UNIVERSITY OF OSLO

MSCA COFUND This work has received funding from the European Union's Horizor Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101126636.

Quantum Reservoir Computing

<u>Viktor Svensson</u>, Alva Höglund, Simon Wozny, Konstantin Nestmann, Martin Leijnse

Quantum Science Generation 2025 5 May 2025 Trento

Reservoir computing:

How a random system can be used for computation

What I will not talk about:

Majorana zero modes for topological quantum computing

Universal computer

Can run any algorithm without making mistakes

Two stringent requirements:

- Universal
- Error free

Machine learning

Two simpler requirements:

- Complicated
- Trainable

What is this black box?

What if training is too hard?

Extreme Learning Machines

Feed-forward network, run once for each input Reservoir Computing

Recurrent network, time-dependent input

Why does this work?

UNIVERSITY OF OSLO

- Non-linear transformations give new points of view of the same data
- Higher dimensional space gives access to many more linear cuts

Examples of physical reservoirs

Octopus inspired robotics arm in water tank

Kagaya et al., 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 2022

Photonic processor

Nakajima et al., Commun Phys 4, 20 (2021) 41 mm

"We could classify hand-written-digits images with an accuracy of 91.7% and ultrafast processing speed of 17.1 ns per image"

UNIVERSITY OF OSLO

Quantum Reservoir Computing

- Classical \rightarrow Classical
- Classical \rightarrow Quantum: State preparation
- Quantum \rightarrow Classical: State characterization
- Quantum \rightarrow Quantum: State manipulation

Examples of quantum reservoirs

Quantum circuit Yasuda et al., *arXiv:2310.06706*

UNIVERSITY

OF OSLO

Reservoir made of quantum dots

Grid of quantum dots, described by

$$H = \underbrace{\sum_{i} \varepsilon_{i} c_{i}^{\dagger} c_{i}}_{\text{Chemical potential}} + \sum_{ij} \underbrace{\left(t_{ij} c_{i}^{\dagger} c_{j} + hc\right)}_{\text{hopping}} + \underbrace{V_{ij} c_{i}^{\dagger} c_{i} c_{j}^{\dagger} c_{j}}_{\text{Coulomb interaction}}$$

Leads, allowing current to flow through the system

Borsoi et al., *Nat. Nanotechnol.* **19**, 21–27 (2024).

Input = voltage Output = current

Testing the reservoir

Let's make some numerical experiments 6 quantum dots 100 random reservoirs for statistics

We will compare two formalisms for the dynamics

Measuring non-linearity

OF OSLO

Summary

Reservoir computing shows how a randomized system can be used for computation $\Box = C_{ot}^{2}$

{x}

Properties you'd like from a reservoir

- Memory
- Non-linearity
- Many outputs

Can quantum reservoirs be useful before we get universal quantum computers? What systems make good reservoirs?