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Random Quantum States1

1J. Emerson et al., Journal of Optics B: Quantum and Semiclassical Optics 7, S347
(2005), J. M. Renes et al., Journal of Mathematical Physics 45, 2171–2180 (2004),
B. Vermersch et al., Physical Review X 9, 021061 (2019).
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(Haar) Random quantum states

• A pure quantum state |ψ⟩ ∈ Hd is a point on the surface of a hypersphere
R2d−1.

• A Haar random state is a point picked uniformly at random from this
hypersphere.

• Equivalently, applying a Haar random unitary (U ∈ U(d)) on a fixed
fiducial state (|ψ0⟩) produces a Haar random state, i.e.,

|ψ⟩ = U |ψ0⟩

• For d = 2, the states lie on the Bloch sphere.
3
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Moments

• Let A1, A2, · · ·At be a set of operators and |ψ⟩ ∈ H be an arbitrary state,

ft(|ψ⟩) = ⟨ψ|A1|ψ⟩⟨ψ|A2|ψ⟩ · · · ⟨ψ|At|ψ⟩

denotes a polynomial of order-t.

ft(|ψ⟩) =

〈
ψ⊗t

∣∣∣∣∣
t⊗
i=1

Ai

∣∣∣∣∣ψ⊗t

〉
= Tr

(|ψ⟩⟨ψ|)⊗t︸ ︷︷ ︸
∈H⊗N

(
t⊗
i=1

Ai

) .
• One would often need to compute

∫
ψ
dµ(ψ)ft(|ψ⟩), which can be

obtained by evaluating the following:∫
|ψ⟩

dµ(ψ) (|ψ⟩⟨ψ|)⊗t

︸ ︷︷ ︸
t-th Moment

= Πt (1)
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Sampling and designs

• A sample should be representative of the entire population.
• Designs, in some sense, provide a “smart way” to sample from the

population.
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Spherical Designs

* A set of N points is called a spherical t-design if the integral of any
polynomial of degree at most t over the sphere Sd is equal to the average value
of the polynomial over the set of N points2, i.e.,∫

x∈Sd

f(x)dµ(x) = 1
|E|
∑
x∈E

f(x),

where,
• f(x) is a t-th degree polynomial.
• dµ is the normalized surface measure over Sd.
• E is the finite set of points on Sd.

* In S2, vertices of a regular tetrahedron embedded inside form a spherical
2-design.

2R. H. Hardin and N. J. Sloane, Discrete & Computational Geometry 15, 429–441
(1996).
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Quantum state designs

Def:

A finite ensemble of states E ≡ {pj , |ψj⟩} is called a state t-design, if3

|E|∑
j=1

pj (|ϕj⟩⟨ϕj |)⊗t =
∫

|ϕ⟩
dµϕ (|ϕ⟩⟨ϕ|)⊗t ∝

t!∑
j=1

Πj∫
|ϕ⟩
dµϕ|ϕ⟩⟨ϕ|= I

d

• A complete orthonormal basis is an exact 1-design.
• Single qubit example: {|0⟩, |1⟩}.

∫
|ϕ⟩
dµϕ (|ϕ⟩⟨ϕ|)⊗2 = I + F

d(d+ 1) (F ∼ SWAP)

• Ex.
{

|0⟩, |1⟩, |0⟩ ± |1⟩√
2

,
|0⟩ ± i|1⟩√

2

}
.

• MUBs are 2-designs.

3J. M. Renes et al., Journal of Mathematical Physics 45, 2171–2180 (2004).
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Thermalization as a Resource

• Isolated generic quantum systems locally equilibrate to the steady states,
which are statistically indistinguishable from the Gibbs ensemble, i.e.,

ρlocal = Trlocal (|ψ⟩⟨ψ|) ∼ e−βHlocal

Z
• The temperature β is fixed by the mean energy of the system

E = ⟨ψ|H|ψ⟩.

• When E = 0, we have ρlocal ∼ I
D =⇒ 1-designs.

ρlocal =
∑
|b⟩

⟨b|(|ψ⟩⟨ψ|) |b⟩ (2)

8
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Projected ensemble Framework

* Consider a measurement basis B ≡ {|b⟩}, where |b⟩ ∈ H⊗NB and
|ψAB⟩ ∈ H⊗N such that |ψAB⟩ = e−iτH |0⟩⊗N .

• E ≡ {pb, |ϕA(b)⟩},
where

|ϕA(b)⟩ = ⟨b|ψ⟩√
⟨ψ|b⟩⟨b|ψ⟩

and

pb = ⟨ψ|b⟩⟨b|ψ⟩.

• For a single chaotic generator state, E approximates a state t-designs4:

∆(t) =

∥∥∥∥∥∥
∑

|b⟩∈B

pb (|ϕ(b)⟩⟨ϕ(b)|)⊗t −
∫

|ϕ⟩
dµϕ (|ϕ⟩⟨ϕ|)⊗t

∥∥∥∥∥∥
1

≤ ε ∼ 2−NB/2

4J. S. Cotler et al., PRX Quantum 4, 010311 (2023). 9

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010311
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Emergence of quantum state designs in systems with symmetry5

• What’s the general choice of measurement basis for the emergence of
t-designs when the generator state abides by a symmetry?

• To address this question, we first adhere our analysis to random generator
states with translation symmetry.

5N. D. Varikuti and S. Bandyopadhyay, “Unraveling the emergence of
quantum state designs in systems with symmetry”, Quantum 8, 1456 (2024).
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Schematic
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Cosntruction of Translation symmetric states

• Translation operator: T |i1i2 · · · iN ⟩ = |iN i1 · · · iN−1⟩.
• Eigenvalues: N -th roots of unity — {e−2πik/N} for k = 0, 1, · · · , N − 1.
• T generates a cyclic group of order N — {I, T, T 2, · · ·TN−1}.

We construct a subspace projector

Tk =
N−1∑
j=0

e2πijk/NT j .

• Given a Haar random |ψ⟩ ∈ H⊗N , |ϕ⟩ = Tk|ψ⟩/
√

⟨ψ|T†
kTk|ψ⟩ is a

translation symmetric state with eigenvalue e−2πik/N .

T |ϕ⟩ = e−2πik/N |ϕ⟩

12



13/22

Main Result

* For a given measurement basis B supported over B, we intend to verify the
equality of moments when the generator states have symmetry:

E|ϕ⟩∈Ek
TI


∑

|b⟩∈B

pb (|ϕ(b)⟩⟨ϕ(b)|)⊗t

︸ ︷︷ ︸
t-th moment of proj. ensemble

 =
∫

|ψ⟩∈EHaar

dψ (|ψ⟩⟨ψ|)⊗t ,

Sufficient condition:
* The above identity holds if for all |b⟩ ∈ B, ⟨b|Tk|b⟩ = I2NA .

• If there exists |a⟩ ∈ H⊗NA such that ⟨ab|Tk|ab⟩ = N for a given |b⟩, then
|b⟩ maximally violates the condition.

• If |ab⟩ is an eigenstate of T with different k, then ⟨ab|Tk|ab⟩ = 0.
• If the above equality holds, Levy’s lemma ensures that the projected

ensemble approximates a higher-order state design.

13
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Designs from random T-invariant states [arXiv:2402.08949]

* Figure of merit [Cotler et al. (2021)]:

∆(t) =

∥∥∥∥∥∥
∑

|b⟩∈B

(⟨b|ϕ⟩⟨ϕ|b⟩)⊗t

(⟨ϕ|b⟩⟨b|ϕ⟩)t−1 −
∫

|ϕ⟩
dµϕ (|ϕ⟩⟨ϕ|)⊗t

∥∥∥∥∥∥
1

Average trace distance ∆(t) versus NB
14
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Numerical results

• We quantify the violation using ∆(Tk,B)/2NB , where

∆(Tk,B) =
∑

|b⟩∈B

∥⟨b|Tk|b⟩ − I2NA ∥1

Violation:

• Blocal ∼ (u1 ⊗ · · · ⊗ uNB ).
• BEnt ∼ UB (global unitary)
• B1 ∼ Eigenbasis of TB .
• B2 ∼ Eigenbasis of (u⊗ IB−1)TB .

15
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Numerical results — Designs from chaotic Ising chain

H =
N∑
i=0

σxi σ
x
i+1 + hx

N∑
i=0

σxi + hy

N∑
i=0

σyi

Translation + Ref - symmetric vs Haar
states• Initial state: |ψ(0)⟩ = |0⟩⊗N .

Deep thermalization of a quantum state |ψ(t)⟩ evolved under the dynamics of a
chaotic Ising Hamiltonian with periodic boundary conditions. 16
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Comparison between PBC and OBC Ising chain

H =
N∑
i=1

(J + ηi)σxi σxi+1 +
N∑
i=1

hxσ
x
i +

N∑
i=1

(hy + ξi)σyi , (3)

(a)-(c) — ηi ∈ N (0, v) , ξi = 0. (d)-(f) — ηi = 0 , ξi ∈ N (0, v).

17
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Extension to other symmetries

Z2 (spin-flip)-symmetry: Σ = σx ⊗ σx ⊗ · · · ⊗ σx︸ ︷︷ ︸
N -times

.

• Projector onto an invariant subspace: Z± = I ± Σ.
• Violation in computational (σz) basis:

✓∆(Z±,B) =
∑

b∈{0,1}N

∥±⟨b|Σ|b⟩∥1 =
∑

b∈{0,1}N

∥∥∥∥∥(σx)⊗NA

NB∏
j=NA+1

⟨bj |σx|bj⟩

∥∥∥∥∥
1

= 0.

• Violation in σx basis:

×∆(Z±,B) =
∑

b∈{+,−}N

∥±⟨b|Σ|b⟩∥1 =
∑

b∈{+,−}N

∥∥∥∥∥(σx)⊗NA

NB∏
j=NA+1

⟨bj |σx|bj⟩

∥∥∥∥∥
1

= 2NA .

18
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Summary

• We established a sufficient condition for the emergent state designs from
random T-invariant quantum states.

• Identified measurement bases that do not produce the state designs.
• Examined the deep thermalization in the chaotic Ising chain with periodic

boundary conditions and contrasted the results with no-symmetry cases.
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Future prospects

• Verifying robustness of projected ensemble framework against ’False
positives’ of quantum chaos.

• Faster unitary designs from translation invariant Hamiltonians?
• Interplay between measurements and dynamics when both the former and

the latter exhibit symmetries.
• Deep thermalization in systems with non-abelian symmetries.
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Moments of the projected ensembles of Z2-symmetric states

Symmetry group: {I2N , σ⊗N
x }.

Projectors onto symmetric subspaces:

Z0 = I2N + σ⊗N
x

2 and Z1 = I2N − σ⊗N
x

2

Measurement basis: B ≡ {|b⟩}

Mt
Z2 ∝

∑
|b⟩∈B

⟨b|Zk|b⟩⊗tΠt
A,

If the measurements are performed in σx-basis, then the moments of the
projected ensemble are

Mt
Z2 = 1

N
(
Z⊗t

0,NA
+ Z⊗t

1,NA

)
Πt
A,

where N is the normalizing constant.
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