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1.1 – Why quantum computing ?

A quantum many-body system :
the atomic nucleus

• Mesoscopic system
            Rich phenomenology
            Theoretical description challenging

• Strong interaction in a non-perturbative regime
            Complicated Hamiltonian
            Quick growth of the (needed) Hilbert space

• Exact methods (diag of H) can be applied up to A~20.
Approximate methods exist but very costly.

• Made of A = Z + N nucleons (2 ≤ A ≤ 400)

Motivation for a quantum computing approach.
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Another quantum many-body system

Not easy to model with a classical computer
Not easy to manipulate, to measure

Not easy to model with a classical computer
More easy to manipulate, to measure (in principle)

1.1 – Why quantum computing ?

A quantum many-body system :
the atomic nucleus
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1.2 – Building a state

=

• Qubits provide an efficient representation of a many-body wavefunction.

• Operations on them allow to add the correlations needed to approximate the exact wavefunction.
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1.2 – Building a state

X

X
=

• Qubits provide an efficient representation of a many-body wavefunction.

• Operations on them allow to add the correlations needed to approximate the exact wavefunction.
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1.2 – Building a state
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1.2 – Building a state

X

X +
Ry
α

= cos(α)

+ sin(α)

+

Creates entanglement 
in the wavefunction

• Qubits provide an efficient representation of a many-body wavefunction.

• Operations on them allow to add the correlations needed to approximate the exact wavefunction.
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1.2 – Building a state
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• Qubits provide an efficient representation of a many-body wavefunction.

• Operations on them allow to add the correlations needed to approximate the exact wavefunction.
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1.2 – Building a state

X

X
= cos(α)
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+ sin(α)cos(β)sin(γ)
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+
Ry
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+
+

Ry
β

+

+
Ry
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+

• Ideally, n qubits are sufficient to represent an n-level many-body state.

• Classically, it requires (without symmetries) to store 2n amplitudes
(nb of bits = 2n × nb of precision digits).

• Qubits provide an efficient representation of a many-body wavefunction.

• Operations on them allow to add the correlations needed to approximate the exact wavefunction.
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1.3 – Measuring expectation values

X

X +
Ry
α
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One can measure all Pauli 
string expectation values
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Hamiltonian in second quantization form (here : Pairing Hamiltonian)

1.3 – Measuring expectation values
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Hamiltonian in second quantization form (here : Pairing Hamiltonian)

Transformed Hamiltonian as combination of Pauli terms

1.3 – Measuring expectation values

Map the second-quantized operators into Pauli operators

Ex : Jordan-Wigner Transformation (JWT) :



Samuel Aychet-Claisse 17

Contents
1. Many-body physics with qubits

1.1 - Why quantum computing ?
1.2 - Building a many-body state
1.3 - Measuring expectation values
1.4 - Approaching the ground state

2. Application to a model for nuclear superfluidity
2.1 - Pairing model
2.2 - Convergence to the ground state
2.2 - Odd systems & Green’s functions

Conclusion and perspectives



Samuel Aychet-Claisse 18

1.4 – Approaching the ground state
Variational Quantum Eigensolver (VQE) : 

a hybrid quantum-classical algorithm

Quantum computer
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1.4 – Approaching the ground state

Quantum computer

Classical optimiser

Variational Quantum Eigensolver (VQE) : 
a hybrid quantum-classical algorithm
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The ADAPT-VQE procedure requires :

• A set of well chosen operators { Ri(θ) }1≤i≤n.

• A criterion to select one of them on their 
ability to reduce the energy of a given state. 

ADAPT-VQEVQE

1.4 – Approaching the ground state
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Input state

The ADAPT-VQE procedure requires :

• A set of well chosen operators { Ri(θ) }1≤i≤n.

• A criterion to select one of them on their 
ability to reduce the energy of a given state. 

ADAPT-VQEVQE

1.4 – Approaching the ground state
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Select an operator Ri1(θ).
Optimize θ1 (to reach a min of energy).

Input state

The ADAPT-VQE procedure requires :

• A set of well chosen operators { Ri(θ) }1≤i≤n.

• A criterion to select one of them on their 
ability to reduce the energy of a given state. 

ADAPT-VQEVQE

1.4 – Approaching the ground state
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Select an operator Ri1(θ).
Optimize θ1 (to reach a min of energy).

Input state

Select an operator Ri2(θ).
Optimize θ1 and θ2.

The ADAPT-VQE procedure requires :

• A set of well chosen operators { Ri(θ) }1≤i≤n.

• A criterion to select one of them on their 
ability to reduce the energy of a given state. 

ADAPT-VQEVQE

1.4 – Approaching the ground state
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The ADAPT-VQE procedure requires :

• A set of well chosen operators { Ri(θ) }1≤i≤n.

• A criterion to select one of them on their 
ability to reduce the energy of a given state. 

Select an operator Ri1(θ).
Optimize θ1 (to reach a min of energy).

Input state

Select an operator Ri2(θ).
Optimize θ1 and θ2.

Select an operator Ri3(θ).
Optimize θ1, θ2, θ3.

...

ADAPT-VQEVQE

1.4 – Approaching the ground state
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The ADAPT-VQE procedure requires :

• A set of well chosen operators { Ri(θ) }1≤i≤n.

• A criterion to select one of them on their 
ability to reduce the energy of a given state. 

ADAPT-VQEVQE

1.4 – Approaching the ground state
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3 implementations of ADAPT-VQE

ADAPT-St ADAPT-Min ADAPT-Fix

Set of operators : 

(single qubit excitation-based pool)

Set of operators : 

(single qubit excitation-based pool)

Set of operators : 

1.4 – Approaching the ground state
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3 implementations of ADAPT-VQE

ADAPT-St ADAPT-Min ADAPT-Fix

See, for example : J. Zhang, D. Lacroix, Y. Beaujeault-
Taudière, Neutron-proton pairing correlations described on 
quantum computers, Phys. Rev. C 110, 064320 (2024).

Picture taken from :
C. Feniou et al,
Greedy Gradient-free Adaptive Variational Quantum 
Algorithms on a Noisy Intermediate Scale Quantum 
Computer, arXiv:2306.17159 [quant-ph] (2023).

Set of operators : 

Selection criterion : maximum 
absolute gradient at θ = 0, computed 
from 1 measurement.

(single qubit excitation-based pool)

Selection criterion : minimum of 
the energy E(θ), computed from 5 
measurements.

Selection criterion : predefined order

Set of operators : 

(single qubit excitation-based pool)

Set of operators : 

Suggested by : B. T. Gard, L. Zhu, G. S. Barron, N. J. 
Mayhall, S. E. Economou and E. Barnes, Efficient 
symmetry-preserving state preparation circuits for the 
variational quantum eigensolver algorithm, npj Quantum 
Inf. 6, 10 (2020).

1.4 – Approaching the ground state
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2.1 – Pairing model

...
Pairing Hamiltonian :

Energy of each particle, 
independently

Interaction 
between pairs

k particles in N levels :

         - dimensional space

• Models pairing effects in nuclei

• Generates strongly-correlated wave functions

• Exact solutions can be accessed         benchmarks

• Reference approximation : projected BCS (VAP or PAV)



Samuel Aychet-Claisse 31

2.1 – Pairing model

8 particles in 8 levels.

One can go to the subspace with no 
unpaired particle, which is of dimension

Pairing Hamiltonian :

Energy of each particle, 
independently

Interaction 
between pairs

• Models pairing effects in nuclei

• Generates strongly-correlated wave functions

• Exact solutions can be accessed         benchmarks

• Reference approximation : projected BCS (VAP or PAV)
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2.2 – Convergence to the ground state
g = 0.2 g = 0.4 g = 0.6

(Not obtained from a real quantum 

computer, but fro
m an emulator)

4 pairs in 8 level :       – dim Hilbert space

Due to symmetries and normalisation, 
one need     – 1 = 69 real parameters to 
fully explore the space.

However, 20 parameters are sufficient 
to reach the ground state with less than 
1% relative error in energy and beat BCS 
states (PAV and VAP).
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2.2 – Convergence to the ground state
If one stops at 20 iterations :
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2.3 – Green’s functions

An application of Green’s functions : spectral 
function of 34Si, giving the energies of 33Si and 35Si.
(from V. Somà, Self-consistent Green’s function theory for 
atomic nuclei, Front. Phys. 8, 340 (2020)).

Green’s function in Lehmann representation :

It contains information about excited states in the spaces 
with A±1 particles.
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2.3 – Green’s functions
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2.3 – Green’s functions

Based on a method proposed in :
Diksha Dhawan, Dominika Zgid, Mario Motta, Quantum algorithm for imaginary-time 
Green’s functions, Journal of Chemical Theory and Computation 20 (11), 4629 (2024)
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2.3 – Green’s functions

Bonus : access the ground state of odd systems 

Odd-even staggering well reproduced
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2.3 – Green’s functions

Imaginary partReal part

Trace of the Green’s function obtained for a 
system of 4 pairs in 8 levels with coupling g = 0,6.
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Conclusion and perspectives

Applications on quantum emulator
    • Quantum algorithm (ADAPT-VQE) achieves good repro-
      duction of ground state.

    • Promising results for odd systems and Green’s function
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Conclusion and perspectives
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Next : application to real quantum device
    • Pasqual platform (Rydberg atoms) currently being installed
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Conclusion and perspectives

Applications on quantum emulator
    • Quantum algorithm (ADAPT-VQE) achieves good repro-
      duction of ground state.

    • Promising results for odd systems and Green’s function

Next : application to real quantum device
    • Pasqual platform (Rydberg atoms) currently being installed
      at CEA

Status and challenges of quantum computers
    • Several types of hardware (superconducting circuits, trapped
      ions, Rydberg atoms, photons, …)

    • Noisy qubits (decoherence, error correction remains hard)

    • Emulators are essential to test algorithms
    



Thanks for your attention
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Appendix
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What is quantum computing ?
Classical computing Quantum computing

Unit of information : bit Unit of information : qubit

Normalisation
Definition up to a global phase

Operations on a qubit :

X

Y

Z
Operations on a bit :

(→corresponds to NOT gate)

...
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What is quantum computing ?
Classical computing Quantum computing

State of n qubits :State of n bits :

Operations on n qubits : unitary operatorsOperations on n bits :

AND

OR
OR

NOT

Quantum circuit :

Logical circuit :
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What is quantum computing ?

X

X +
Ry
α

+
+

Ry
β

+

H

Quantum circuit : a graphical representation of qubits operations

H
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Measuring expectation values

X ...
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Measuring expectation values

X ...
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Measuring expectation values

X ...
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Measuring expectation values

X ...

X H...
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Measuring expectation values

X ...

X H...

X H... S†
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