

Design of an analog quantum simulator with superconducting qubits

Alessandro Cattaneo

alessandro.cattaneo@mib.infn.it

University of Milano-Bicocca INFN – Milano-Bicocca Bicocca Quantum Technologies (BiQuTe) Center $\Box Introduction$

□Physical problem

Quantum architecture

□Next steps

Outline

$\Box Introduction \leftarrow \leftarrow \leftarrow$

□Physical problem

Quantum architecture

□Next steps

QUART&T project

QUantum Architectures for Theory & Technology (QUART&T)

Goal

Develop quantum architectures where theoretical models and phenomena of interest to the INFN can be tested.

Motivation

Simulate quantum many-body systems that have a physical related interest. Examples are nuclear reaction and dynamics, lattice quantum chromodynamics.

Approach

Realize an analog quantum simulator dedicated to a specific problem.

Istituto Nazionale di Fisica Nucleare

QUART&T collaboration

INFN Units:

- **INFN** Bologna ٠
- **INFN** Ferrara •
- **INFN** Firenze ٠
- **INFN** Lecce •
- **INFN** Milano ٠
- **INFN Milano-Bicocca** ٠
- INFN Gruppo Collegato di Salerno (INFN Napoli) ٠
- **INFN National Laboratories:**
- INFN Laboratori Nazionali di Frascati (LNF) •
- INFN Laboratori Nazionali di Legnaro (LNL) ٠

INFN Research Center:

 Trento Institute for Fundamental Physics and Applications (TIFPA)

External Research Centers:

- Fondazione Bruno Kessler (FBK, Trento)
- Istituto di Fotonica e Nanotecnologie (CNR-IFN, Roma) •

CSN5

research

□Introduction

$\Box Physical problem \leftarrow \leftarrow \leftarrow$

□Analog quantum architecture

□Next steps

Neutrinos oscillations in dense environments

• In high-density neutrino environments — such as supernovae, neutron star mergers, or the early universe — neutrino flavor oscillations are affected by neutrino-neutrino interactions.

The Crab Nebula, a remnant of a supernovae.

08/05/2025

Neutrinos oscillations in dense environments

- In high-density neutrino environments such as supernovae, neutron star mergers, or the early universe — neutrino flavor oscillations are affected by neutrino-neutrino interactions.
- The Hamiltonian for a **two flavors oscillation** can be written as:

$$H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_{k} + \sum_{p < q}^{N} J_{pq} \vec{\sigma}_{p} \cdot \vec{\sigma}_{q} \quad \text{with } \vec{\sigma}_{k} = (\sigma_{k}^{x}, \sigma_{k}^{y}, \sigma_{k}^{z})$$

$$\bigwedge$$
1. Vacuum mixing
3. Neutrino-neutrino

- Vacuum mixing
- 2. MSW effect

111110–11eu(11110 interaction

The Crab Nebula, a remnant of a supernovae.

Neutrinos oscillations in dense environments

Alessandro Cattaneo

- In high-density neutrino environments such as supernovae, neutron star mergers, or the early universe neutrino flavor oscillations are affected by neutrino-neutrino interactions.
- The Hamiltonian for a **two flavors oscillation** can be written as:

$$H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_{k} + \sum_{p < q}^{N} J_{pq} \vec{\sigma}_{p} \cdot \vec{\sigma}_{q} \quad \text{with } \vec{\sigma}_{k} = (\sigma_{k}^{x}, \sigma_{k}^{y}, \sigma_{k}^{z})$$
1. Vacuum mixing
3. Neutrino-neutrino
2. MSW effect
interaction

• An **exact solution** is necessary to understand the role of quantum correlations.

The Crab Nebula, a remnant of a supernovae.

Quantum digital simulations

• System complexity on a classical computer scales as $\sim e^N$. On a quantum machine $\sim N^k$.

 $\tau \longrightarrow |1\rangle$

[Phys.Rev.D 104 (2021) 6, 063009]

Quantum digital simulations

• System complexity on a classical computer scales as $\sim e^N$. On a quantum machine $\sim N^k$.

$$e \longrightarrow |0\rangle$$

$$\tau \longrightarrow |1\rangle$$

• First-order Trotter-Suzuki decomposition:

$$U(t) = \prod_{j=1}^{N} e^{-it\vec{b}\cdot\vec{\sigma}_j} \prod_{p$$

• **All-to-all connectivity** realized using SWAP gates.

[Phys.Rev.D 104 (2021) 6, 063009]

Scheme to realize a single time-step simulation. Each double line is formed by $3\binom{N}{2}$ CNOT + $15\binom{N}{2}$ single qubit gates.

START

END

Quantum digital simulation - Limitations

- The first-order Trotter-Suzuki decomposition introduce an error of order $O(t^2)$ on the simulation results.
- **N gates** are needed for each simulation step t. This require long run time to reach higher simulated times.
- **Single qubit noise** limits both results accuracy and simulation length.
- SWAP gate errors increase as single qubit errors occurs.

Flavor inversion probability for neutrino 1 and neutrino 4

08/05/2025

Analog approach

• Analog quantum simulator: a quantum device whose time evolution emulates the dynamics of a more complex quantum model.

Analog approach

• Analog quantum simulator: a quantum device whose time evolution emulates the dynamics of a more complex quantum model.

Main advantages:

- Each simulated time step require less operations.
- No approximation needed for the time evolution operator.

Analog approach

• Analog quantum simulator: a quantum device whose time evolution emulates the dynamics of a more complex quantum model.

Main advantages:

- Each simulated time step require less operations.
- No approximation needed for the time evolution operator.

Introduction

□Physical problem

\Box Analog quantum architecture $\leftarrow \leftarrow \leftarrow$

□Next steps

Hamiltonian

$$H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_{k} + \sum_{p < q}^{N} J_{pq} \, \vec{\sigma}_{p} \cdot \vec{\sigma}_{q}$$

Hamiltonian

$$H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_k + \sum_{p < q}^{N} J_{pq} \, \vec{\sigma}_p \cdot \vec{\sigma}_q$$

Single qubit gates:

• External drive on single qubits

$$\Psi$$
$$H \sim \Omega V_d(t) (I\sigma_x + Q\sigma_y) \quad I = \cos \phi , Q = \sin \phi$$

• Continuous virtual Z gate $\rightarrow H \sim \frac{\delta \omega}{2} \sigma_z$

Hamiltonian

$$H = \sum_{k=1}^{N} \vec{b} \cdot \vec{\sigma}_{k} + \sum_{p < q}^{N} J_{pq} \, \vec{\sigma}_{p} \cdot \vec{\sigma}_{q}$$

Single qubit gates:

• External drive on single qubits

$$\begin{split} & \checkmark \\ H \sim \ \Omega \, V_d(t) \big(I \sigma_x + Q \sigma_y \big) \quad I \ = \cos \phi \ , Q \ = \sin \phi \end{split}$$

• Continuous virtual Z gate $\rightarrow H \sim \frac{\delta \omega}{2} \sigma_z$

Two qubit interactions:

- Capacitive coupling $\rightarrow H \sim \frac{g}{2} (\sigma_x \sigma_x + \sigma_y \sigma_y)$
- Higher states energy shift $\rightarrow H \sim \frac{\zeta}{4}(\sigma_z \sigma_z)$
- Parametric couplings

Two qubit interaction – Capacitive coupling

• Direct capacitive coupling between transmon qubits is described by:

 $H = -g([\sigma^+ - \sigma^-] \otimes [\sigma^+ - \sigma^-])$

• Under Rotating Wave Approximation (valid if ω_{q1} , $\omega_{q2} \gg g$) fast oscillating terms disappear leaving:

$$H = g(\sigma^+\sigma^- + \sigma^-\sigma^+) = \frac{g}{2}(\sigma_x\sigma_x + \sigma_y\sigma_y)$$

Interaction we are looking for!

Two qubit interaction – Capacitive coupling

Direct capacitive coupling between transmon qubits is described by: ٠

 $H = -g([\sigma^+ - \sigma^-] \otimes [\sigma^+ - \sigma^-])$

Under Rotating Wave Approximation (valid if ω_{q1} , $\omega_{q2} \gg g$) fast ۲ oscillating terms disappear leaving:

$$H = g(\sigma^+ \sigma^- + \sigma^- \sigma^+) = \frac{g}{2}(\sigma_x \sigma_x + \sigma_y \sigma_y)$$

Interaction we are looking for!
$$g \text{ has a qubit frequency dependency:}$$
$$g \sim \frac{1}{2} \frac{e^2}{\hbar} \frac{C_{12}}{\sqrt{C_1 C_2}} \sqrt{\omega_1 \omega_2}$$

1.00

 Φ/Φ_0

Two qubit interaction – ZZ coupling [Nature 460, 240–244 (2009)]

Idea: use the energy repulsion between |20>, |02> and |11> to realize an effective ZZ interaction on the computational subspace;

$$\zeta = E_{|11\rangle} - E_{|01\rangle} - E_{|10\rangle}$$

08/05/2025

Alessandro Cattaneo

Two qubit interaction – ZZ coupling

• Idea: use the **energy repulsion** between $|20\rangle$, $|02\rangle$ and $|11\rangle$ to realize an effective ZZ interaction on the computational subspace;

$$\zeta = E_{|11\rangle} - E_{|01\rangle} - E_{|10\rangle}$$

The interaction hamiltonian on the computational subspace is:

$$H \sim \frac{\zeta}{4} \sigma_z \otimes \sigma_z - A \sigma_z \otimes \mathbb{I} - B \mathbb{I} \otimes \sigma_z$$

Can be used for single qubit gates! Interaction we are looking for!

Same type of interaction used in digital architectures to ۲ realize a CPHASE gate.

[Nature 460, 240–244 (2009)]

How to properly create the ZZ effective interaction?

How to properly create the ZZ effective interaction?

How to properly create the ZZ effective interaction?

How to properly create the ZZ effective interaction?

How to properly create the ZZ effective interaction?

How to properly create the ZZ effective interaction?

Two qubit interaction – ZZ coupling strength

• There exist an analytical model valid in the dispersive regime $(|\omega_1 - \omega_2| \gg g)$:

$$\zeta \approx 2g^2 \left(\frac{1}{\Delta - \alpha_2} - \frac{1}{\Delta + \alpha_1} \right)$$

• Numerical approximations are needed for resonance regimes.

Two qubit interaction – Strength comparison

• At the working point - coupling strength parameters:

 $J_{xx} = 43 MHz \quad J_{yy} = 43 MHz \quad J_{zz} = -21 MHz$ $\Delta_{J_{xx}} \sim 20 MHz \qquad \Delta_{J_{zz}} \sim 65 MHz$

Two qubit interaction – Strength comparison

• At the working point - coupling strength parameters:

 $J_{xx} = 43 MHz$ $J_{yy} = 43 MHz$ $J_{zz} = -21 MHz$ $\Delta_{J_{xx}} \sim 20 MHz$ $\Delta_{J_{zz}} \sim 65 MHz$

Future developments

- Engineering design parameters to obtain coupling strength with the same order of magnitude.
- Interaction between more qubits.

How to use – Simulation setup

- Process the data considering the **unwanted time evolution** caused by moving between idling and working points.
- Single qubit rotations can be turned on sending electromagnetic pulses during H_s time evolution.

Introduction

□Physical problem

□Analog quantum architecture

 $\Box Next steps \leftarrow \leftarrow \leftarrow$

Scaling to more qubits

- Directly capacitive coupling:
 - Limited to a low number.
 - Difficult to design precise coupling capacitances C_{ij} .

Scaling to more qubits

- Directly capacitive coupling:
 - Limited to a low number.
 - Difficult to design precise coupling capacitances C_{ij} .
- Use one «central» resonator to connect many qubits:
 - Hamiltonian interaction terms do not connect directly data qubits.
 - Frequency overcrowding in the resonator.

Scaling to more qubits

- Directly capacitive coupling:
 - Limited to a low number.
 - Difficult to design precise coupling capacitances C_{ij} .
- Use one «central» resonator to connect many qubits:
 - Hamiltonian interaction terms do not connect directly data qubits.
 - Frequency overcrowding in the resonator.

The presence of many qubits can alter the energy spectrum
 → change the influence from higher states → harder to obtain ZZ interaction.

38/39

Different approaches – Parametric coupling

- Key idea: using an AC pulse to modulate the qubit frequency. By rapidly varying the frequency qubit 1 at the detuning $\Delta = \omega_1 \omega_2$ we can activate a SWAP interaction with qubit 2.
- Time-dependent coupling:

 $H_{int} \sim J(t) \left(\sigma^- \sigma^+ + \sigma^+ \sigma^- \right)$

• ZZ coupling can be activated similarly. Exploiting higher energy levels.

Different approaches – Parametric coupling

• Key idea: using an AC pulse to modulate the qubit frequency. By rapidly varying the frequency qubit 1 at the detuning $\Delta = \omega_1 - \omega_2$ we can activate a SWAP interaction with qubit 2.

Alessandro Cattaneo

• Time-dependent coupling:

 $H_{int} \sim J(t) \; (\sigma^- \sigma^+ + \sigma^+ \sigma^-)$

• ZZ coupling can be activated similarly. Exploiting higher energy levels.

Advantages:

- High control over coupling strength amplitude.
- Qubit frequency independent strength → no frequency overcrowding.

Thank you for your attention!

UNIMIB/INFN-MIB group: Matteo Borghesi, Pietro Campana, Lucia Canonica, Rodolfo Carobene, <u>Alessandro Cattaneo</u>, Hervè Corti, Marco Faverzani, Elena Ferri, Sara Gamba, Andrea Giachero, Marco Gobbo, Danilo Labranca, Roberto Moretti, Angelo Nucciotti, Luca Origo

Istituto Nazionale di Fisica Nucleare

- The **fluxonium** is superconducting qubit which offers an **high control on anharmonicity**. Typical values are between 0.5 - 1.5 GHz and can be both positive and negative.
- High anharmonicity \rightarrow High ZZ interaction.
- It is composed of a Josephson Junction, a large inductance (array of JJ), and a capacitor.

Complications:

- Fabrication becomes more complicated;
- Higher flux sensitivity;
- Require more space \rightarrow harder to scale;
- Read out is more complicated.

[PhysRevLett.129.010502]