

Calculation of Green's Functions using quantum computers for small superfluid systems

Samuel Aychet-Claisse CEA Saclay & IJCLab Orsay

Supervisors : Vittorio Somà (CEA Saclay) Denis Lacroix (IJCLab Orsay)

anr®

Picture taken from : Ayral, T., Besserve, P., Lacroix, D. et al. Quantum computing with and for many-body physics. Eur. Phys. J. A 59, 227 (2023). https://doi.org/10.1140/epja/s10050-023-01141-1

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model
- 2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model
- 2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

1.1 – Why quantum computing ?

A quantum many-body system : the atomic nucleus

• Made of A = Z + N nucleons ($2 \le A \le 400$)

- Mesoscopic system
 - Rich phenomenology
 - Theoretical description challenging
- Strong interaction in a non-perturbative regime
 Complicated Hamiltonian
 - Quick growth of the (needed) Hilbert space
- Exact methods (diag of H) can be applied up to A~20. Approximate methods exist but very costly.

Motivation for a quantum computing approach.

1.1 – Why quantum computing ?

A quantum many-body system : the atomic nucleus

Not easy to model with a classical computer Not easy to manipulate, to measure

Another quantum many-body system

Not easy to model with a classical computer More easy to manipulate, to measure (in principle)

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state
- 2. Application to a model for nuclear superfluidity
 - 2.1 Pairing model
 - 2.2 Convergence to the ground state
 - 2.2 Odd systems & Green's functions

Conclusion and perspectives

- Qubits provide an efficient representation of a many-body wavefunction.
- Operations on them allow to add the correlations needed to approximate the exact wavefunction.

- Qubits provide an efficient representation of a many-body wavefunction.
- Operations on them allow to add the correlations needed to approximate the exact wavefunction.

- Qubits provide an efficient representation of a many-body wavefunction.
- Operations on them allow to add the correlations needed to approximate the exact wavefunction.

- Qubits provide an efficient representation of a many-body wavefunction.
- Operations on them allow to add the correlations needed to approximate the exact wavefunction.

- Qubits provide an efficient representation of a many-body wavefunction.
- Operations on them allow to add the correlations needed to approximate the exact wavefunction.

1.2 – Building a state

- Qubits provide an efficient representation of a many-body wavefunction.
- Operations on them allow to add the correlations needed to approximate the exact wavefunction.

- $$\begin{split} \Psi \rangle &= \cos(\alpha) \Big| = \\ + \sin(\alpha)\cos(\beta)\cos(\gamma) \Big| = \\ + \sin(\alpha)\cos(\beta)\sin(\gamma) \Big| = \end{split}$$
- Ideally, n qubits are sufficient to represent an n-level many-body state.
- Classically, it requires (without symmetries) to store 2^n amplitudes (nb of bits = $2^n \times$ nb of precision digits).

+ sin(α)sin(β)cos(γ)

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state
- 2. Application to a model for nuclear superfluidity
 - 2.1 Pairing model
 - 2.2 Convergence to the ground state
 - 2.2 Odd systems & Green's functions

Conclusion and perspectives

One can measure all Pauli string expectation values $\langle \Psi | \sigma_0 \sigma_1 \sigma_2 \sigma_3 | \Psi \rangle$ with $\forall i, \sigma_i \in \{I, X, Y, Z\}$

$$\hat{H} = \sum_{k=1}^{N} \epsilon_k (\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{k}}) - g \sum_{k \neq l} \hat{a}_k^{\dagger} \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{l}} \hat{a}_l$$
Hamiltonian in second quantization form (here : Pairing Hamiltonian)

$$\begin{split} \hat{H} &= \sum_{k=1}^{N} \epsilon_k (\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{k}}) - g \sum_{k \neq l} \hat{a}_k^{\dagger} \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{l}} \hat{a}_l \\ \hline \text{Hamiltonian in second quantization form (here : Pairing Hamiltonian)} \end{split}$$

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model
- 2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

Variational Quantum Eigensolver (VQE) : a hybrid quantum-classical algorithm

Variational Quantum Eigensolver (VQE) : a hybrid quantum-classical algorithm

- A set of well chosen operators { $R_i(\theta)$ }_{1 \le i \le n}.
- A criterion to select one of them on their ability to reduce the energy of a given state.

Input state

- A set of well chosen operators { $R_i(\theta)$ }_{1 \le i \le n}.
- A criterion to select one of them on their ability to reduce the energy of a given state.

Select an operator $R_{i_1}(\theta)$. Optimize θ_1 (to reach a min of energy).

- A set of well chosen operators { $R_i(\theta)$ }_{1 \le i \le n}.
- A criterion to select one of them on their ability to reduce the energy of a given state.

- A set of well chosen operators { $R_i(\theta)$ }_{1 \le i \le n}.
- A criterion to select one of them on their ability to reduce the energy of a given state.

- A set of well chosen operators { $R_i(\theta)$ }_{1 \le i \le n}.
- A criterion to select one of them on their ability to reduce the energy of a given state.

- A set of well chosen operators { $R_i(\theta)$ }_{1 \le i \le n}.
- A criterion to select one of them on their ability to reduce the energy of a given state.

3 implementations of ADAPT-VQE

3 implementations of ADAPT-VQE

ADAPT-Min

Selection criterion : maximum absolute gradient at $\theta = 0$, computed from 1 measurement.

 $\frac{\partial E}{\partial \theta}\Big|_{\theta=0} = \langle \Psi | \left[H, \frac{1}{2} (X_p Y_q - Y_p X_q) \right] | \Psi \rangle$

See, for example : J. Zhang, D. Lacroix, Y. Beaujeault-Taudière, Neutron-proton pairing correlations described on quantum computers, Phys. Rev. C 110, 064320 (2024).

Set of operators : $R_{pq}(\theta) = e^{i\frac{\theta}{2}(X_pY_q - Y_pX_q)}$ $0 \cos(\theta) - \sin(\theta)$ $0 \sin(\theta)$ $\cos(\theta)$

(single qubit excitation-based pool)

Selection criterion : minimum of the energy $E(\theta)$, computed from 5 measurements. ocally optimal operato Energy gradient at $\theta = 0$

Greedy Gradient-free Adaptive Variational Ouantum Algorithms on a Noisy Intermediate Scale Quantum Computer, arXiv:2306.17159 [guant-ph] (2023).

C. Feniou et al.

ADAPT-Fix

Selection criterion : predefined order

Suggested by : B. T. Gard, L. Zhu, G. S. Barron, N. J. Mayhall, S. E. Economou and E. Barnes, Efficient symmetry-preserving state preparation circuits for the variational guantum eigensolver algorithm, npj Quantum Inf. 6, 10 (2020).

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model
- 2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model
- 2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

2.1 – Pairing model

Pairing Hamiltonian :

$$\hat{H}(g) = \sum_{k=1}^{N} \epsilon_k (\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{k}}) - g \sum_{k \neq l} \hat{a}_k^{\dagger} \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{l}} \hat{a}_l$$
Energy of each particle, Interaction between pairs

- Models pairing effects in nuclei
- Generates strongly-correlated wave functions
- Exact solutions can be accessed \rightarrow benchmarks
- Reference approximation : projected BCS (VAP or PAV)

k particles in N levels :

2.1 – Pairing model

Pairing Hamiltonian :

$$\hat{H}(g) = \sum_{k=1}^{N} \epsilon_k (\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{k}}) - g \sum_{k \neq l} \hat{a}_k^{\dagger} \hat{a}_{\bar{k}}^{\dagger} \hat{a}_{\bar{l}} \hat{a}_l$$
Energy of each particle, Interaction between pairs

- Models pairing effects in nuclei
- Generates strongly-correlated wave functions
- Exact solutions can be accessed \rightarrow benchmarks
- Reference approximation : projected BCS (VAP or PAV)

 $\epsilon_8 = 8\Delta E$ ($\epsilon_7 = 7\Delta E$ - $\epsilon_6 = 6\Delta E$ $\epsilon_5 = 5\Delta E$ – $\epsilon_4 = 4\Delta E$ $\epsilon_3 = 3\Delta E$ – $\epsilon_2 = 2\Delta E$ $\epsilon_1 = \Delta E$

8 particles in 8 levels.

One can go to the subspace with no unpaired particle, which is of dimension

$$\binom{8}{4} = 70$$

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model
- 2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

2.2 – Convergence to the ground state

4 pairs in 8 level : $\binom{8}{4}$ – dim Hilbert space

Due to symmetries and normalisation, one need $\binom{8}{4} - 1 = 69$ real parameters to fully explore the space.

However, 20 parameters are sufficient to reach the ground state with less than 1% relative error in energy and beat BCS states (PAV and VAP).

2.2 – Convergence to the ground state

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state

2. Application to a model for nuclear superfluidity

- 2.1 Pairing model2.2 Convergence to the ground state
- 2.2 Odd systems & Green's functions

Conclusion and perspectives

Cea Samuel Aychet-Claisse

An application of Green's functions : spectral function of ³⁴Si, giving the energies of ³³Si and ³⁵Si.

(from V. Somà, *Self-consistent Green's function theory for atomic nuclei*, Front. Phys. 8, 340 (2020)).

Green's function in Lehmann representation :

$$g_{ab}(\omega) = \sum_{k} \frac{\langle \Psi_{0}^{A} | \hat{a}_{a} | \Psi_{k}^{A+1} \rangle \langle \Psi_{k}^{A+1} | \hat{a}_{b}^{\dagger} | \Psi_{0}^{A} \rangle}{\omega - (E_{k}^{A+1} - E_{0}) + i\eta} + \sum_{k} \frac{\langle \Psi_{0}^{A} | \hat{a}_{b}^{\dagger} | \Psi_{k}^{A-1} \rangle \langle \Psi_{k}^{A-1} | \hat{a}_{a} | \Psi_{0}^{A} \rangle}{\omega - (E_{0} - E_{k}^{A-1}) - i\eta}$$

It contains information about excited states in the spaces with $A\pm 1$ particles.

2.3 – Green's functions

Based on a method proposed in : Diksha Dhawan, Dominika Zgid, Mario Motta, *Quantum algorithm for imaginary-time Green's functions*, Journal of Chemical Theory and Computation 20 (11), 4629 (2024)

Bonus : access the ground state of odd systems

Odd-even staggering well reproduced

Samuel Aychet-Claisse

Contents

1. Many-body physics with qubits

- 1.1 Why quantum computing ?
- 1.2 Building a many-body state
- 1.3 Measuring expectation values
- 1.4 Approaching the ground state
- 2. Application to a model for nuclear superfluidity
 - 2.1 Pairing model
 - 2.2 Convergence to the ground state
 - 2.2 Odd systems & Green's functions

Conclusion and perspectives

Conclusion and perspectives

Applications on quantum emulator

- Quantum algorithm (ADAPT-VQE) achieves good reproduction of ground state.
- Promising results for odd systems and Green's function

Conclusion and perspectives

Applications on quantum emulator

- Quantum algorithm (ADAPT-VQE) achieves good reproduction of ground state.
- Promising results for odd systems and Green's function

Next : application to real quantum device

• Pasqual platform (Rydberg atoms) currently being installed at CEA

Conclusion and perspectives

Applications on quantum emulator

- Quantum algorithm (ADAPT-VQE) achieves good reproduction of ground state.
- Promising results for odd systems and Green's function

Next : application to real quantum device

 Pasqual platform (Rydberg atoms) currently being installed at CEA

Status and challenges of quantum computers

- Several types of hardware (superconducting circuits, trapped ions, Rydberg atoms, photons, ...)
- Noisy qubits (decoherence, error correction remains hard)
- Emulators are essential to test algorithms

Thanks for your attention

Appendix

Samuel Aychet-Claisse

cea

What is quantum computing ?

cea

What is quantum computing ?

Operations on n qubits : unitary operators

Quantum circuit :

<u>State of n bits :</u>

 $\mathbf{b} = \{b_1, b_2, ..., b_n\} \in \{0, 1\}^n$

Classical computing

<u>Operations on n bits :</u> All $f : \{0,1\}^n \to \{0,1\}^n$

Logical circuit :

What is quantum computing ?

