FlexibleSUSY and CLFV

Dominik Stöckinger, TU Dresden

Workshop Lepton Flavour Change in Nuclei - Trento, 17th April 2025

A B > A B >

Dominik Stöckinger, TU Dresden

Workshop Lepton Flavour Change in Nuclei - Trento, 17th April 2025

• initial idea [Athron, Park, DS, Voigt '14]

< □ > < 同

< 3 > < 3 >

• then, more general

[... Bach, Kwasnitza, Ziebell...'18]

▶ ∢ ⊒ ▶

muon (*g* – 2)

muon (*g* – 2)

lepton flavour violation

muon
$$(g-2)$$

neutrino mass

lepton flavour violation

Large Δa_{μ} or anarchic flavour pattern:

$$BR(\mu \to e\gamma) \approx 4.2 \times 10^{-13} \left[4 \left(\frac{\Delta a_{\mu}}{10^{-9}} \right)^2 \left(\frac{A_2^{21}}{10^{-4} A_2^{22}} \right)^2 \right]$$

Dipole dominance:

$$BR(\mu \rightarrow e(AI)) \approx 0.0027 \times BR(\mu \rightarrow e\gamma)$$

In detail: model-specific correlations!

- Leptoquarks: a_{μ} versus anarchic flavour patterns?
- Grimus-Neufeld: minimal neutrino-mass model CLFV impact on parameters?
- MRSSM: small a_{μ} ? Unusually large $\mu \rightarrow e$?

Example 1: Leptoquarks

Question for LQ model, assuming large a_{μ} : how non-universal does the flavour structure have to be? Example 1: Leptoquarks

Question for LQ model, assuming large a_{μ} : how non-universal does the flavour structure have to be?

Explore flavour constraints for LQ

$q ackslash \ell$	е	μ	au	valid
u	$\lambda_L^{11} \lambda_R^{11} \lambda_L^{12} \lambda_R^{12} < 6.5 \cdot 10^{-12} \rightarrow 3.7 \cdot 10^{-14}$			
	$\lambda_L^{11}(\lambda_R^{12} - 0.65) < 2.9 \cdot 10^{-6} \rightarrow$	λ_L^{12} < 0.82		all
	$\lambda_L^{11}(\lambda_R^{12} - 0.40) < 2.4 \cdot 10^{-7}$			
с	$\lambda_L^{21} \lambda_R^{21} < 1.2 \cdot 10^{-10} \rightarrow 1.8 \cdot 10^{-11}$	$0.18 < \lambda_L^{22} \lambda_R^{22} < 0.56$	$\lambda_L^{23} \lambda_R^{23} < 2.1 \cdot 10^{-2} \rightarrow 4.7 \cdot 10^{-4}$	
	$\lambda_{L,R}^{21} < 1.3 {\cdot} 10^{-4} \rightarrow 5.0 {\cdot} 10^{-5}$	$5.1 \cdot 10^{-2} < \lambda_{L,R}^{22} < \sqrt{4\pi}$	$\lambda_{L,R}^{23} < 1.7 \rightarrow 0.23$	sc. 2
	$\lambda_L^{21}{<}4.6{\cdot}10^{-6}{\rightarrow}1.7{\cdot}10^{-6}$	$\lambda_L^{22} < 0.13 \; , \; 1.5 < \lambda_R^{22}$	$\lambda_L^{23} < 6.0 {\cdot} 10^{-2} \rightarrow 8.9 {\cdot} 10^{-3}$	
t	$\lambda_L^{31} \lambda_R^{31} < 2.1 \cdot 10^{-12} \rightarrow 2.9 \cdot 10^{-13}$	$3.1 \cdot 10^{-3} < \lambda_L^{32} \lambda_R^{32} < 9.3 \cdot 10^{-3}$	$\lambda_L^{33} \lambda_R^{33} < 3.5 \cdot 10^{-4} \rightarrow 7.8 \cdot 10^{-6}$	sc. 1
	$\lambda_{L,R}^{31} \! < \! 1.3 \! \cdot \! 10^{-4} \! \rightarrow \! 4.9 \! \cdot \! 10^{-5}$	$8.7 \cdot 10^{-4} < \lambda_{L,R}^{22} < \sqrt{4\pi}$	$\lambda_{L,R}^{33} < 1.7 \rightarrow 0.25$	

[Khasianevich, DS, Stöckinger-Kim, Wünsche '23]

[see also Felipe, Goncalves, Morais et al '22, Hiller et al '16]

muon g - 2 explained by top-loop constraint from $\mu \rightarrow e\gamma$ (MEG and future MEG-II) constraint from $\mu \rightarrow e$ conversion (SINDRUM and future COMET-I)

LQ couplings must be strongly non-universal!

 $(\mu
ightarrow e \gamma$ constraint would relax by factor 2 if Δa_{μ} goes down)

Example 2: Grimus-Neufeld model — neutrino mass

minimal model: 2HDM plus single RH neutrino

$$\mathcal{L} \ni M_N \bar{N} N + y_i \bar{L}_i \Phi_v N + d_i \bar{L}_i \Phi_\perp N$$

(日)

Example 2: Grimus-Neufeld model — neutrino mass

minimal model: 2HDM plus single RH neutrino

イロト イヨト イヨト イヨト

Question for GN model:

Given m_{ν_i} : what does LFV imply for the Higgs sector/ Z_2 -symmetry?

э

(日)

Question for GN model:

Given m_{ν_i} : what does LFV imply for the Higgs sector/Z₂-symmetry?

Answer:

- $\mu \rightarrow e\gamma$ strongest constraint and provides lower limits on $\Lambda m_{H_{-}}^2 \propto \lambda_5$
- except small regions where τ-decays could be observed.

[Dudenas,Gajdosik,Khasianevich,Kotlarski,DS '22]

absolute bound: typical bound: (no $\tau \rightarrow e\gamma/\mu\gamma$ expected):

$$egin{aligned} &|\lambda_5| > 1 \cdot 10^{-2} rac{ ext{keV}}{m_4}\,, \ &|\lambda_5| \gtrsim rac{ ext{keV}}{m_4}\,. \end{aligned}$$

Example 3: MRSSM [Kribs, Poppitz, Weiner] [Diessner, Kalinowski, Kotlarski, DS '14, '15, '16, '17, '19]

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 3: MRSSM [Kribs, Poppitz, Weiner] [Diessner, Kalinowski, Kotlarski, DS '14, '15, '16, '17, '19]

some MSSM-processes forbidden, surviving ones suppressed

rich EW, DM phenomenology

Question: how about a_{μ} in the MRSSM? \rightsquigarrow very different to MSSM \rightsquigarrow interesting connection to LFV

(Non-)correlation with lepton flavour violation

- a_μ and $\mu
 ightarrow e \gamma$ always correlated , $\mu
 ightarrow e$ only if dipole-dominance
- MRSSM: only for $\Lambda_i \gg g$ (problematic), otherwise not!

If a_{μ} large \Rightarrow strict correlation $\stackrel{\mathsf{MEG-result}}{\Rightarrow} \mu \to e$ very small If $\mu \to e$ observed $\Rightarrow a_{\mu}$ must be small in MRSSM

э

< ロ > < 同 > < 回 > < 回 >

Conclusions

- FlexibleSUSY
 - precise BSM code which now includes CLFV, tested
- Ieptoquarks
 - large $\Delta a_{\mu} \Rightarrow$ strongly non-universal couplings

- neutrino mass via 2HDM+loops: GNM
 - LFV implies specific constraints on Higgs sector

- MRSSM unusual beautiful SUSY model
 - a_{μ} very small; $\mu \rightarrow e$ can be quite large.

