QUANTUM SIMULATION ALGORITHMS FOR MANY FERMION SYSTEMS IN FIRST QUANTIZATION

LUCA SPAGNOLI

We want to simulate scattering processes

We want to simulate scattering processes

IN THIS PRESENTATION

First quantization has an advantage over second quantization

IN THIS PRESENTATION

First quantisation

• Hilbert space: total number of particles conserved

First quantization has an advantage over second quantization

• Operators: position, momentum

$$H = \underbrace{\sum_i rac{p_i^2}{2m}}_{T} + \underbrace{\sum_{i < j} V(x_i - x_j)}_{V}$$

IN THIS PRESENTATION

First quantisation

• Hilbert space: total number of particles conserved

First quantization has an advantage over second quantization

• Operators: position, momentum

$$H = \sum_{\substack{i \ T}} rac{p_i^2}{2m} + \sum_{\substack{i < j \ V}} V(x_i - x_j) \qquad \qquad H = m \sum_{i} a_i^\dagger a_i + \sum_{i,j} \left(a_i^\dagger a_j + a_j^\dagger a_i
ight)$$

Second quantization

- Fock space: total number of particles not conserved
- Operators: creation and anihilation operators

Qubits have a finite number of states

Qubits have a finite number of states

We need a finite single particle basis

Qubits have a finite number of states

We need a finite single particle basis

number of single particle orbital: Ω

Qubits have a finite We need a finite number of states single particle basis

First quantization

$$|\psi_3
angle=\hat{A}|\phi_1
angle\otimes|\phi_2
angle\otimes|\phi_3
angle, \ \ |\phi_j
angle=\sum_{k=0}^{\Omega-1}c_k|k
angle$$

We need one wavefunction for every particle

 $\dim(\mathcal{H}_\eta)=\Omega^\eta$

number of single particle orbital: Ω

Qubits have a finite We need a finite number of states single particle basis

First quantization

$$|\psi_3
angle=\hat{A}|\phi_1
angle\otimes|\phi_2
angle\otimes|\phi_3
angle, \ \ |\phi_j
angle=\sum_{k=0}^{\Omega-1}c_k|k
angle$$

We need one wavefunction for every particle

$$\dim(\mathcal{H}_\eta)=\Omega^\eta$$

We need a number of qubits equal to:

 $\eta \log_2\left(\Omega\right)$

number of single particle orbital: Ω

Qubits have a finite number of states Single particle basis

First quantization

$$|\psi_3
angle=\hat{A}|\phi_1
angle\otimes|\phi_2
angle\otimes|\phi_3
angle, \ \ |\phi_j
angle=\sum_{k=0}^{\Omega-1}c_k|k
angle$$

We need one wavefunction for every particle

$$\dim(\mathcal{H}_\eta)=\Omega^\eta$$

We need a number of qubits equal to:

 $\eta \log_2\left(\Omega
ight)$

number of single Ω particle orbital:

Second quantization

$$|\psi_3
angle=a_1^\dagger a_2^\dagger a_3^\dagger|0
angle$$

We need a creation operator for every single particle orbital

$$\dim(\mathcal{F})=2^{\Omega}$$

Qubits have a finite number of states Single particle basis

First quantization

$$|\psi_3
angle=\hat{A}|\phi_1
angle\otimes|\phi_2
angle\otimes|\phi_3
angle, \ \ |\phi_j
angle=\sum_{k=0}^{\Omega-1}c_k|k
angle$$

We need one wavefunction for every particle

$$\dim(\mathcal{H}_\eta)=\Omega^\eta$$

We need a number of qubits equal to:

 $\eta \log_2\left(\Omega
ight)$

We need a creation operator for every single particle orbital

number of single Ω particle orbital:

Second quantization

$$|\psi_3
angle=a_1^\dagger a_2^\dagger a_3^\dagger|0
angle$$

$$\dim(\mathcal{F})=2^{\Omega}$$

We need a number of qubits equal to:

Ω

Trotterization:

 $e^{-itH} pprox e^{-itT} e^{-itV} + O(t^2)$

$$H = \underbrace{\sum_{i=0}^{\eta-1} \frac{p_i^2}{2m}}_{T} + \underbrace{\sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j)}_{V = V_2 + V_3} + \underbrace{\sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j)}_{V = V_2 + V_3}$$

Trotterization:

$$e^{-itH}pprox e^{-itT}e^{-itV}+O(t^2)$$
 .

$$e^{-itH} pprox e^{-irac{t}{2}T}e^{-irac{t}{2}V} \cdot e^{-irac{t}{2}T}e^{-irac{t}{2}V} + O\left(rac{t^2}{2}
ight)$$

ON $\sum_{
eq i} G\delta(ec{r}_i - ec{r}_j) \delta(ec{r}_j - ec{r}_k)$

$$H = \sum_{\substack{i=0 \ T}}^{\eta-1} rac{p_i^2}{2m} + \sum_{\substack{i=0 \ j \neq i}}^{\eta-1} rac{\eta-1}{2} C\delta(\vec{r}_i - \vec{r}_j) + \sum_{\substack{i=0 \ j \neq i}}^{\eta-1} \sum_{\substack{k \neq j \neq i}}^{\eta-1} \sum_{\substack{k \neq j \neq i}}^{\eta-1} V_{k \neq j \neq k}$$

Trotterization:

$$e^{-itH} pprox e^{-itT} e^{-itV} + O(t^2)$$

$$e^{-itH} \approx e^{-i\frac{t}{2}T}e^{-i\frac{t}{2}V} \cdot e^{-i\frac{t}{2}T}e^{-i\frac{t}{2}V} + O\left(\frac{t^2}{2}\right)$$
$$e^{-itH} \approx \underbrace{e^{-i\frac{t}{r}T}e^{-i\frac{t}{r}V} \cdots e^{-i\frac{t}{r}T}e^{-i\frac{t}{2}V}}_{r \text{ times}} + O\left(\frac{t^2}{r}\right)$$

$$H = \sum_{i=0}^{\eta-1} rac{p_i^2}{2m} + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j) + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} \sum_{V=V_2+V_3}^{\eta-1}$$

Kinetic term:

$$e^{itT}=\prod_{j=0}^{\eta-1}e^{irac{t}{2m}p_i^2}$$

ON $\int G \delta(ec{r}_i - ec{r}_j) \delta(ec{r}_j - ec{r}_k)$ $\neq i$

$$H = \underbrace{\sum_{i=0}^{\eta-1} \frac{p_i^2}{2m}}_{T} + \underbrace{\sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j)}_{V = V_2 + V_3} + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} G\delta(\vec{r}_i - \vec{r}_j)\delta(\vec{r}_j - \vec{r}_k)$$

Kinetic term:

$$e^{itT}=\prod_{j=0}^{\eta-1}e^{irac{t}{2m}p_i^2}$$

$$C\left(e^{itT}
ight)=O(\eta\log(\Omega))$$

$$H = \underbrace{\sum_{i=0}^{\eta-1} \frac{p_i^2}{2m}}_{T} + \underbrace{\sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j) + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} G\delta(\vec{r}_i - \vec{r}_j)\delta(\vec{r}_j - \vec{r}_k)}_{V = V_2 + V_3}$$

Kinetic term:

$$e^{itT}=\prod_{j=0}^{\eta-1}e^{irac{t}{2m}p_i^2}$$

$$C\left(e^{itT}
ight)=O(\eta\log(\Omega))$$

Potential term:

$$e^{itV} = \prod_{j=0}^{\eta-1} \prod_{j=i+1}^{\eta-1} e^{itC\delta(x_i-x_j)}$$

$$H = \underbrace{\sum_{i=0}^{\eta-1} \frac{p_i^2}{2m}}_{T} + \underbrace{\sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j) + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} G\delta(\vec{r}_i - \vec{r}_j)\delta(\vec{r}_j - \vec{r}_k)}_{V = V_2 + V_3}$$

Kinetic term:

$$e^{itT}=\prod_{j=0}^{\eta-1}e^{irac{t}{2m}p_i^2}$$

$$C\left(e^{itT}
ight)=O(\eta\log(\Omega))$$

Potential term:

$$e^{itV} = \prod_{j=0}^{\eta-1} \prod_{j=i+1}^{\eta-1} e^{itC\delta(x_i-x_j)}$$

$$C\left(e^{itV}
ight) =$$

$= O(\eta^2 \log(\Omega) + \eta^3 \log(\Omega))$

$$H = \sum_{i=0}^{\eta-1} rac{p_i^2}{2m} + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j) + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} \sum_{V=V_2+V_3}^{\eta-1}$$

Kinetic term:

$$e^{itT}=\prod_{j=0}^{\eta-1}e^{irac{t}{2m}p_i^2}$$

$$C\left(e^{itT}
ight) =$$

Potential term:

$$e^{itV} = \prod_{j=0}^{\eta-1} \prod_{j=i+1}^{\eta-1} e^{itC\delta(x_i-x_j)}$$

$$C\left(e^{itV}
ight) =$$

ON $\sum_{
eq i} G\delta(ec{r}_i-ec{r}_j)\delta(ec{r}_j-ec{r}_k)$ $= O(\eta \log(\Omega))$ $O(\eta^3 \log(\Omega))$ = $O(\eta^2 \log(\Omega) + \eta^3 \log(\Omega))$

Trotterization:

$$||e^{-itH} - \left(e^{-irac{t}{r}T}e^{-irac{t}{r}V}
ight)^r|| \leq \epsilon \quad \Rightarrow \quad r = O$$

Trotterization:

$$||e^{-itH} - \left(e^{-irac{t}{r}T}e^{-irac{t}{r}V}
ight)^r|| \leq \epsilon \quad \Rightarrow \quad r = O$$

The total cost will be:

$$r\left(C\left(e^{irac{t}{r}T}
ight)+C\left(e^{irac{t}{r}V}
ight)
ight)$$

Trotterization:

$$||e^{-itH} - \left(e^{-irac{t}{r}T}e^{-irac{t}{r}V}
ight)^r|| \leq \epsilon \quad \Rightarrow \quad r = O$$

The total cost will be:

$$r\left(C\left(e^{irac{t}{r}T}
ight)+C\left(e^{irac{t}{r}V}
ight)
ight)$$

 $\left(rac{t^2\eta}{\epsilon}
ight)$

 $\Big) \Big) = O\left(rac{t^2 \eta^4}{\epsilon} \mathrm{log}(\Omega)
ight)$

Trotterization:

$$||e^{-itH} - \left(e^{-irac{t}{r}T}e^{-irac{t}{r}V}
ight)^r|| \le \epsilon \quad \Rightarrow \quad r = O$$

The total cost will be:

$$r\left(C\left(e^{irac{t}{r}T}
ight)+C\left(e^{irac{t}{r}V}
ight)
ight)$$

In second quantization: \widetilde{O}

$$\delta\left(rac{t^2\eta}{\epsilon}\Omega
ight)$$

 $\left(\frac{t^2\eta}{\epsilon}\right)$

 $\Big)\Big) = O\left(rac{t^2\eta^4}{\epsilon} \mathrm{log}(\Omega)
ight)$

qubits

trotterization

First quantization: work in progress

 $O(\eta \log(\Omega)) \qquad \widetilde{O}\left(rac{t^2\eta^4}{\epsilon}\log(\Omega)
ight)$ $\widetilde{O}\left(rac{t^2\eta}{\epsilon}\Omega
ight)$

Second quantization: arXiv:2312.05344

 $O(\Omega)$

qubits

trotterization

First quantization: work in progress

 $\widetilde{O}\left(rac{t^2\eta}{\epsilon}\Omega
ight)$

Second quantization: arXiv:2312.05344

 $O(\Omega)$

QSP $O(\eta \log(\Omega)) = \widetilde{O}\left(rac{t^2\eta^4}{\epsilon}\log(\Omega)
ight) = \widetilde{O}\left(\eta \log(\Omega)\left(\eta t + \lograc{1}{\epsilon}
ight)
ight)$

qubits

trotterization

First quantization: work in progress

 $O(\eta \log(\Omega))$

 $O(\Omega)$

Second quantization: arXiv:2312.05344

QSP $\widetilde{O}\left(rac{t^2\eta^4}{\epsilon} \mathrm{log}(\Omega)
ight) \qquad \widetilde{O}\left(\eta \mathrm{log}(\Omega)\left(\eta t + \mathrm{log}\,rac{1}{\epsilon}
ight)
ight)$

qubits

trotterization

First quantization: work in progress

 $O(\eta \log(\Omega))$

 $O(\Omega)$

 $\widetilde{O}\left(\frac{t^2\eta}{\epsilon}\Omega\right)$

Second quantization: arXiv:2312.05344

QSP $\widetilde{O}\left(rac{t^2\eta^4}{\epsilon} \mathrm{log}(\Omega)
ight) \qquad \widetilde{O}\left(\eta \mathrm{log}(\Omega)\left(\eta t + \mathrm{log}\,rac{1}{\epsilon}
ight)
ight)$

First quantization is exponentially better in termos of the lattice size, while it is polynomially worst in terms of the number of particles

$$\widetilde{O}\left(\eta\log(\Omega)\left(\eta t + \lograc{1}{\epsilon}
ight)
ight)$$

QSP

THANK YOU

$$H = \underbrace{\sum_{i=0}^{\eta-1} \frac{p_i^2}{2m}}_{T} + \underbrace{\sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} C\delta(\vec{r}_i - \vec{r}_j)}_{V = V_2 + V_3} + \sum_{i=0}^{\eta-1} \sum_{j \neq i}^{\eta-1} \sum_{k \neq j \neq i}^{\eta-1} G\delta(\vec{r}_i - \vec{r}_j)\delta(\vec{r}_j - \vec{r}_k)$$

Trotterization:

 $egin{aligned} e^{itH} &pprox e^{itT} e^{itV} &
ightarrow & ||e^{itH} - e^{itT} e^{itV}|| \leq rac{t^2}{2} \ &
ightarrow & ||e^{irac{t}{r}H} - e^{irac{t}{r}T} e^{irac{t}{r}V}|| \leq rac{t^2}{2} \end{aligned}$

$$ightarrow ~~ ||e^{itH} - \left(e^{irac{t}{r}T}e^{irac{t}{r}V}
ight)^r|$$

$$egin{aligned} & 2 \ - ||[T,V]|| \ & rac{t^2}{2r^2} ||[T,V]|| \ & | \leq rac{t^2}{2r} ||[T,V]|| \end{aligned}$$

Trotterization:

$$||e^{itH}-\left(e^{irac{t}{r}T}e^{irac{t}{r}V}
ight)^r||\leq rac{t^2}{2r}||[T,V]|$$

The norm of the commutator scales as the number of particles:

 $||[T,V]|| = O(\eta)$

 $\frac{t^2}{r}\eta \leq \epsilon$

The total cost will be:

$$r\left(C\left(e^{itT}
ight)+C\left(e^{itV}
ight)
ight)=\widetilde{O}\left(rac{t^2\eta^4}{\epsilon}\log(V)
ight)$$

V]||

Which means that we can bound the error by choosing r as follows:

$$\epsilon \;\; \Rightarrow \;\; r = O\left(rac{t^2\eta}{\epsilon}
ight)$$