Error mitigation with post-selection in symmetry-constrained Quantum Simulations An application to lattice gauge theories

Edoardo Ballini, PhD student

06/05/2025, Trento

PI: Philipp Hauke

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them.

Quantum simulations of lattice gauge theories

Quantum simulations of many-body physics

- 1. Go beyond classical methods
- 2. Hardware and software benchmark
- 3. Synthetic quantum systems

Quantum simulations of lattice gauge theories

Symmetry group *G*: $\Theta_n(g)H\Theta_n^{\dagger}(g) = H \ \forall n \in \mathbb{Z}^d, \forall g \in G$

$$H_{\text{hop}} = J \sum_{n} \psi_{n}^{\dagger} U_{n,n+1} \psi_{n+1} + H.c.$$

$$H_{M} = m \sum_{n} \psi_{n}^{\dagger} \psi_{n}$$

$$H_{E} = g^{2} \sum_{l} E_{l}^{2}$$

$$H_{B} = \frac{1}{g^{2}} \sum_{p} \text{Re}(\text{Tr}(U_{p,1}U_{p,2}U_{p,3}^{\dagger}U_{p,4}^{\dagger}))$$

Quantum simulations of lattice gauge theories

Gauss's Law for the electric field $\nabla \cdot E = -\rho \Rightarrow$

Z_2 LGT in one dimension

Local gauge operator $\Theta_n = -\tau_{n-1,n}^x \sigma_n^z \tau_{n,n+1}^x$

Information storage: $|\psi\rangle = |\Phi_1 U_{1,2} \Phi_2 U_{2,3} \dots \rangle$

Local symmetry: $\Theta_{g,n} = \mathbb{I} \otimes \mathbb{I} \dots \Theta_{g;n-1,n}^R \Theta_{g,n}^Q \Theta_{g;n,n+1}^L \dots \mathbb{I} \otimes \mathbb{I}$ $\Theta_g^L = \Theta_g^R$ for Abelian groups $[H, \Theta_{g,n}] = 0 \forall g, n$

 $\Theta_{g,n}|\psi\rangle_{\rm phys} = \alpha_{g,n}|\psi\rangle_{\rm phys}$ The set of phases $\alpha_{g,n}$ defines the gauge sector

Quantum simulations of lattice gauge theories: time evolution

Quantum simulations of lattice gauge theories: time evolution

How do we detect and suppress errors?

Abelian LGT:

- Post-selection: check if the final state satisfies local symmetries;
- Effective Hamiltonian: energy penalty
- Engineered dissipation: stochastic driving;

Non-Abelian LGT:

- Local symmetry generators do not commute
- Post-selection?

Z_2 LGT in one dimension and coherent error

electric field

 \mathbb{Z}_2 charge

Digital quantum simulation

Gauge-invariant initial states $\begin{array}{c} \cdots & & & \\ g_n = -1 & -1 & +1 & -1 & -1 \\ \end{array}$ Local gauge charge $\widehat{\Theta}_n = -\tau_{n-1,n}^{\chi} \sigma_n^z \tau_{n,n+1}^{\chi}$ $\left[\widehat{H}_0, \widehat{\Theta}_n\right] = 0$

Gauge-symmetry breaking coherent error

Three-body interaction

-1

 $\tau_{n,n+1}^x = +1$

 $\sigma_n^z = +1$

$$\widehat{H}_{\text{err}} = \lambda \sum_{n} (\sigma_{n}^{+} \sigma_{n+1}^{-} + \text{h.c.}) + \lambda \sum_{n} \tau_{n,n+1}^{z} [\widehat{H}_{\text{err}}, \widehat{\Theta}_{n}] \neq 0$$

Dynamical post-selection approach

$$\begin{split} |\psi(t)\rangle_{\text{phys}} &\Rightarrow |\psi(t + \Delta t)\rangle = \alpha |\psi(t + \Delta t)\rangle_{\text{phys}} + \beta |\psi\rangle_{\text{np}} \\ \text{Coupling with the auxiliary } |a\rangle \\ |\psi, a\rangle &= \alpha |0\rangle_a |\psi\rangle_{\text{phys}} + \beta |1\rangle_b |\psi\rangle_{\text{np}} \\ \text{Measure } |a\rangle \end{split}$$

$$|\tilde{\psi}(t + \Delta t)\rangle = \begin{cases} |\psi(t + \Delta t)\rangle_{\text{phys}} & \text{with probability } |\alpha|^2 \rightarrow \text{keep} \\ |\psi\rangle_{\text{np}} & \text{with probability } |\beta|^2 \rightarrow \text{discard} \end{cases}$$

- At each Trotter step $\widehat{\Theta}_n$ is encoded in an auxiliary qubit
- Requires O(N) auxiliary qubits
- No reset of $|a\rangle$

Equation for the density matrix in the continuous time limit

$$\dot{\rho} = -i\hbar [\hat{H}, \rho] + \frac{1}{2\tau} \sum_{n} \hat{G}_{n} \rho \hat{G}_{n}^{\dagger} - \frac{1}{2} \{ \hat{G}_{n}^{\dagger} \hat{G}_{n}, \rho \} = \mathcal{L}\rho$$

Time between measurements

$$\dot{\rho} = -i\hbar[\hat{H},\rho] + \gamma \sum_{n} \hat{G}_{n}\rho\hat{G}_{n}^{\dagger} - \frac{1}{2}\{\hat{G}_{n}^{\dagger}\hat{G}_{n},\rho\} = \mathcal{L}\rho$$

Possible implementations:

- Engineered dissipation [1]
- Random gauge transformations [2]
- Continuous measurements
- Continuous limit for DPS

tJ

5 -

0

0

4

 $\lambda = 0.2J$

8

12

16

$$\dot{\rho} = -i\hbar[\hat{H},\rho] + \gamma \sum_{n} \hat{G}_{n}\rho\hat{G}_{n}^{\dagger} - \frac{1}{2}\{\hat{G}_{n}^{\dagger}\hat{G}_{n},\rho\} = \mathcal{L}\rho$$

Possible implementations:

- Engineered dissipation [1]
- Random gauge transformations [2]
- Continuous measurements
- Continuous limit for DPS

By JozumBjada - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=112625244

tJ

5

0

n

 $\lambda = 1.0J$

8

12

16

$$\dot{\rho} = -i\hbar[\hat{H},\rho] + \gamma \sum_{n} \hat{G}_{n}\rho\hat{G}_{n}^{\dagger} - \frac{1}{2}\{\hat{G}_{n}^{\dagger}\hat{G}_{n},\rho\} = \mathcal{L}\rho$$

Possible implementations:

- Engineered dissipation [1]
- Random gauge transformations [2]
- Continuous measurements
- Continuous limit for DPS

Quantum Zeno transition between protected and chaotic phases 10

tJ

5

0

8

$$\dot{\rho} = -i\hbar[\hat{H},\rho] + \gamma \sum_{n} \hat{G}_{n}\rho\hat{G}_{n}^{\dagger} - \frac{1}{2}\{\hat{G}_{n}^{\dagger}\hat{G}_{n},\rho\} = \mathcal{L}\rho$$

Possible implementations:

- Engineered dissipation [1]
- Random gauge transformations [2]
- Continuous measurements
- Continuous limit for DPS

Quantum Zeno transition between protected and chaotic phases 10^{-10}

$$\dot{\rho} = -i\hbar[\hat{H},\rho] + \gamma \sum_{n} \hat{G}_{n}\rho\hat{G}_{n}^{\dagger} - \frac{1}{2}\{\hat{G}_{n}^{\dagger}\hat{G}_{n},\rho\} = \mathcal{L}\rho$$

Possible implementations:

- Engineered dissipation [1]
- Random gauge transformations [2]
- Continuous measurements
- Continuous limit for DPS

Quantum Zeno transition between protected and chaotic phases

Importance of unraveling: same ensemble average, different stochastic trajectories

Nonabelian LGT: benchmark on D_3

D_3 gauge symmetry group

Smallest discrete nonabelian group \Rightarrow "fits" Ca trapped ion qudit platform*.

2+1 dimensional square lattice , pure gauge:

$$\widehat{H}_{0} = \left[-\frac{1}{g^{2}} \sum_{p} \mathcal{R} \left[\operatorname{Tr} \left(\widehat{U}_{p_{1}}^{j} \widehat{U}_{p_{2}}^{j} \widehat{U}_{p_{3}}^{j\dagger} \widehat{U}_{p_{4}}^{j\dagger} \right) \right] + \widehat{H}_{E}$$
$$\left[\widehat{H}_{B}, \widehat{H}_{E} \right] \neq 0$$
$$\widehat{H}_{B}$$

Gauge transformation on vertex v

$$\begin{split} \widehat{\Theta}_{\boldsymbol{\nu},g} &= \widehat{\Theta}_{3,g}^{L} \widehat{\Theta}_{4,g}^{R} \widehat{\Theta}_{1,g}^{R} \widehat{\Theta}_{2,g}^{R}, \\ \widehat{\Theta}_{\boldsymbol{\nu},g} |\psi_{\text{phys}}\rangle &= |\psi_{\text{phys}}\rangle \quad \forall g \in G, \boldsymbol{\nu} \end{split}$$

D_3 Dynamical post-selection

What do we measure? Computational basis

- ✓ Plaquette operator
- × Local gauge charge

D_3 Dynamical post-selection

What do we measure? Computational basis

- ✓ Plaquette operator
- × Local gauge charge

Eigenbasis of $\widehat{\Theta}_{\boldsymbol{v},q}$

- × Plaquette operator
- × Gauge transformations do not commute
- ✓ Local gauge charge

D_3 Dynamical post-selection

What do we measure? Computational basis

- ✓ Plaquette operator
- × Local gauge charge

Eigenbasis of $\widehat{\Theta}_{\boldsymbol{v},q}$

× Plaquette operator

× Gauge transformations do not commute

✓ Local gauge charge

Dynamical post-selection

D₃ post-Processed Symmetry Verification (PSV)

 $\Pi_s = \text{projector on gauge-symmetric sector}$

ho = density matrix after noisy evolution $ho_s = rac{\Pi_s
ho \Pi_s}{\mathrm{Tr}[\Pi_s
ho]}$

Symmetry-projected expectation value of gauge-invariant observable

$$\operatorname{Tr}(O\rho_s) = \frac{\operatorname{Tr}[O\Pi_s\rho\Pi_s]}{\operatorname{Tr}[\Pi_s\rho]} = \frac{\operatorname{Tr}[O_s\rho]}{\operatorname{Tr}[\Pi_s\rho]}, \quad \text{with } O_s = \Pi_s O\Pi_s = \Pi_s O$$

Discrete groups

$$\Pi_{S} = \prod_{\nu \in \mathbb{V}} \left[\frac{1}{|G|} \sum_{g \in \mathcal{G}} \Theta_{g,\nu} \right] = \frac{1}{|G|^{n_{\nu}}} \sum_{g \in \mathcal{G}^{\times n_{\nu}}} \prod_{\nu \in \mathbb{V}} \Theta_{g_{\nu},\nu}$$

$$\operatorname{Tr}(O\rho_{s}) = \frac{\operatorname{Tr}[O\Pi_{s}\rho]}{\operatorname{Tr}[\Pi_{s}\rho]} = \frac{\sum_{\boldsymbol{g}\in\mathsf{G}^{\times n_{v}}}\operatorname{Tr}[\rho O\Pi_{v\in\mathsf{V}}\Theta_{g_{v},v}]}{\sum_{\boldsymbol{g}\in\mathsf{G}^{\times n_{v}}}\operatorname{Tr}[\rho\Pi_{v\in\mathsf{V}}\Theta_{g_{v},v}]}$$

Effective group symmetrization by averaging over multiple observables

Numerical Results

Noise model: random unitaries close to the identity

Two plaquettes with PBC

$$\dim \mathcal{H}_{tot} = 6^4 = 1296,$$

$$\dim \mathcal{H}_{phys} = 49$$

Two vertices

$$\widehat{\Theta}_{\nu_{1},g} = \widehat{\Theta}^{L}{}_{0,g} \widehat{\Theta}^{L}{}_{2,g} \widehat{\Theta}^{R}{}_{0,g} \widehat{\Theta}^{R}{}_{1,g} \widehat{\Theta}_{\nu_{2},g} = \widehat{\Theta}^{L}{}_{1,g} \widehat{\Theta}^{L}{}_{3,g} \widehat{\Theta}^{R}{}_{0,g} \widehat{\Theta}^{R}{}_{3,g}$$

$$\dim \mathcal{H}_{phys} = 49$$

$$n\mathcal{H}_{phys} = 49$$

$$\begin{aligned} |\psi(t)\rangle &= \exp(-iHt) |\psi(0)\rangle \\ &\cong \left[\mathcal{U}_{\varepsilon(\gamma)} \exp\left(-\frac{iH_E t}{N}\right) \exp\left(-\frac{iH_B t}{N}\right) \right]^N |\psi(0)\rangle \end{aligned}$$

$$\widehat{H}_{0} = -\frac{1}{g^{2}} \sum_{p} \mathcal{R} \left[\operatorname{Tr} \left(\widehat{U}_{p_{1}}^{j} \widehat{U}_{p_{2}}^{j} \widehat{U}_{p_{3}}^{j\dagger} \widehat{U}_{p_{4}}^{j\dagger} \right) \right] + \widehat{H}_{E}$$

Numerical Results

Two plaquettes with PBC

 $dim\mathcal{H}_{tot} = 6^4 = 1296$ $dim\mathcal{H}_{phys} = 49$

Two vertices $\widehat{\Theta}_{v_1,g} = \widehat{\Theta}^L_{0,g} \widehat{\Theta}^L_{2,g} \widehat{\Theta}^R_{0,g} \widehat{\Theta}^R_{1,g}$ $\widehat{\Theta}_{v_2,g} = \widehat{\Theta}^L_{1,g} \widehat{\Theta}^L_{3,g} \widehat{\Theta}^R_{0,g} \widehat{\Theta}^R_{3,g}$

Conclusions & outlook

Abelian: PhysRevB.111.094315

non-Abelian:

https://arxiv.org/abs/2412.07844

Two post-selection approaches general symmetries, tested for non-Abelian systems

- Dynamical post selection
 - Mid-circuit measurements
 - Entangling gates
 - Measurements and reset are slow
- Post-processed symmetry verification
 - "Cheap" extra circuitry
 - Exponential number of observables

- Optimize measurement strategies
- Local observable may not require full gauge invariance

• Identify commensurate observables

Acknowledgements

PI: Philipp Hauke

Matteo Wauters

Alberto Biella

Julius Mildenberger

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them.