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Symmetry group 𝐺: 

Θ𝑛 𝑔 𝐻Θ𝑛
† 𝑔 = 𝐻 ∀𝑛 ∈ ℤ𝑑 , ∀𝑔 ∈ 𝐺
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†𝑈𝑛,𝑛+1𝜓𝑛+1 + 𝐻. 𝑐.
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𝑛
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𝐸𝑙
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𝑔2 

𝑝
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Quantum simulations of lattice 
gauge theories

𝐻 = 𝐻hop + 𝐻𝑀 + 𝐻𝐸 + 𝐻𝐵

𝑈𝑝,1

𝐗
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Quantum simulations of lattice 
gauge theories

Information storage: 𝜓 = Φ𝟏U𝟏,𝟐Φ𝟐U𝟐,𝟑 …
𝑛 = 1 𝑛 = 2 …

Local symmetry:   Θ𝑔,𝑛 = 𝕀⨂𝕀 … Θ𝑔;𝑛−1,𝑛
𝑅 Θ𝑔,𝑛

𝑄
Θ𝑔;𝑛,𝑛+1

𝐿 … 𝕀⨂𝕀

   Θ𝑔
𝐿 = Θ𝑔

𝑅  for Abelian groups
𝐻, Θ𝑔,𝑛 = 0 ∀𝑔, 𝑛

 
   Θ𝑔,𝑛 𝜓 phys = 𝛼𝑔,𝑛 𝜓 phys

   The set of phases 𝛼𝑔,𝑛 defines the gauge sector 

𝑍2 LGT in one dimension

Local gauge operator Θ𝑛 = −𝜏𝑛−1,𝑛
𝑥 𝜎𝑛

𝑧𝜏𝑛,𝑛+1
𝑥

Gauss’s Law for the electric field 𝛁 ⋅ 𝑬 = −𝜌 ⇒

𝑛
𝑛

𝑛

𝑒−𝑖𝐻Δ𝑡



Quantum simulations of lattice 
gauge theories: time evolution
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𝜓 Δ𝑡 = exp(−𝑖 ෩𝐻Δ𝑡)|𝜓init⟩

𝓗𝑷

𝓗𝑸

𝓗𝑷

𝓗𝑸

|𝜓init⟩
𝐻 = ∑𝐻𝑗

∼ ෑ

𝑗

exp(−𝑖𝐻𝑗Δ𝑡)

𝐻 =

Phys

non
Phys

0

0
+errors

෩𝐻  =

Phys

non
Phys

𝜓 Δ𝑡 = exp(−𝑖𝐻Δ𝑡)|𝜓init⟩

𝓗𝑷

𝓗𝑸

𝓗𝑷

𝓗𝑸

|𝜓init⟩



How do we detect and suppress errors?
Abelian LGT:

• Post-selection: check if the final state satisfies local symmetries;
• Effective Hamiltonian: energy penalty
• Engineered dissipation: stochastic driving;

Non-Abelian LGT:
• Local symmetry generators do not commute
• Post-selection?

Quantum simulations of lattice 
gauge theories: time evolution
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𝜓 Δ𝑡 = exp(−𝑖 ෩𝐻Δ𝑡)|𝜓init⟩

𝓗𝑷

𝓗𝑸

𝓗𝑷

𝓗𝑸

|𝜓init⟩

𝓗𝑷

𝓗𝑸



Local gauge charge Θ𝑛 = −𝜏𝑛−1,𝑛
𝑥 𝜎𝑛

𝑧𝜏𝑛,𝑛+1
𝑥 𝐻0, Θ𝑛 = 0pen 

− 𝑖ℏ 𝐻, 𝜌 + 𝛾 ∑𝑛
𝐺𝑛𝜌 𝐺𝑛

† −
1

2
𝐺𝑛

† 𝐺𝑛, 𝜌 = ℒ𝜌

• Coupling with classical noisy fields* ⇒ engineered dissipation

• Continuous measurements of local charges ⇒ quantum 
trajectories

𝑍2 LGT in one dimension and coherent error

Gauge-symmetry breaking coherent error

𝐻err = 𝜆 

𝑛

(𝜎𝑛
+𝜎𝑛+1

− + h. c. ) + 𝜆 

𝑛

𝜏𝑛,𝑛+1
𝑧

𝐻err, Θ𝑛 ≠ 0

Qubit number

Digital quantum simulation

Qubit number 7



Measurement-induced gauge protection in digital 
quantum simulations

Dynamical post-selection approach
𝑛𝑡

• At each Trotter step Θ𝑛 is encoded 
in an auxiliary qubit

• Requires 𝑂(𝑁) auxiliary qubits
• No reset of |𝑎⟩

𝜓 𝑡 phys ⇒ 𝜓 𝑡 + Δ𝑡 = 𝛼 𝜓(𝑡 + Δ𝑡) phys + 𝛽 𝜓 np

Coupling with the auxiliary |𝑎⟩

𝜓, 𝑎 = 𝛼 0 𝑎 𝜓 phys + 𝛽 1 𝑏 𝜓 np

Measure 𝑎

෨𝜓 𝑡 + Δ𝑡 = ൝
𝜓(𝑡 + Δ𝑡) phys with probability |𝛼|2

𝜓 np with probability |𝛽|2
keep
discard
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Equation for the density matrix in the continuous time limit

ሶ𝜌 = −𝑖ℏ 𝐻, 𝜌 +
1

2𝜏


𝑛

𝐺𝑛𝜌 𝐺𝑛
† −

1

2
𝐺𝑛

† 𝐺𝑛, 𝜌 = ℒ𝜌

Time between measurements



Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ 𝐻, 𝜌 + 𝛾 

𝑛

𝐺𝑛𝜌 𝐺𝑛
† −

1

2
𝐺𝑛

† 𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1]
• Random gauge transformations [2] 
• Continuous measurements
• Continuous limit for DPS

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ 𝐻, 𝜌 + 𝛾 

𝑛

𝐺𝑛𝜌 𝐺𝑛
† −

1

2
𝐺𝑛

† 𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1] 
• Random gauge transformations [2] 
• Continuous measurements
• Continuous limit for DPS

Dark 
states

Quantum Zeno regime

Quantum Zeno transition between 
protected and chaotic phases

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688

By JozumBjada - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=112625244
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Measurement-induced gauge protection in digital 
quantum simulations
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ 𝐻, 𝜌 + 𝛾 

𝑛
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† −

1
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Measurement-induced gauge protection in digital 
quantum simulations

ሶ𝜌 = −𝑖ℏ 𝐻, 𝜌 + 𝛾 

𝑛

𝐺𝑛𝜌 𝐺𝑛
† −

1

2
𝐺𝑛

† 𝐺𝑛, 𝜌 = ℒ𝜌

Possible implementations:
• Engineered dissipation [1]
• Random gauge transformations [2]
• Continuous measurements
• Continuous limit for DPS

Quantum Zeno transition between 
protected and chaotic phases

Importance of unraveling: same ensemble 
average, different stochastic trajectories

[1] Stanningel et al. PRL 112 (2014)
[2] Lamm et al. arxiv:2005.12688
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Nonabelian LGT: benchmark on 𝐷3

𝑫𝟑 gauge symmetry group
Smallest discrete nonabelian group ⇒ “fits” Ca trapped ion qudit
platform*.

2+1 dimensional square lattice , pure gauge:

𝐻0 = −
1

𝑔2 

𝑝

ℛ Tr 𝑈𝑝1

𝑗 𝑈𝑝2

𝑗 𝑈𝑝3

𝑗† 𝑈𝑝4

𝑗†
+ 𝐻𝐸

𝐻𝐵 , 𝐻𝐸 ≠ 0

Gauge transformation on vertex 𝒗

Θ𝒗,𝑔 = Θ3,𝑔
𝐿 Θ4,𝑔

𝐿 Θ1,𝑔
𝑅 Θ2,𝑔

𝑅 , Θ𝒗,𝑔, Θ𝒗,ℎ ≠ 0 but  Π𝑠
Θ𝒗,𝑔, Θ𝒗,ℎ Π𝑠 = 0

Θ𝒗,𝑔 𝜓phys = 𝜓phys ∀𝑔 ∈ 𝐺, 𝒗

𝐻𝐵

𝐻𝐸

Θ𝒗,𝑔

*Ringbauer et al, Nat Phys 18 (2022)

𝐻𝐵
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𝐷3 Dynamical post-selection

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

gauge charge
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𝐷3 Dynamical post-selection

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

Eigenbasis of Θ𝒗,𝑔

Plaquette operator
Gauge transformations do not commute
Local gauge charge
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𝐷3 Dynamical post-selection

What do we measure?
Computational basis 

Plaquette operator
Local gauge charge

Eigenbasis of Θ𝒗,𝑔

Plaquette operator
Gauge transformations do not commute
Local gauge charge

Dynamical post-selection
Ancilla qudit 
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𝐷3 post-Processed Symmetry Verification (PSV)

Π𝑠 = projector on gauge-symmetric sector

𝜌 = density matrix after noisy evolution

𝜌𝑠 =
Π𝑠𝜌Π𝑠

Tr[Π𝑠𝜌]

Symmetry-projected expectation value of gauge-invariant observable 

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌Π𝑠

Tr Π𝑠𝜌
=

Tr 𝑂𝑠𝜌

Tr[Π𝑠𝜌]
, with 𝑂𝑠 = Π𝑠𝑂Π𝑠 = Π𝑠𝑂

Discrete groups 

Π𝑠 = ෑ

𝑣∈V

1

𝐺


𝑔∈G

Θ𝑔,𝑣 =
1

𝐺 𝑛𝑣


𝒈∈G×𝑛𝑣

ෑ

𝑣∈V

Θ𝑔𝑣,𝑣

Tr 𝑂𝜌𝑠 =
Tr 𝑂Π𝑠𝜌

Tr Π𝑠𝜌
=

∑𝒈∈G×𝑛𝑣 Tr[𝜌𝑂Π𝑣∈VΘ𝑔𝑣,𝑣]

∑𝒈∈G×𝑛𝑣 Tr[𝜌Π𝑣∈VΘ𝑔𝑣,𝑣]

Effective group symmetrization
by averaging over multiple 
observables
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𝑈1

𝑈2 𝑈3

𝑈0
𝑣1 𝑣2

Two plaquettes with PBC

dimℋtot = 64 = 1296, dimℋphys = 49

Two vertices
Θ𝑣1,𝑔 = Θ𝐿

0,𝑔
Θ𝐿

2,𝑔
Θ𝑅

0,𝑔
Θ𝑅

1,𝑔

Θ𝑣2,𝑔 = Θ𝐿
1,𝑔

Θ𝐿
3,𝑔

Θ𝑅
0,𝑔

Θ𝑅
3,𝑔

Quench protocol:
• DPS: Each trotter 

step, measure one 
local charge

• PSV: 16 independent 
observables to 
sample

Numerical Results

𝐻0 = −
1

𝑔2 

𝑝

ℛ Tr 𝑈𝑝1

𝑗 𝑈𝑝2

𝑗 𝑈𝑝3

𝑗† 𝑈𝑝4

𝑗†
+ 𝐻𝐸

Noise model: random unitaries close to the identity

𝜓 𝑡 = exp(−𝑖𝐻𝑡) |𝜓 0 ⟩

≅ 𝒰𝜀(𝛾) exp −
𝑖𝐻𝐸𝑡

𝑁
exp −

𝑖𝐻𝐵𝑡

𝑁

𝑁

|𝜓 0 ⟩
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𝑈2 𝑈3

𝑈0
𝑣1 𝑣2

Two plaquettes with PBC

dimℋtot = 64 = 1296
dimℋphys = 49

Two vertices
Θ𝑣1,𝑔 = Θ𝐿

0,𝑔
Θ𝐿

2,𝑔
Θ𝑅

0,𝑔
Θ𝑅

1,𝑔

Θ𝑣2,𝑔 = Θ𝐿
1,𝑔

Θ𝐿
3,𝑔

Θ𝑅
0,𝑔

Θ𝑅
3,𝑔

Quench protocol:
• DPS: Each trotter 

step, measure one 
local charge

• PSV: 16 independent 
observables to 
sample

Numerical Results

=
Tr 𝑂Π𝑠𝜌

Tr 𝑂𝜌𝑠
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Conclusions & outlook

Two post-selection approaches general symmetries, tested for 
non-Abelian systems

• Dynamical post selection
• Mid-circuit measurements
• Entangling gates
• Measurements and reset are slow

• Post-processed symmetry verification
• “Cheap” extra circuitry
• Exponential number of observables

• Optimize measurement strategies
• Local observable may not require full 

gauge invariance

• Identify commensurate observables
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