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= A pure quantum state |¢) € H? is a point on the surface of a hypersphere
RQd_l.

= A Haar random state is a point picked uniformly at random from this
hypersphere.

= Equivalently, applying a Haar random unitary (U € U(d)) on a fixed
fiducial state (|10)) produces a Haar random state, i.e.,

%) = Ulto)

= For d = 2, the states lie on the Bloch sphere.



» Let Ay, As,--- A, be a set of operators and [1)) € H be an arbitrary state,

Fe([9)) = (Dl Ar|9) ([ A2[) - - - (P|Ael9h)

denotes a polynomial of order-t.
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= One would often need to compute fw dp() fe(|1)), which can be
obtained by evaluating the following:
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Sampling and designs

/ Population - | > Sample
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= A sample should be representative of the entire population.

= Designs, in some sense, provide a “smart way" to sample from the
population.



Spherical Designs

* A set of N points is called a spherical t-design if the integral of any
polynomial of degree at most ¢ over the sphere S¢ is equal to the average value
of the polynomial over the set of N points?, i.e.,

| f@an@) = 5 > 160
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where, t£2_ _
= f(x) is a t-th degree polynomial.
= dy is the normalized surface measure over S%.

= & is the finite set of points on S,

* In S2, vertices of a regular tetrahedron embedded inside form a spherical
2-design.

2R. H. Hardin and N. J. Sloane, Discrete & Computational Geometry 15, 429-441
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Quantum state designs

Def:
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Quantum state designs
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€] t!
Yor o) = [ aws(ae®  «>om
j=1 ) j=1
I
t=1 dus|d){dl= 5
o) [¢)
= A complete orthonormal basis is an exact 1-design.
. = Single qubit example: {|0),|1)}.
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Quantum state designs
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= A complete orthonormal basis is an exact 1-design.
. = Single qubit example: {|0), [1)}.
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= MUBs are 2-designs.
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Thermalization as a Resource

= |solated generic quantum systems locally equilibrate to the steady states,
which are statistically indistinguishable from the Gibbs ensemble, i.e.,
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= The temperature 3 is fixed by the mean energy of the system
E = (y|HY).
= When F =0, we have piocal ~ % —> 1-designs.
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Projected ensemble Framework

* Consider a measurement basis B = {|b)}, where [b) € H®VE and
|an) € HEN such that [pag) = e H|0)N.
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= For a single chaotic generator state, £ approximates a state t—designs4:
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*J. S. Cotler et al., PRX Quantum 4, 010311 (2023). 9
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Emergence of quantum state designs in systems with symmetry®

= What's the general choice of measurement basis for the emergence of
t-designs when the generator state abides by a symmetry?

= To address this question, we first adhere our analysis to random generator
states with translation symmetry.

°N. D. Varikuti and S. Bandyopadhyay, “Unraveling the emergence of
quantum state designs in systems with symmetry”, Quantum 8, 1456 (2024).
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Violation of the sufficient condition
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Cosntruction of Translation symmetric states

= Translation operator: T'|i1iz - in) = |[ini1 - iN—1).
= Eigenvalues: N-th roots of unity — {e 2"/} for k = 0,1,---, N — 1.
= T generates a cyclic group of order N — {I, 7,72, ... TV},
We construct a subspace projector
N-1

Ty = Z o2midk/ N

=0

= Given a Haar random 1) € H®N, |¢) = Tr|¥)// (V| TLTk|9) is a

translation symmetric state with eigenvalue e =27/
- NHaar = 2N+l -1
gHaar
| s T,
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Main Result

* For a given measurement basis 3 supported over B, we intend to verify the
equality of moments when the generator states have symmetry:

Egest | 3 m(60) (60 | = / dip () )™

|byeB [%) € Enaar

t-th moment of proj. ensemble

Sufficient condition:
* The above identity holds if for all |b) € B, (b|Tx|b) = Ly~ .
= If there exists |a) € H®N4 such that (ab|Tk|ab) = N for a given |b), then
|b) maximally violates the condition.

= If |ab) is an eigenstate of T" with different k, then (ab|Ti|ab) = 0.

= |f the above equality holds, Levy's lemma ensures that the projected
ensemble approximates a higher-order state design.
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Designs from random T-invariant states [arXiv:2402.08949]

* Figure of merit [Cotler et al. (2021)]:
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Numerical results

= We quantify the violation using A(T,B)/2NB, where

A(Ty, B E (6| Tk |b) — Lywa |12
|byeB
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Numerical results — Designs from chaotic Ising chain
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Deep thermalization of a quantum state |¢/(t)) evolved under the dynamics of a

chaotic Ising Hamiltonian with periodic boundary conditions. 16



Comparison between PBC and OBC Ising chain
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Extension to other symmetries

T

Z> (spin-flip)-symmetry: ¥ =" @ 0" ®---®c”.

N-times
= Projector onto an invariant subspace: Z4+ =14+ 3.
= Violation in computational (c*) basis:

Np
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= We established a sufficient condition for the emergent state designs from
random T-invariant quantum states.

= |dentified measurement bases that do not produce the state designs.

= Examined the deep thermalization in the chaotic Ising chain with periodic
boundary conditions and contrasted the results with no-symmetry cases.
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Future prospects

= Verifying robustness of projected ensemble framework against 'False
positives' of quantum chaos.

= Faster unitary designs from translation invariant Hamiltonians?

= |nterplay between measurements and dynamics when both the former and
the latter exhibit symmetries.

= Deep thermalization in systems with non-abelian symmetries.

21



Moments of the projected ensembles of Z,-symmetric states

Symmetry group: {I,~,c%}.
Projectors onto symmetric subspaces:

QN Iy — c®N
Zy = Ly toe J;Ow and 7, = 22 "¢ 2‘%

Measurement basis: B = {|b)}

M, oc > (b|Z|b)*'TTY,

byeB

If the measurements are performed in o,-basis, then the moments of the
projected ensemble are
1

M22 - N (ZE?SVA + Z%;’A) Hf“’

where N is the normalizing constant.
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