

Quantum Computational Fluid Dynamics D. Jaksch, University of Hamburg

EU HORIZON-CL4-2021-DIGITAL-EMERGING-02-10 grant agreement No. 101080085 QCFD

QSG 2025, Trento, 7th May 2025

Aerodynamic designs

• Edges reduce drags

Bulbous bows

• Gurney flaps

• Winglets

Kolmogorov microscale and Reynolds number

- A simulation of fluid flow needs to cover a wide range of length scales
 - *L* the size of the largest eddies in the flow
 - η the Kolmogorov length scale at which eddies are dissipated into heat
- The ratio of these two length scales is the Reynolds number defined as

$$\operatorname{Re} = \left(\frac{L}{\eta}\right)^{4/3} = \frac{\nu L}{\nu}$$

- Here *v* is the speed of the flow and *v* the kinematic viscosity
- Flows become turbulent when Re is greater than a couple of thousands
- Grid based methods typically scale with $Re^{3K/4}$

 $\text{Re} \approx 10^9$

 $\text{Re} \approx \text{very large}$

The challenge – Resolving a wide range of length-scales

• Typically, the largest eddy size *L* is

 $10m \le L \le 100m$

- Resolution up to the Kolmogorov length scale $\eta,$ typically

 $0.1 \text{mm} \le \eta \le 10 \text{mm}$

• Necessary Grid Points N

 $1\ 000\ 000\ 000 \le N \le 1\ 000\ 000\ 000\ 000\ 000\ 000$

- Necessary memory *M* for storing a single velocity component $8 \text{ Mbyte} \le M \le 8 000 \text{ Pbyte} = 8 000 000 \text{ Tbyte}$
- Additionally, very small time steps are often necessary
- one usually works with approximations
 - Can work very well especially with known configurations
 - Unfortunately, they also deliver qualitatively incorrect results

Winglets

Bulbous bows

CFD Vision 2030 Research Roadmap

"There is steady progress on fabricating practical quantum computers, and such systems may be available in 2030. However, while a quantum computer can be used for some linear algebra calculations ..., a quantum computer is not necessarily a faster computer for CFD calculations." (CFD Vision 2030 Study Report)

Incompressible Navier-Stokes equation

• We solve the 2D and 3D equations for simple fluid flows

$$\frac{\partial \vec{v}}{\partial t} = -(\vec{v} \cdot \nabla)\vec{v} - \nabla p + \frac{1}{\text{Re}} \nabla^2 \vec{v}$$
$$\nabla \cdot \vec{v} = 0$$

- 2D \rightarrow weather forecast
- 3D → aerodynamics, combustion physics, …

The energy cascade – two and three spatial dimensions

Outline

- Consider a scalar field $u(r_q)$ on a $2^N \times 2^N$ of size $L \times L$.
- We decompose the field into functions on a coarse L/2 grid (red dots X_k) and a fine grid (black dots) as

$$u(\mathbf{r}_q) = \sum_{\alpha=1}^{\chi(1)} \lambda_{\alpha} \mathbf{R}_{\alpha}(\mathbf{X}_k) f_{\alpha}(\mathbf{x}_l) \text{ where } \mathbf{r}_q = \mathbf{X}_k + \mathbf{x}_l$$

• The maximum number of terms in this sum is

$$\chi_{\max}(1) = 4$$

- The actually required number of terms $\chi(1)$ in this sum is the so-called Schmidt number. It is a measure of correlations between L/2 and other length scales.
- The terms in the sum are weighted by λ_{α} which is the entanglement spectrum.

	ĺ
	,
••••••••	
	ľ
	,
	Ĺ
	Ĺ
	ľ
••••••••••••••••••••••••••••••	•
••••••••••	
_ ••••••••••••••••••••••••••••••••••••	
	1

• We encode the grid positions into basis states of two qubits

 $|00\rangle$ $|01\rangle$ $|10\rangle$ $|11\rangle$

• The function values are basis state amplitudes

 $\begin{aligned} |f_{\alpha}\rangle &= R_{\alpha}(\boldsymbol{X_{00}})|00\rangle + R_{\alpha}(\boldsymbol{X_{01}})|01\rangle + \\ R_{\alpha}(\boldsymbol{X_{10}})|10\rangle + R_{\alpha}(\boldsymbol{X_{11}})|11\rangle \end{aligned}$

• The 2 qubit state may be entangled, so all required R_{α} can be encoded into just 2 qubits.

$$|\psi
angle = \sum_{lpha} \lambda_{lpha} |f_{lpha}
angle \otimes |\phi_{lpha}
angle$$

• Here, $|\phi_{\alpha}\rangle$ will be used to encode the rest of the function.

Note: For the whole grid only 2N qubits are required

- We repeat this decomposition to get correlations between neighbouring length scales.
- For instance, for correlations between the length scale L/4 and lengths scale L/8 we decompose each of the functions $f_{\alpha}(x_l)$ from before.
- This gives a representation of the field as

$$u = \sum_{\alpha=1}^{\chi(1)} \lambda_{\alpha} R_{\alpha} \sum_{\beta=1}^{\nu} \lambda_{\beta} R_{\alpha\beta} f_{\alpha\beta}$$

• The maximum Schmidt number $\chi(2)$ is the total number of terms in these sums

$$\chi_{\rm max}(2) = 4^2 = 16$$

••••••	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	

• In general, Schmidt numbers $\chi(n)$ and $\lambda_{\alpha}^{(n)}$ characterize the amount of correlations between length scales

 $L \times 2^{-n}$ and $L \times 2^{-n-1}$

 The repeated application of Schmidt decompositions with increasing n gives a compact Matrix-Product-State (MPS) representation of the scalar field

 $u(\boldsymbol{r}_{\boldsymbol{q}}) = A^{q_1} A^{q_2} A^{q_3} A^{q_4} \cdots A^{q_N}$

- Here A^{q_i} is a $\chi(i-1) \times \chi(i)$ matrix.
- The index q_i labels the position in the *i*-th 2 × 2 subgrid 00, 01, 10, 11.
- In principle the maximum χ can grow exponentially with the fineness of the grid.

• • • • • • • • • • • • • • • • • • • •
<u>.</u>
2 • • • • • • 2 • • • • • • • • • • • • • • • • • • •
· • • • • • • • • • • • • • • • • • • •
.

••••••••••
· • • • • • • • • • • • • • • • • • • •

MPS – Turbulence Correlations

DNS, $t/T_0 = 0.25$ \mathcal{S} , 1024² grid DNS, $t/T_0 = 0.75$ \mathcal{M} , $\chi_{\text{max}} = 26$ B С DNS, $t/T_0=0.8$ $\mathcal{M}, \chi_{\max}=190$ DNS, $t/T_0=1.4$ $\mathcal{W}, 16^3$ grid box DNS, $t/T_0 = 1.25$ \mathcal{W} , 64^2 grid the DNS, $t/T_0 = 1.75$ DNS, $t/T_0=2$ 4^5 8^{4} characteristic time to transverse 4^{4} 8^3 4^3 $\chi_{2\mathrm{D}}$ $\overset{(2)}{\times} \overset{(2)}{\times} \overset{(2$ 4^2 8 8 6 23 56 9 54 T_0 *n*-th Bipartition *n*-th Bipartition

30 (2022). N. Gourianov, et al., Nature Computational Science 2,

2D developing jet, Re=1000

3D Taylor-Green vortex, Re=800

Entanglement entropy

• The entanglement entropy is different for 2D and 3D flows

- For 2D the entropy shifts to coarser length scales with increasing time, consistent with the inverse energy cascade
- In 3D the opposite happens consistent with energy cascade energising small length scales.

2D developing jet, Re=1000

3D Taylor-Green vortex, Re=800

Outline

MPS algorithm for evolving a 2D fluid flow in time

- We illustrate this by considering a simple Euler step to move forward in time by Δt .
- For this we minimize the cost function

$$\Theta(\vec{v}^*) = \mu |\overline{\nabla} \cdot \vec{v}^*|^2 + \left| \frac{\vec{v}^* - \vec{v}}{\Delta t} + (\vec{v} \cdot \overline{\nabla})\vec{v} - \nu \overline{\nabla}^2 \vec{v} \right|^2$$

- We use eighth-order central finite difference stencils and represent the Laplace operator as an MPO.
- We write out explicitly $\vec{v} = u_1 \vec{e}_1 + u_2 \vec{e}_2$ and $\vec{v}^* = u_1^* \vec{e}_1 + u_2^* \vec{e}_2$ and write the components as bold vectors on the grid, e.g. $u_1 = \{u_1(r_1), u_1(r_1) \dots\}$ and rewrite the cost function as

$$\begin{split} \Theta(\mathbf{V}^*) &= \sum_{i,j=1}^2 \left\{ \mu \left(\frac{\Delta \mathbf{u}_i^*}{\Delta x_i} \right)^t \frac{\Delta \mathbf{u}_j^*}{\Delta x_j} \right\} + \sum_{i=1}^2 \left\{ \frac{(\mathbf{u}_i^*)^t \mathbf{u}_i^*}{\Delta t^2} + \frac{(\mathbf{u}_i^*)^t}{\Delta t} \left(\frac{-\mathbf{u}_i}{\Delta t} + \sum_{j=1}^2 \left\{ \mathbf{u}_j \frac{\Delta \mathbf{u}_i}{\Delta x_j} - \nu \frac{\Delta^2 \mathbf{u}_i}{\Delta x_j^2} \right\} \right) \right. \\ &+ \left(\frac{-\mathbf{u}_i}{\Delta t} + \sum_{j=1}^2 \left\{ \mathbf{u}_j \frac{\Delta \mathbf{u}_i}{\Delta x_j} - \nu \frac{\Delta^2 \mathbf{u}_i}{\Delta x_j^2} \right\} \right)^t \frac{\mathbf{u}_i^*}{\Delta t} \right\} + \left[\dots \right], \end{split}$$

• The terms in […] are constant and thus irrelevant for the optimization, a step scales like $O(N\chi^4)$ or $O(\chi^4 \log L)$.

CFD Examples – Jet Formation

CFD Examples – Jet Formation

CFD Examples – Taylor Green Vortex

CFD Examples – Taylor Green Vortex

• Scaling is often assessed as a function of characteristic numbers like the Reynolds number

$$Re = \left(\frac{L}{\eta}\right)^4$$

/3

- Here *L* is the largest size of the energy containing eddies and η is the Kolmogorov microscale.
- Typically, numerically exact methods are expected to scale like $Re^{3K/4}$ where *K* is the number of spatial dimensions.
- The runtime scales as $\operatorname{Re}^{4\chi_{99}}$ which means favourable scaling for TDJ with K = 2 where $\chi_{99} \approx const$. but not for the TGV with K = 3 where $\chi_{99} \approx 0.71$ for the two examples studied above.
- Note: we do not know the general scaling.

 10^{2}

Re

◆ TGV (3-D)

 $-\chi_{99} \sim \mathrm{Re}^{0.71}$

• TDJ (2-D)

 10^{3}

 10^{1}

Gaining a computational advantage in runtime?

Incompressible flow – boundary conditions

• Time evolution starting from the fluid and the lid at rest.

W. Y. Soh and J. W. Goodrich, Journal of Computational Physics **79**, 113 (1988).

Tensor Network CFD algorithms

- Black: only top lid moves
- Red: top and bottom lid move

Operation	Algorithm	Scaling	
Addition	Variational addition of MPS (see Sec. 4.5 in [10]).	χ^3	3
Multiplication	Multiplication algorithm in [22] combined with variational com- pression [10] of the product MPS.	χ^4 >	ſ≁
Poisson solver	MPS algorithm for solving the Poisson equation in [23].	χ^3	
Matrix-vector multiplication	MPO-MPS contraction combined with variational compression (see Sec. 5 in [10]). For the system considered here, the MPO bond di- mension $D \leq 6$ and thus $D \ll \chi$.	$D\chi^3$	

M. Kiffner and DJ, *Tensor network reduced order models for wall-bounded flows*, Phys. Rev. Fluids **8**, 124101 (2023).

Nature Comp. Science 2, 30 (2022).

Outline

Hybrid Optimization – Hardware Architecture

A. Peruzzo, et al., Nat. Commun. 5, 4213 (2014).

Hybrid Optimization – Hardware Architecture

A. Peruzzo, et al., Nat. Commun. 5, 4213 (2014).

Hybrid Optimization – Hardware Architecture

The QNPU Quantum Network for cost function $\ensuremath{\mathcal{C}}$

 $C = f^{(1)^*} \prod_{j=1}^r (O_j f^{(j)})$

M. Lubasch, J. Joo, P. Moinier, M. Kiffner & DJ, Phys. Rev. A **101**, 010301(R) (2020).

Tensor networks as a quantum programming paradigm

23 Modified Variational Quantum Algorithm

O Amplitude encoding of discrete functions

Quantum superposition

$$\psi\rangle = \sum_{i} f_{i} |\vec{\iota}\rangle$$

n-qubit register stores 2^n function values f_j

O Amplitude encoding of discrete functions

QCFD – required depth of the variational network

• Tensor Networks are a **programming paradigm** for quantum computers [Phys. Rev. A **101**, 010301(R) (2020)]

Classical complexity $\propto \chi^4$

• Quantum speed-up like in **Grover's algorithm**

Quantum complexity $\propto \chi^2$

QCFD – required depth of the variational network

• Quantum speed-up like in Grover's algorithm

QCFD – required depth of the variational network

• Further possible quantum advantages

- Systematic approach via re-compilation of circuits [Quantum Sci. Technol. 5 034015 (2020)]
- Works entirely on quantum computers (work in progress)
- Problem-specific quantum Ansatz [Phys. Rev. A 101, 010301(R) (2020)]
- Exponential reduction of variational parameters?

Burgers equation in 1D $\frac{\partial f}{\partial t} = v \frac{\partial^2 f}{\partial x^2} - f \frac{\partial f}{\partial x}$

1D Burgers' equation requires 17 qubits in ideal computer Porting the software to quantum hardware

- Platform optimized quantum circuits

······································		

q ₀			•	,	
q_1		•	-		•
q₂	•		•	Ģ	+
qı			-	•	+
q 4		-	-	-	+
с	1				

 Required quantum device and further optimizations

Gaining a quantum advantage in practice?

Computational Fluid Dynamics on Quantum Computers, arXiv:2406.18749 • Using HHL based linearized equation solvers

Flow past a sphere 10^{22} to 10^{28} T-gate calls

Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers, arxiv:2406.06323

The QCFD workflow

- Nonlinear PDE
- Discretize in space and time
- Residual as cost function

Q-circuit

- Ansatz and QNPU
 q-circuits
- Classical feedback
- Platform optimize

Tensor Network

- Gate level emulation
- Quantum computation

QCFD consortium and collaborations beyond

Steven@Cornell

Nik@OXF

Peyman@PIT

Michael@2

Dieter Jaksch@UHH Thomas Rung@TUHH Felix Motzoi@Juelich Barbara Kraus@TUM Dimitris Angelakis@TUC Paolo Geremia@ENGYS Martin Kiffner@PlanQC

The QCFD project is funded under the EU's Horizon Programme (HORIZON-CL4-2021-DIGITAL-EMERGING-02-10), Grant Agreement 101080085.

QCFD (qcfd-h2020.eu)

Related publications

MPS encoding and Multigrid Renormalization

- M. Lubasch, P. Moinier and D. Jaksch, *Multigrid Renormalization*, J. Comp. Phys. **372**, 587 (2018)
- Quantum Algorithms for nonlinear optimization
 - M. Lubasch, J. Joo, P. Moinier, M. Kiffner and D. Jaksch, *Variational Quantum Algorithms for Nonlinear Problems,* Phys. Rev. A **101**, 010301(R) (2020)
- QCFD and tensor network algorithms
 - N. Gourianov, M. Lubasch, S. Dolgov, Q.Y. van den Berg, H. Babaee, P. Givi, M. Kiffner and D. Jaksch, *A quantum-inspired approach to exploit turbulence structures,* Nature Computational Science **2**, 30 (2022).
 - D. Jaksch, P. Givi, A.J. Daley and T. Rung, *Variational Quantum Algorithms for Computational Fluid Dynamics*, AIAA Journal **61**, 1885 (2023)
 - M. Kiffner and D. Jaksch, *Tensor network reduced order models for wall-bounded flows*, Phys. Rev. Fluids **8**, 124101 (2023)
 - P. Over, S. Bengoechea, T. Rung, F. Clerici, L. Scandurra, E. de Villiers, D. Jaksch, *Boundary treatment for variational quantum simulations of partial differential equations on quantum computers,* Computers & Fluids **288**, 106508 (2025)
 - N. Gourianov, P. Givi, D. Jaksch, and S.B. Pope, *Tensor networks enable the calculation of turbulence probability distributions*, Sci. Adv. **11**, eads5990 (2025)
 - S. Bengoechea, P. Over, D. Jaksch, and T. Rung, *Towards Variational Quantum Algorithms for generalized linear and nonlinear transport phenomena*, arXiv:2411.14931 (2024)
 - P. Siegl, G.S. Reese, T. Hashizume, N.-L. van Hülst, and D. Jaksch, *Tensor-Programmable Quantum Circuits for Solving Differential Equations*, arXiv:2502.04425 (2025)

