum_{k=1}^{K} D_{k} \exp\left(-a_{k} (\mathbf{r}_{1} - \mathbf{r}_{2})^{2} - b_{k} (\mathbf{r}_{1} - \mathbf{r}_{3})^{2} - c_{k} (\mathbf{r}_{2} - \mathbf{r}_{3})^{2}\right) \\ \Phi_{4} &= \hat{S} \sum_{k=1}^{K} D_{k} \varphi_{k} \equiv \hat{S} \sum_{k=1}^{K} D_{k} \exp\left(-a_{k} r_{12}^{2} - b_{k} r_{13}^{2} - c_{k} r_{14}^{2} - d_{k} r_{23}^{2} - e_{k} r_{24}^{2} - f_{k} r_{34}^{2}\right) \\ \Phi_{5} &= \hat{S} \sum_{k=1}^{K} D_{k} \varphi_{k} \equiv \hat{S} \sum_{k=1}^{K} D_{k} \exp\left(-\sum_{j>i=1}^{5} a_{k(ij)} r_{ij}^{2}\right) \\ \sum_{m} D_{m} \left(\left\langle \hat{S} \varphi_{k} \left| \hat{H} \right| \hat{S} \varphi_{m} \right\rangle - E \left\langle \hat{S} \varphi_{k} \left| \hat{S} \varphi_{m} \right\rangle \right) = 0, \quad k, m = 1, 2, ..., K \end{split}$$

Kukulin V. I. and Krasnopol'sky V. M. A Stochastic Variational Method for Few-Body Systems // J. Phys. G: Nucl. Phys. - 1977. - Vol. 3, No. 6. - P. 795 - 811.

Suzuki Y., Varga K. Stochastic Variational Approach to Quantum Mechanical Few-Body Problems // Springer-Verlag Berlin Heidelberg, 1998.

Convergence

Root mean square (r.m.s.) radii and r.m.s. relative distances

$$\rho_{n}(r) = \langle \Phi | \delta(\mathbf{r} - (\mathbf{r}_{n} - \mathbf{R}_{c.m.})) | \Phi \rangle, \qquad R_{n} = \left(\int r^{2} \rho_{n}(r) d\mathbf{r} \right)^{\frac{1}{2}},$$

$$\rho_{\alpha c.m.}(r) = \langle \Phi | \delta(\mathbf{r} - (\mathbf{r}_{\alpha} - \mathbf{R}_{c.m.})) | \Phi \rangle, \qquad R_{\alpha} = \left(\int r^{2} \rho_{\alpha c.m.}(r) d\mathbf{r} \right)^{\frac{1}{2}},$$

$$g_{mn}(r) = \langle \Phi | \delta(\mathbf{r} - (\mathbf{r}_{n-1} - \mathbf{r}_{n_{2}})) | \Phi \rangle; \qquad g_{n\alpha}(r) = \langle \Phi | \delta(\mathbf{r} - (\mathbf{r}_{n} - \mathbf{r}_{\alpha})) | \Phi \rangle;$$

$$r_{nn} = \left(\int r^{2} g_{nn}(r) d\mathbf{r} \right)^{\frac{1}{2}}; \qquad r_{n\alpha} = \left(\int r^{2} g_{n\alpha}(r) d\mathbf{r} \right)^{\frac{1}{2}}.$$

$$R_{i}^{2} = \frac{1}{M^{2}} \left((M - m_{i}) \sum_{j \neq i} m_{j} r_{ij}^{2} - \sum_{\substack{j < k \\ (j \neq i, k \neq i)}} m_{j} m_{k} r_{jk}^{2} \right)$$

R.m.s. radii and relative distances

$$\mathbf{^{14}C} n_{\mathrm{ch}}\left(r\right) = \int n_{\alpha}\left(\left|\mathbf{r}-\mathbf{r}'\right|\right) n_{\mathrm{ch},^{4}He}\left(r'\right) d\mathbf{r}'$$

$$R_{ch}^{2} = R_{\alpha}^{2} + R_{ch}^{2} \left({}^{4}He \right)$$

$$n_{\rm ch}(r) = \frac{3}{4} \int n_{\alpha} \left(|\mathbf{r} - \mathbf{r}'| \right) n_{\rm ch,^4}_{He}(r') d\mathbf{r}' + \frac{1}{4} \int n_p \left(|\mathbf{r} - \mathbf{r}'| \right) n_{\rm ch,p}(r') d\mathbf{r}'$$

$$R_{ch}^{2} = \frac{3}{4} \left(R_{\alpha}^{2} + R_{ch}^{2} \left({}^{4}He \right) \right) + \frac{1}{4} \left(R_{p}^{2} + R_{ch}^{2} \left(p \right) \right)$$

	r _{NN}	r _{Na}	r aa	R_N	R_{α}	R_m	R_{ch}
¹⁴ C	2.621	2.667	3.189	1.786	1.852	2.493	2.500
¹⁴ O	2.732	2.750	3.239	1.864	1.882	2.520	2.415

R.m.s. radii and relative distances for ¹⁴N

$$n_{\rm ch}\left(r\right) = \frac{6}{7} \int n_{\alpha} \left(\left|\mathbf{r} - \mathbf{r}'\right|\right) n_{\rm ch,^{4}He}\left(r'\right) d\mathbf{r}' + \frac{1}{7} \int n_{p} \left(\left|\mathbf{r} - \mathbf{r}'\right|\right) n_{\rm ch,p}\left(r'\right) d\mathbf{r}'$$

$$R_{ch}^{2} = \frac{6}{7} \left(R_{\alpha}^{2} + R_{ch}^{2} \left({}^{4}He \right) \right) + \frac{1}{7} \left(R_{p}^{2} + R_{ch}^{2} \left(p \right) \right)$$

r_{pn}	r_{plpha}	r_{nlpha}	$r_{lpha lpha}$	R_p	R_n	R_{α}	R_m	$R_{ m ch}$
2.237	2.692	2.683	3.559	1.598	1.585	2.064	2.556	2.558

Charge density distributions and formfactors of ⁶He and ¹⁰Be nuclei

$$n_{ch, {}^{10}Be}(r) = \int n_{\alpha c.m.}(\mathbf{r} - \mathbf{r}') n_{ch, {}^{4}He}(r') d\mathbf{r}'$$

$$F_{ch}(q) = \int e^{-i(\mathbf{qr})} n_{ch}(r) d\mathbf{r}, \qquad F_{ch, {}^{10}Be}(q) \cong F_{\alpha c.m.}(q) \cdot F_{ch, {}^{4}He}(q)$$

Charge formfactor of ¹⁴O nucleus

Density distributions in ¹⁴**C nucleus** $n_i(r) = \langle \Phi | \delta (\mathbf{r} - (\mathbf{r}_i - \mathbf{R}_{c.m.})) | \Phi \rangle$

Charge density distribution

14C:

$$n_{\rm ch}(r) = \int n_{\alpha} \left(|\mathbf{r} - \mathbf{r}'| \right) n_{\rm ch, ^{4}He}(r') \, d\mathbf{r}$$
14O:

$$n_{\rm ch}(r) = \frac{3}{4} \int n_{\alpha} \left(|\mathbf{r} - \mathbf{r}'| \right) n_{\rm ch, ^{4}He}(r') \, d\mathbf{r}' + \frac{1}{4} \int n_{p} \left(|\mathbf{r} - \mathbf{r}'| \right) n_{\rm ch, p}(r') \, d\mathbf{r}'$$

L

 $\overline{4}$

Pair correlation functions

$$g_{nn}(r) = \langle \Phi | \delta (\mathbf{r} - (\mathbf{r}_{n_1} - \mathbf{r}_{n_2})) | \Phi \rangle; \quad g_{n\alpha}(r) = \langle \Phi | \delta (\mathbf{r} - (\mathbf{r}_n - \mathbf{r}_{\alpha})) | \Phi \rangle; \quad g_{\alpha\alpha}(r) = \langle \Phi | \delta (\mathbf{r} - (\mathbf{r}_{\alpha_1} - \mathbf{r}_{\alpha_2})) | \Phi \rangle;$$
$$r_{nn} = \left(\int r^2 g_{nn}(r) d\mathbf{r} \right)^{\frac{1}{2}}; \quad r_{n\alpha} = \left(\int r^2 g_{n\alpha}(r) d\mathbf{r} \right)^{\frac{1}{2}}; \quad r_{\alpha\alpha} = \left(\int r^2 g_{\alpha\alpha}(r) d\mathbf{r} \right)^{\frac{1}{2}}.$$

Momentum distributions

Probability density $P(r,\rho,\theta)$

$$P(\mathbf{r},\rho,\theta) \equiv r^2 \rho^2 \langle \Phi | \delta(\mathbf{r} - \mathbf{r}_m) \delta(\boldsymbol{\rho} - \boldsymbol{\rho}_{m-\alpha\alpha\alpha}) | \Phi \rangle$$

Probability density $P(r,\rho,\theta)$ for ¹⁴N

Two configurations in the ground state of ¹⁴N nucleus manifesting themselves in the $P(r, \rho, \theta)$ function at different angles θ

A schematic model of ¹⁴C or ¹⁴O nucleus

Form factors of ¹²C, ¹⁶O, and ²⁰Ne nuclei within the α-cluster model

Statement of the problem

$$\hat{H} = -\frac{\hbar^2}{2m_{\alpha}} \sum_{k=1}^{N} \triangle_k + \sum_{k>n=1}^{N} \left(\hat{V}_{kn} + \frac{4e^2}{r_{kn}} \right)$$

Nucleus	E, MeV	R_{ch} , fm
$^{12}\mathrm{C}$	-7.2748	2.470
¹⁶ O	- 14.4368	2.706
²⁰ Ne	- 19.1668	3.005

A few words about Helm approximation

PHYSICAL REVIEW

VOLUME 104, NUMBER 5

DECEMBER 1, 1956

 q^{2} , fm⁻²

Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei*

RICHARD H. HELM[†] High-Energy Physics Laboratory, Stanford University, Stanford, California (Received August 27, 1956)

$$n_{i}(r) = \langle \Phi | \delta \left(\mathbf{r} - (\mathbf{r}_{i} - \mathbf{R}_{\text{c.m.}}) \right) | \Phi \rangle$$

$$n_{ch}(r) = \int n_{\alpha}(r') n_{ch,^{4}He}(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

$$F_{ch}\left(q\right) = \int e^{-i(\mathbf{q}\cdot\mathbf{r})} n_{ch}\left(r\right) d\mathbf{r} = F_{\alpha}\left(q\right) \cdot F_{ch,^{4}He}\left(q\right)$$

$$\begin{aligned} R_{ch}^{2} &= R_{\alpha}^{2} + R_{ch}^{2} _{^{4}He} \\ R_{ch}^{2} &= \int r^{2} n_{ch} \left(r \right) d\mathbf{r} = -6 \left. \frac{dF_{ch} \left(q \right)}{d \left(q^{2} \right)} \right|_{q \to 0} \end{aligned}$$

Elastic form factors of ¹²C, ¹⁶O, and ²⁰Ne in Helm approximation

The role of the protons exchange effects and elastic form factor of ¹²C

 $\Psi\left(\mathbf{R}_{1},\mathbf{R}_{2},\mathbf{R}_{3}
ight)$

 $imes \hat{A} \Phi {}^{_4\!He}(1,2,3,4) \Phi {}^{_4\!He}(5,6,7,8) \Phi {}^{_4\!He}(9,10,11,12)$

 $\Psi\left(\mathbf{R}_{1},\mathbf{R}_{2},\mathbf{R}_{3}
ight) imes$

Form factor of ¹²C nucleus with an account of the proton exchange

Conclusions

- 1. *NN-*, *nα-*, *pα-* and *αα-* interaction potentials are proposed in concordance with the energies of ¹⁴C and ¹⁴O, and with r.m.s. charge radius of ¹⁴C
- 2. Within a five-particle model, the wave functions of ¹⁴C, ¹⁴N, and ¹⁴O nuclei are found in Gaussian representation using the variational method
- 4. Density distributions of extra nucleons as well as of *α*-particles are found, and r.m.s. radii and r.m.s. relative distances are calculated
- 5. The charge density distributions and charge form factors are found in Helm approximation
- 6. The charge radius of ¹⁴O nucleus is predicted (2.415 fm)
- 7. The pair correlation functions are calculated
- 8. The momentum distributions are found and analyzed
- 9. Two spatial configurations are revealed in the ground state of all the considered nuclei with two extra nucleons
- 10. The form factors of ¹²C, ¹⁶O, and ²⁰Ne nuclei are calculated within the Helm approximation
- **11. The description of form factors with high precision needs some correction of the well-known Helm approximation**

THANK YOU !