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Aerodynamic designs

• Edges reduce drags

• Bulbous bows

• Gurney flaps

• Winglets
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Kolmogorov microscale and Reynolds number

• A simulation of fluid flow needs to cover a wide 
range of length scales

• 𝐿𝐿 the size of the largest eddies in the flow

• 𝜂𝜂 the Kolmogorov length scale at which 
eddies are dissipated into heat

• The ratio of these two length scales is the 
Reynolds number defined as

Re =
𝐿𝐿
𝜂𝜂

4/3

=
𝑣𝑣𝐿𝐿
𝜈𝜈

• Here 𝑣𝑣 is the speed of the flow and 𝜈𝜈 the 
kinematic viscosity

• Flows become turbulent when Re is greater than a 
couple of thousands

• Grid based methods typically scale with Re3𝐾𝐾/4
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The challenge – Resolving a wide range of length-scales

• Typically, the largest eddy size 𝐿𝐿 is

10m ≤ 𝐿𝐿 ≤ 100m

• Resolution up to the Kolmogorov length scale η, typically

0.1mm ≤ 𝜂𝜂 ≤ 10mm

• Necessary Grid Points 𝑁𝑁

1 000 000 000 ≤ 𝑁𝑁 ≤ 1 000 000 000 000 000 000

• Necessary memory 𝑀𝑀 for storing a single velocity component

8 Mbyte ≤ 𝑀𝑀 ≤ 8 000 Pbyte = 8 000 000 Tbyte

• Additionally, very small time steps are often necessary

• one usually works with approximations

• Can work very well – especially with known configurations

• Unfortunately, they also deliver qualitatively incorrect results Bulbous bows

Winglets



Visualization

Unsteady, complex geometry, separated flow at 
flight Reynolds number (e.g., high lift)

2030202520202015

HPC
CFD on Massively Parallel Systems

CFD on Revolutionary Systems
(Quantum, Bio, etc.)

TRL LOW
MEDIUM
HIGH

PETASCALE

Demonstrate implementation of CFD 
algorithms for extreme parallelism in 

NASA CFD codes (e.g., FUN3D)

EXASCALE

Technology Milestone

Demonstrate efficiently scaled 
CFD simulation capability on an 
exascale system

30 exaFLOPS, unsteady, 
maneuvering flight, full engine 

simulation (with combustion)

Physical Modeling

RANS

Hybrid RANS/LES

LES

Improved RST models 
in CFD codes

Technology Demonstration

Algorithms
Convergence/Robustness

Uncertainty Quantification (UQ)

Production scalable 
entropy-stable solvers

Characterization of UQ in aerospace

Highly  accurate RST models for flow separation

Large scale stochastic capabilities in CFD

Knowledge Extraction
On demand analysis/visualization of a 
10B point unsteady CFD simulation

MDAO
Define standard for coupling 

to other disciplines

High fidelity coupling 
techniques/frameworks

Incorporation of UQ for MDAO

UQ-Enabled MDAO 

Integrated transition 
prediction

Decision Gate

YES

NO

NO

Scalable optimal solvers

YES

NODemonstrate solution of a 
representative model problem

Robust CFD for 
complex MDAs

Automated robust solvers

Reliable error estimates in CFD codes

MDAO simulation of an entire 
aircraft (e.g., aero-acoustics)

On demand analysis/visualization of a 
100B point unsteady CFD simulation

Creation of real-time multi-fidelity database: 1000 unsteady CFD 
simulations plus test data with complete UQ of all data sources

WMLES/WRLES for complex 3D flows at appropriate Re

Integrated Databases
Simplified data 
representation

Geometry and Grid 
Generation

Fixed Grid

Adaptive Grid

Tighter CAD coupling
Large scale parallel 
mesh generation Automated in-situ mesh 

with adaptive control

Production AMR in CFD codes

Uncertainty propagation  
capabilities in CFD

Grid convergence for a 
complete configuration

Multi-regime 
turbulence-chemistry 
interaction model

Chemical kinetics 
in LES

Chemical kinetics 
calculation speedupCombustion

Unsteady, 3D geometry, separated flow
(e.g., rotating turbomachinery with reactions)

“There is steady progress 
on fabricating practical 
quantum computers, and 
such systems may be 
available in 2030.  
However, while a 
quantum computer can 
be used for some linear 
algebra calculations …, a 
quantum computer is 
not necessarily a faster 
computer for CFD 
calculations.” (CFD Vision 
2030 Study Report)

CFD Vision 2030 Research Roadmap



Incompressible Navier-Stokes equation

• We solve the 2D and 3D equations 
for simple fluid flows

𝜕𝜕�⃗�𝑣
𝜕𝜕𝜕𝜕

= − �⃗�𝑣 ⋅ ∇ �⃗�𝑣 − ∇𝑝𝑝 +
1

Re
∇2�⃗�𝑣

∇ ⋅ �⃗�𝑣 = 0

• 2D  weather forecast

• 3D  aerodynamics, combustion 
physics, …



The energy cascade – two and three spatial dimensions 

• Richardson in 1922 on 3D turbulence:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.
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Outline

MPS
• Encoding grid functions
• Classical entanglement spectrum
• Turbulence correlations

CFD 
Examples

• MPS algorithm
• Jet formation
• Taylor Green vortex
• Driven cavity

Hybrid
Optimization

• Hardware architecture
• Quantum network
• Generic cost function
• Proof of Principle 

Example



MPS – Classical Entanglement Spectra

• Consider a scalar field 𝑢𝑢 𝒓𝒓𝑞𝑞 on a 2𝑁𝑁 × 2𝑁𝑁 of size 𝐿𝐿 × 𝐿𝐿.

• We decompose the field into functions on a coarse 𝐿𝐿/2
grid (red dots 𝑿𝑿𝑘𝑘) and a fine grid (black dots) as

𝑢𝑢 𝒓𝒓𝑞𝑞 = �
𝛼𝛼=1

𝜒𝜒(1)

𝜆𝜆𝛼𝛼𝑅𝑅𝛼𝛼 𝑿𝑿𝑘𝑘 𝑓𝑓𝛼𝛼(𝒙𝒙𝑙𝑙) where 𝐫𝐫q = 𝐗𝐗k + 𝐱𝐱l

• The maximum number of terms in this sum is 

𝜒𝜒max 1 = 4

• The actually required number of terms 𝜒𝜒(1) in this sum 
is the so-called Schmidt number. It is a measure of 
correlations between 𝐿𝐿/2 and other length scales.

• The terms in the sum are weighted by 𝜆𝜆𝛼𝛼 which is the 
entanglement spectrum.



MPS – Encoding Grid Functions

• We encode the grid positions into basis states of two qubits

00 01 10 |11⟩

• The function values are basis state amplitudes

𝑓𝑓𝛼𝛼 = 𝑅𝑅𝛼𝛼 𝑿𝑿𝟎𝟎𝟎𝟎 00 + 𝑅𝑅𝛼𝛼 𝑿𝑿𝟎𝟎𝟏𝟏 01 +
𝑅𝑅𝛼𝛼(𝑿𝑿𝟏𝟏𝟎𝟎) 10 + 𝑅𝑅𝛼𝛼(𝑿𝑿𝟏𝟏𝟏𝟏) 11

• The 2 qubit state may be entangled, so all required 𝑅𝑅𝛼𝛼 can 
be encoded into just 2 qubits.

𝜓𝜓 = �
𝛼𝛼

𝜆𝜆𝛼𝛼 𝑓𝑓𝛼𝛼 ⊗ |𝜙𝜙𝛼𝛼⟩

• Here, |𝜙𝜙𝛼𝛼⟩ will be used to encode the rest of the function.

Note: For the whole grid only 2𝑁𝑁 qubits are required
00 01

1110



MPS – Classical Entanglement Spectra

• We repeat this decomposition to get correlations 
between neighbouring length scales.

• For instance, for correlations between the length scale 
𝐿𝐿/4 and lengths scale 𝐿𝐿/8 we decompose each of the 
functions 𝑓𝑓𝛼𝛼(𝑥𝑥𝑙𝑙) from before.

• This gives a representation of the field as

𝑢𝑢 = �
𝛼𝛼=1

𝜒𝜒(1)

𝜆𝜆𝛼𝛼𝑅𝑅𝛼𝛼 �
𝛽𝛽=1

𝜈𝜈

𝜆𝜆𝛽𝛽𝑅𝑅𝛼𝛼𝛽𝛽𝑓𝑓𝛼𝛼𝛽𝛽

• The maximum Schmidt number 𝜒𝜒(2) is the total number 
of terms in these sums

𝜒𝜒max 2 = 42 = 16



MPS – Classical Entanglement Spectra

• In general, Schmidt numbers 𝜒𝜒 𝑛𝑛 and 𝜆𝜆𝛼𝛼
(𝑛𝑛) characterize 

the amount of correlations between length scales

𝐿𝐿 × 2−𝑛𝑛 and 𝐿𝐿 × 2−𝑛𝑛−1

• The repeated application of Schmidt decompositions 
with increasing 𝑛𝑛 gives a compact Matrix-Product-State 
(MPS) representation of the scalar field

𝑢𝑢 𝒓𝒓𝒒𝒒 = 𝐴𝐴𝑞𝑞1𝐴𝐴𝑞𝑞2𝐴𝐴𝑞𝑞3𝐴𝐴𝑞𝑞4 ⋯𝐴𝐴𝑞𝑞𝑁𝑁

• Here 𝐴𝐴𝑞𝑞𝑖𝑖 is a 𝜒𝜒 𝑖𝑖 − 1 × 𝜒𝜒(𝑖𝑖) matrix.

• The index 𝑞𝑞𝑖𝑖 labels the position in the 𝑖𝑖-th 2 × 2 sub-
grid 00, 01, 10, 11.

• In principle the maximum 𝜒𝜒 can grow exponentially with 
the fineness of the grid.



MPS – Turbulence Correlations

2D developing jet, Re=1000 3D Taylor-Green vortex, Re=800
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Entanglement entropy

• The entanglement entropy is 
different for 2D and 3D flows

• For 2D the entropy shifts to 
coarser length scales with 
increasing time, consistent with 
the inverse energy cascade

• In 3D the opposite happens 
consistent with energy cascade 
energising small length scales.

2D developing jet, Re=1000 3D Taylor-Green vortex, Re=800
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• Classical entanglement spectrum
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Examples

• MPS algorithm
• Jet formation
• Taylor Green vortex
• Driven cavity
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• Generic cost function
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MPS algorithm for evolving a 2D fluid flow in time

• We illustrate this by considering a simple Euler step to move forward in time by Δ𝜕𝜕.

• For this we minimize the cost function

Θ �⃗�𝑣∗ = 𝜇𝜇 �∇ ⋅ �⃗�𝑣∗ 2 +
�⃗�𝑣∗ − �⃗�𝑣
Δ𝜕𝜕

+ �⃗�𝑣 ⋅ �∇ �⃗�𝑣 − 𝜈𝜈�∇2�⃗�𝑣
2

• We use eighth-order central finite difference stencils and represent the Laplace operator as an MPO.

• We write out explicitly �⃗�𝑣 = 𝑢𝑢1𝑒𝑒1 + 𝑢𝑢2𝑒𝑒2 and �⃗�𝑣∗ = 𝑢𝑢1∗𝑒𝑒1 + 𝑢𝑢2∗𝑒𝑒2 and write the components as bold vectors on the 
grid, e.g. 𝒖𝒖1 = {𝑢𝑢1 𝑟𝑟1 ,𝑢𝑢1 𝑟𝑟1 ⋯ } and rewrite the cost function as

• The terms in [⋯ ] are constant and thus irrelevant for the optimization, a step scales like 𝒪𝒪(𝑁𝑁𝜒𝜒4) or 𝒪𝒪(𝜒𝜒4 log𝐿𝐿).



CFD Examples – Jet Formation
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CFD Examples – Jet Formation
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Simulation with 

𝜒𝜒max = 74

corresponds to a compression of 

16:1



CFD Examples – Taylor Green Vortex

Vortical structures at 𝜕𝜕 = 0.2𝑇𝑇0, 1.4𝑇𝑇0, 2𝑇𝑇0

(rendered using the 𝜆𝜆2 method)



CFD Examples – Taylor Green Vortex

Vortical structures at 𝜕𝜕 = 0.2𝑇𝑇0, 1.4𝑇𝑇0, 2𝑇𝑇0

(rendered using the 𝜆𝜆2 method)

Simulation with 

𝜒𝜒max = 128

corresponds to a compression of 

49:1



Gaining a computational advantage in runtime?

• Scaling is often assessed as a function of characteristic 
numbers like the Reynolds number

𝑅𝑅𝑒𝑒 =
𝐿𝐿
𝜂𝜂

4/3

• Here 𝐿𝐿 is the largest size of the energy containing eddies 
and 𝜂𝜂 is the Kolmogorov microscale.

• Typically, numerically exact methods are expected to scale 
like 𝑅𝑅𝑒𝑒3𝐾𝐾/4 where 𝐾𝐾 is the number of spatial dimensions.

• The runtime scales as Re4𝜒𝜒99 which means favourable 
scaling for TDJ with 𝐾𝐾 = 2 where 𝜒𝜒99 ≈ 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝜕𝜕. but not for 
the TGV with 𝐾𝐾 = 3 where 𝜒𝜒99 ≈ 0.71 for the two examples 
studied above.

• Note: we do not know the general scaling.

Schmidt number 𝜒𝜒99 required for a 99% accurate 
representation of a flow field. The blue diamonds are for a 
decaying TGV in 3D where 𝜒𝜒99 ∝ 𝑅𝑅𝑒𝑒0.71 for sufficiently large 
𝑅𝑅𝑒𝑒. The green dots arise from a 2D TDJ. Here 𝜒𝜒99 ∝ 𝑅𝑅𝑒𝑒0 for 
sufficiently large 𝑅𝑅𝑒𝑒.



Incompressible flow – boundary conditions

• Time evolution starting from the 
fluid and the lid at rest. 

W. Y. Soh and J. W. Goodrich, Journal of 
Computational Physics 79, 113 (1988).



Tensor Network CFD algorithms

M. Kiffner and DJ, Tensor network reduced order 
models for wall-bounded flows, Phys. Rev. Fluids 8, 
124101 (2023).

• Black: only top lid moves

• Red: top and bottom lid move



Tensor Networks in CFD
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Sci. Adv. 11, eads5990 (2025)

R. Pinkston et al., in preparation Phys. Rev. Fluids 8, 124101 (2023)

N.-L. van Hülst et al. in preparation

Nature Comp. Science 2, 30 (2022).
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Hybrid Optimization – Hardware Architecture
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A. Peruzzo, et al., Nat. Commun. 5, 4213 (2014).



Hybrid Optimization – Hardware Architecture
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A. Peruzzo, et al., Nat. Commun. 5, 4213 (2014).



Hybrid Optimization – Hardware Architecture
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Cost function

Variational parameters

Variational quantum
state

Measure quantities
of interest

Classical optimization
algorithm

New parameters

Minimize Cost
function

Our work: Extension to nonlinear problems M. Lubasch, J. Joo, P. Moinier, M. Kiffner & 
DJ, Phys. Rev. A 101, 010301(R) (2020).



The QNPU Quantum Network for cost function 𝒞𝒞

H H|0⟩

|𝟎𝟎⟩

|𝟎𝟎⟩

|𝟎𝟎⟩

|𝟎𝟎⟩
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𝑁𝑁
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Q
N

PU

OP1

OP2

OP3

OP4

CP

IP1

IP2

IP3

IP4

1 3

2

1. Prepare a variational state (∝ 𝑛𝑛)

2. Measure cost function via ancilla qubit 

3. QNPU - evaluate the cost function (∝ 𝑛𝑛)

1

2

3

𝒞𝒞 = 𝑓𝑓 1 ∗�
𝑗𝑗=1

𝑟𝑟

𝑂𝑂𝑗𝑗𝑓𝑓 𝑗𝑗

M. Lubasch, J. Joo, P. Moinier, M. Kiffner & DJ, Phys. Rev. A 101, 
010301(R) (2020).



Tensor networks as a quantum programming paradigm

Variational quantum algorithms for 
computational fluid dynamics,
D Jaksch, P Givi, AJ Daley, T Rung
AIAA journal 61, 1885 (2023)



Modified Variational Quantum Algorithm2 3

Termanova, et al., 
Tensor quantum 
programming, New J. 
Phys. 26, 123019 
(2024).

P. Siegl et al., Tensor-
Programmable 
Quantum Circuits for 
Solving Differential 
Equations, 
arXiv:2502.04425.



Amplitude encoding of discrete functions

Quantum superposition

𝜓𝜓 = �
𝑖𝑖

𝑓𝑓𝑖𝑖|𝚤𝚤⟩

𝑛𝑛-qubit register stores 2𝑛𝑛 function values 𝑓𝑓𝑗𝑗
0 𝑁𝑁 = 2𝑛𝑛 − 1

⋯

𝑓𝑓(𝑗𝑗)

𝑗𝑗

Map 𝑗𝑗 → 𝚥𝚥 = binary j for 𝑛𝑛 = 8:

𝑗𝑗 = 0 → 𝚥𝚥 = 00000000 𝑗𝑗 = 1 → 𝚥𝚥 = 00000001 𝑗𝑗 = 2 → 𝚥𝚥 = 00000010 … 𝑗𝑗 = 255 → 𝚥𝚥 = 11111111

𝑓𝑓𝑗𝑗

𝑓𝑓0 𝑓𝑓1 𝑓𝑓2 𝑓𝑓255
⋯

1



Amplitude encoding of discrete functions

Quantum superposition

𝜓𝜓 = �
𝑖𝑖

𝑓𝑓𝑖𝑖|𝚤𝚤⟩

𝑛𝑛-qubit register stores 2𝑛𝑛 function values 𝑓𝑓𝑗𝑗
0 𝑁𝑁 = 2𝑛𝑛 − 1

⋯

𝑓𝑓(𝑗𝑗)

𝑗𝑗

Map 𝑗𝑗 → 𝚥𝚥 = binary j for 𝑛𝑛 = 8:

𝑗𝑗 = 0 → 𝚥𝚥 = 00000000 𝑗𝑗 = 1 → 𝚥𝚥 = 00000001 𝑗𝑗 = 2 → 𝚥𝚥 = 00000010 … 𝑗𝑗 = 255 → 𝚥𝚥 = 11111111

𝑓𝑓𝑗𝑗

𝑓𝑓0 𝑓𝑓1 𝑓𝑓2 𝑓𝑓255
⋯

Function on a discrete grid of 𝑁𝑁

points requires log2 𝑁𝑁 qubit registers

 guaranteed exponential memory saving
compared to grid based methods

1



Classical complexity ∝ 𝜒𝜒4

• Tensor Networks are a programming paradigm for quantum computers
[Phys. Rev. A 101, 010301(R) (2020)]

Quantum complexity ∝ 𝜒𝜒2

• Quantum speed-up like in Grover's algorithm

QCFD – required depth of the variational network



Classical complexity ∝ 𝜒𝜒4

• Tensor Networks are a programming paradigm for quantum computers
[Phys. Rev. A 101, 010301(R) (2020)]

Quantum complexity ∝ 𝜒𝜒2

• Quantum speed-up like in Grover's algorithm

QCFD – required depth of the variational network

Classical circuit complexity ∝ 𝜒𝜒4

Quantum complexity ∝ 𝜒𝜒2

 guaranteed quadratic speedup over 
tensor network algorithms



• Further possible quantum advantages

• Systematic approach via re-compilation of 
circuits

[Quantum Sci. Technol. 5 034015 (2020)]

• Works entirely on quantum computers (work in 

progress)

• Problem-specific quantum Ansatz
[Phys. Rev. A 101, 010301(R) (2020)]

• Exponential reduction of variational parameters?

QCFD – required depth of the variational network



QCFD on actual quantum hardware - requirements

Burgers equation in 1D

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

= 𝜈𝜈
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

− 𝑓𝑓
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

Porting the software to quantum hardware

- Platform optimized quantum circuits

- Required quantum device and further 
optimizations

Optimised

1D Burgers’ equation 
requires 17 qubits 
in ideal computer 



Gaining a quantum advantage in practice?

• Using our variational quantum algorithms:

Computational Fluid Dynamics on Quantum 
Computers, arXiv:2406.18749

• Using HHL based linearized equation solvers

Feasibility of accelerating incompressible 
computational fluid dynamics simulations with 
fault-tolerant quantum computers, 
arxiv:2406.06323

Flow past a sphere 1022 to 1028 T-gate calls

≈ 40 qubit grids



The QCFD workflow

• Nonlinear PDE
• Discretize in 

space and time
• Residual as cost 

function

𝐶𝐶(𝜆𝜆)

• Ansatz and QNPU 
q-circuits

• Classical feedback
• Platform optimize

Q-circuit • Tensor Network
• Gate level 

emulation
• Quantum 

computation

Solution



QCFD collaborations with hardware partners

2024

2025

2026

Low throughputLow connectivity Improved throughput Ok connectivity

Full controllability?

Improved throughput

Excellent connectivity

Good connectivity

Dedicated access
Dedicated access
In-house optimization

FZJ lead contact
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