Uncertainty quantification of overlap integrals in $\mu ightarrow e$ conversion

Frederic Noël

Universität Bern Institute for Theoretical Physics

16.04.2025

ECT* Workshop: Lepton flavour change in nuclei

[Hoferichter, Menéndez, Noël; Phys. Rev. Lett. 130 (2023)] [Noël, Hoferichter; JHEP 08 (2024)]

[Heinz, Hoferichter, Miyagi, Noël, Schwenk; 2412.04545 (nucl-th)]

- Upcoming major experimental improvements [see: talks from Monday]
 - → Increase NP reach by several orders of magnitude
 - \rightarrow Enable to study subleading responses quantitatively (?)

- Upcoming major experimental improvements [see: talks from Monday]
 - → Increase NP reach by several orders of magnitude
 - \rightarrow Enable to study subleading responses quantitatively (?)
- o In particular beyond leading order: lots of operators contribute
 - → Disentangling NP operators is theoretically feasible but difficult
 - → Discriminability might be drowned in theory uncertainties

- Upcoming major experimental improvements [see: talks from Monday]
 - → Increase NP reach by several orders of magnitude
 - \rightarrow Enable to study subleading responses quantitatively (?)
- In particular beyond leading order: lots of operators contribute
 - ightarrow Disentangling NP operators is theoretically feasible but difficult
 - → Discriminability might be drowned in theory uncertainties

Necessities

 Framework that consistently considers all operators Assessing theory uncertainties

 (also from nuclear & Coulomb)

- Upcoming major experimental improvements [see: talks from Monday]
 - → Increase NP reach by several orders of magnitude
 - \rightarrow Enable to study subleading responses quantitatively (?)
- In particular beyond leading order: lots of operators contribute
 - ightarrow Disentangling NP operators is theoretically feasible but difficult
 - → Discriminability might be drowned in theory uncertainties

Necessities

 Framework that consistently considers all operators Assessing theory uncertainties

 (also from nuclear & Coulomb)

This Talk:

- Schematical Framework introduction including subleading responses
- Uncertainty assessment for leading responses [see also: talk: M. Heinz]

 $\mu
ightarrow e$ conversion framework

 $\mu
ightarrow e$ conversion framework

Many different scales matter:

Objectives:

- Compare different probes:
 - e.g.: $\mu \to e$ vs. $P \to \bar{\mu}e$
- o Discriminate BSM operators

Many different scales matter:

Objectives:

- o Compare different probes:
 - e.g.: $\mu
 ightarrow e$ vs. $P
 ightarrow ar{\mu} e$
- Discriminate BSM operators
- Control theory uncertainties:
 - Hadronic matrix elements
 - Nuclear response
 - Coulomb corrections
- RG corrections

At all steps uncertainties need to be controlled!

 \circ SI: coherently enhanced; $\Gamma_{\rm SI} \sim \# N^2$; e.g. [Kitano et al., 2002,...]

 \circ SI: coherently enhanced; $\Gamma_{\rm SI}\sim \#N^2$; e.g. [Kitano et al., 2002,...]

Spin Independent

 \circ SD: not coherently enhanced; only for J > 0; e.g. [Davidson et al., 2018,...]

Spin Dependent

tensor

vector

scalar

- \circ SI: coherently enhanced; $\Gamma_{\text{SI}} \sim \# \mathit{N}^2$; e.g. [Kitano et al., 2002,...]
- \circ SD: not coherently enhanced; only for J > 0; e.g. [Davidson et al., 2018,...]

Overlap Integrals

o Overlap integrals combine nuclear responses and Coulomb corrections

Overlap Integrals

o Overlap integrals combine nuclear responses and Coulomb corrections

Overlap Integrals

Overlap Integrals

Overlap integrals combine nuclear responses and Coulomb corrections

Overlap Integrals

[Kitano et al., 2002]

Leading / SI overlap integrals:

scalar:
$$\mathbf{S}^{(N)} = \frac{1}{2\sqrt{2}} \int_0^\infty \mathrm{d}r \ (\#N) \rho_N(r) \left[g_{-1}^{(e)}(r) \, g_{-1}^{(\mu)}(r) - f_{-1}^{(e)}(r) \, f_{-1}^{(\mu)}(r) \right]$$
 vector:
$$\mathbf{V}^{(N)} = \frac{1}{2\sqrt{2}} \int_0^\infty \mathrm{d}r \ (\#N) \rho_N(r) \left[g_{-1}^{(e)}(r) \, g_{-1}^{(\mu)}(r) + f_{-1}^{(e)}(r) \, f_{-1}^{(\mu)}(r) \right]$$
 dipole:
$$\mathbf{D} = -\frac{4m_\mu}{\sqrt{2}} \int_0^\infty \mathrm{d}r \ E(r) \ \left[g_{-1}^{(e)}(r) \, f_{-1}^{(\mu)}(r) + f_{-1}^{(e)}(r) \, g_{-1}^{(\mu)}(r) \right]$$

electron and muon wave functions

Development of subleading overlap integrals is currently in process

Example: Indirect limits for $P o ar{\mu} e$ from $\mu o e$

Example: Indirect limits for $P o \bar{\mu}e$ from $\mu o e$

Deduced Limits for $P o \mu e$

• Same underlying operators: P, A, $G\tilde{G}$, but not the same linear combinations

Deduced Limits for $P \rightarrow \mu e$

- Same underlying operators: P, A, $G\tilde{G}$, but not the same linear combinations
- Consider first one operator at a time:

$\mu ightarrow e$ (exp.)	$P ightarrow ar{\mu}e$ (derived)	current limit
$BR_{Ti} < 6.1 \times 10^{-13}$	${ m BR}_{\pi^0} \lesssim 4 imes 10^{-17} \ { m BR}_{\eta} \lesssim 5 imes 10^{-13} \ { m BR}_{\eta'} \lesssim 7 imes 10^{-14}$	$< 3.6 \times 10^{-10}$ $< 6.0 \times 10^{-6}$ $< 4.7 \times 10^{-4}$

(scan over all "one operator at a time"-scenarios and choices for matrix elements)

Deduced Limits for $P \rightarrow \mu e$

- Same underlying operators: P, A, GG,
 but not the same linear combinations
- Consider first one operator at a time:

$$\begin{array}{c|cccc} \mu \to e \; (\text{exp.}) & P \to \bar{\mu}e \; (\text{derived}) & \text{current limit} \\ & & \mathsf{BR}_{\mathsf{T}i} < 6.1 \times 10^{-13} & \mathsf{BR}_{\eta} \lesssim 4 \times 10^{-17} & < 3.6 \times 10^{-10} \\ & & \mathsf{BR}_{\eta} \lesssim 5 \times 10^{-13} & < 6.0 \times 10^{-6} \\ & & \mathsf{BR}_{\eta'} \lesssim 7 \times 10^{-14} & < 4.7 \times 10^{-4} \end{array}$$

(scan over all "one operator at a time"-scenarios and choices for matrix elements)

- \circ For a rigorous limits we need to scan over all Wilson coefficients $\to \exists$ (fine-tuned) scenarios where $\mu \to e$ vanishes exactly
- In this scenario $\pi^0 \to \bar{\mu}e$ vanishes as well:

rigorous limit:
$$Br_{\pi^0 \to \bar{\mu}e} < 1.0 \times 10^{-13}$$
 (exp: $< 3.6 \cdot 10^{-10}$)

Deduced Limits for $P o \mu e$

- Same underlying operators: P, A, $G\tilde{G}$, but not the same linear combinations
- o Consider first one operator at a time:

$\mu ightarrow e$ (exp.)	$P ightarrow ar{\mu}e$ (derived)	current limit
$BR_{Ti} < 6.1 \times 10^{-13}$	${\sf BR}_{\pi^0} \lesssim 4 imes 10^{-17} \ {\sf BR}_{\eta} \lesssim 5 imes 10^{-13} \ {\sf BR}_{\eta'} \lesssim 7 imes 10^{-14}$	$< 3.6 \times 10^{-10}$ $< 6.0 \times 10^{-6}$ $< 4.7 \times 10^{-4}$

(scan over all "one operator at a time"-scenarios and choices for matrix elements)

- \circ For a rigorous limits we need to scan over all Wilson coefficients $\to \exists$ (fine-tuned) scenarios where $\mu \to e$ vanishes exactly
- \circ In this scenario $\pi^0 o \bar{\mu}e$ vanishes as well:

rigorous limit:
$$Br_{\pi^0 \to \bar{u}e} < 1.0 \times 10^{-13}$$
 (exp: $< 3.6 \cdot 10^{-10}$)

- \circ For $\eta^{(\prime)} \to \bar{\mu}e$: in principle, no strict limits
- Cancellation easily lifted by RG corrections
 [Crivellin et al., 2017; Cirigliano et al., 2017]

F. Noël (Uni Bern, ITP)

Uncertainty quantification

16.04.25

Future projection for $\pi^0 o \bar{\mu}e$

With values from Mu2e or COMET the limits become even stronger

Future projection for $\pi^0 o ar{\mu}e$

With values from Mu2e or COMET the limits become even stronger

Combining the limits from Ti and Al we find:

Hadronic matrix elements: from LatticeQCD & Phenomenology

- Hadronic matrix elements: from LatticeQCD & Phenomenology
- Nuclear structure:
 - So far: (empirical) nuclear shell-model calculations:
 - → Uncertainty estimate difficult; esp. for neutron response

Ø.

- Hadronic matrix elements: from LatticeQCD & Phenomenology
- Nuclear structure:
 - So far: (empirical) nuclear shell-model calculations:
 - → Uncertainty estimate difficult; esp. for neutron response
 - Ab-initio approaches:
 - ightarrow Often uncertainties dominated by chiral Hamiltonian and not by many-body solutions
 - → Often correlations between responses much more stable

[Hagen et al., 2016; Payne et al., 2019]

- Hadronic matrix elements: from LatticeQCD & Phenomenology
- Nuclear structure:
 - So far: (empirical) nuclear shell-model calculations:
 - → Uncertainty estimate difficult; esp. for neutron response
 - Ab-initio approaches:
 - ightarrow Often uncertainties dominated by chiral Hamiltonian and not by many-body solutions
 - → Often correlations between responses much more stable
 [Hagen et al., 2016; Payne et al., 2019]
 - Charge form factor given by charge density mediates dipole and overlaps with M, Φ'' response

_

- Hadronic matrix elements: from LatticeQCD & Phenomenology
- Nuclear structure:
 - So far: (empirical) nuclear shell-model calculations:
 - → Uncertainty estimate difficult; esp. for neutron response
 - Ab-initio approaches:
 - ightarrow Often uncertainties dominated by chiral Hamiltonian and not by many-body solutions
 - → Often correlations between responses much more stable
 [Hagen et al., 2016; Payne et al., 2019]
 - \circ Charge form factor given by charge density mediates dipole and overlaps with M, Φ'' response
- Coulomb corrections:
 - o Solve Dirac eq. in nucleus potential given by charge density

w

8

- Hadronic matrix elements: from LatticeQCD & Phenomenology
- Nuclear structure:
 - So far: (empirical) nuclear shell-model calculations:
 - → Uncertainty estimate difficult; esp. for neutron response
 - Ab-initio approaches:
 - ightarrow Often uncertainties dominated by chiral Hamiltonian and not by many-body solutions
 - → Often correlations between responses much more stable
 [Hagen et al., 2016; Payne et al., 2019]
 - Charge form factor given by charge density mediates dipole and overlaps with M, Φ'' response
- Coulomb corrections:
 - o Solve Dirac eq. in nucleus potential given by charge density

Charge densities with quantified uncertainties required

8

8

Controlling uncertainties

- Hadronic matrix elements: from LatticeQCD & Phenomenology
- Nuclear structure:
 - So far: (empirical) nuclear shell-model calculations:
 - → Uncertainty estimate difficult; esp. for neutron response
 - Ab-initio approaches:
 - → Often uncertainties dominated by chiral Hamiltonian and not by many-body solutions
 - → Often correlations between responses much more stable [Hagen et al., 2016; Payne et al., 2019]

- Coulomb corrections:
 - Solve Dirac eq. in nucleus potential given by charge density

Charge densities with quantified uncertainties required

So far: As Fourier-Bessel series without uncertainties [Vries et al., 1987]

→ Redo extraction from elastic electron nucleus scattering F. Noël (Uni Bern, ITP)

Uncertainty quantification

Typical description via Plane Wave Born Approximation

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathsf{Mott}} \times \frac{E_e'}{E_e} \times \left| \textbf{\textit{F}}(\textbf{\textit{q}}, \textbf{\textit{\theta}}) \right|^2$$

Typical description via Plane Wave Born Approximation

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathsf{Mott}} \times \frac{E_e'}{E_e} \times \left| \textbf{\textit{F}}(\textbf{\textit{q}}, \textbf{\textit{\theta}}) \right|^2$$

$$F(q, \theta) = ZF_0^{ch}(q) \stackrel{F.T.}{\longleftrightarrow} \rho_0(r)$$

- o defines charge density
- strongly dominating

Typical description via Plane Wave Born Approximation

$$F(q, \theta) = ZF_0^{ch}(q) \stackrel{F.T.}{\longleftrightarrow} \rho_0(r)$$

- defines charge density
- strongly dominating

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathsf{Mott}} \times \frac{E_e'}{E_e} \times \left| \boldsymbol{\digamma}(\boldsymbol{q},\boldsymbol{\theta}) \right|^2$$

$$\left|F(q,\theta)\right|^2 = \sum_{\substack{\text{Leven}\\ \leq 2J}} \left|ZF_L^{\text{ch}}(q)\right|^2 + \left(\tfrac{1}{2} + \tan^2\tfrac{\theta}{2}\right) \sum_{\substack{\text{Lodd}\\ \leq 2J}} \left|F_L^{\text{mag}}(q)\right|^2$$

$$J > 0$$
:

$$F(q,\theta) \supset F_{L>0}^{ch}, F_L^{mag}$$

- \circ become relevant where F_0^{ch} small (zeroes, high q, high θ)
- subtract before extraction

Typical description via Plane Wave Born Approximation

$$F(q, \theta) = ZF_0^{ch}(q) \stackrel{F.T.}{\longleftrightarrow} \rho_0(r)$$

- o defines charge density
- strongly dominating

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathsf{Mott}} \times \frac{E_{\mathsf{e}}'}{E_{\mathsf{e}}} \times \left| \boldsymbol{\digamma}(\boldsymbol{q},\boldsymbol{\theta}) \right|^2$$

$$\left|F(q,\theta)\right|^2 = \sum_{\substack{L \, \text{even} \\ \leq 2J}} \left|ZF_L^{\text{ch}}(q)\right|^2 + \left(\tfrac{1}{2} + \tan^2 \! \tfrac{\theta}{2}\right) \sum_{\substack{L \, \text{odd} \\ \leq 2J}} \left|F_L^{\text{mag}}(q)\right|^2$$

$$J > 0$$
:

$$F(q,\theta) \supset F_{L>0}^{ch}, F_L^{mag}$$

- o become relevant where $F_0^{\rm ch}$ small (zeroes, high q, high θ)
- subtract before extraction

Even for J=0 insufficient \rightarrow Coulomb corrections

Coulomb corrections

- Coulomb corrections fill out minima and shift the crosssection
- Not properly accounted for by approximative methods

- Born approximation assumes plane waves
- Finite extend of the nucleus distorts wave functions
- \rightarrow results in phase shift δ_{ℓ} , contains info about $d\sigma/d\Omega$

- Born approximation assumes plane waves
- Finite extend of the nucleus distorts wave functions
- \rightarrow results in phase shift δ_{ℓ} , contains info about $d\sigma/d\Omega$

$$F_0^{\mathsf{ch}}(q) \overset{\mathsf{F.T.}}{\longleftrightarrow} \rho_0(r) \to \underbrace{V(r) \overset{\mathsf{Dirac-eq.}}{\longleftrightarrow} \frac{\mathrm{d}q}{\mathrm{d}q}}_{\mathsf{phase-shift}}$$

- Born approximation assumes plane waves
- Finite extend of the nucleus distorts wave functions
- \rightarrow results in phase shift δ_{ℓ} , contains info about $d\sigma/d\Omega$

$$F_0^{\mathrm{ch}}(q) \stackrel{\mathsf{F.T.}}{\longleftrightarrow} \rho_0(r) \to \underbrace{V(r) \stackrel{\mathsf{Dirac-eq.}}{\longleftrightarrow} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}}_{\mathsf{phase-shift\ model}}$$

. ...

Solve Dirac equation numerically:

$$\forall_{\ell}: \left[\psi_{\ell} \sim \begin{pmatrix} g_{\ell}(r) \\ if_{\ell}(r) \end{pmatrix} \xrightarrow{r \to \infty} \begin{pmatrix} \cos(kr + \delta'_{\ell}(r)) \\ i\sin(kr + \delta'_{\ell}(r)) \end{pmatrix} \to \frac{\delta'_{\ell}(r) = \delta'_{\ell,c}(r) + \bar{\delta}_{\ell}}{\delta_{\ell} = \delta_{\ell,c} + \bar{\delta}_{\ell}} \right]$$

- Born approximation assumes plane waves
- Finite extend of the nucleus distorts wave functions
- \rightarrow results in phase shift δ_{ℓ} , contains info about $d\sigma/d\Omega$

$$F_0^{\mathrm{ch}}(q) \stackrel{\mathsf{F.T.}}{\longleftrightarrow} \rho_0(r) \to \underbrace{V(r) \stackrel{\mathsf{Dirac-eq.}}{\longleftrightarrow} \frac{\mathrm{d}q}{\mathrm{d}q}}_{\mathsf{phase-shift model}}$$

Solve Dirac equation numerically:

$$\forall_{\ell}: \left[\frac{\psi_{\ell} \! \sim \! \begin{pmatrix} g_{\ell}(r) \\ if_{\ell}(r) \end{pmatrix} \xrightarrow{r \rightarrow r_{c}} \begin{pmatrix} A_{\ell} \ g_{c,\ell}^{R}(r) + \frac{B_{\ell}}{B_{\ell}} \ g_{c,\ell}^{I}(r) \\ iA_{\ell} \ f_{c,\ell}^{R}(r) + iB_{\ell} \ f_{c,\ell}^{I}(r) \end{pmatrix} \rightarrow \underbrace{\frac{A_{\ell}/B_{\ell}}{\delta_{\ell}} \rightarrow \bar{\delta}_{\ell}}_{\delta_{\ell}} \right]$$

- Born approximation assumes plane waves
- Finite extend of the nucleus distorts wave functions
- \rightarrow results in phase shift δ_{ℓ} ,

Solve Dirac equation numerically:

$$\begin{split} \forall_{\ell} : \left[\psi_{\ell} \sim \begin{pmatrix} g_{\ell}(r) \\ if_{\ell}(r) \end{pmatrix} \xrightarrow{r \rightarrow r_{c}} \begin{pmatrix} A_{\ell} \ g_{c,\ell}^{R}(r) + B_{\ell} \ g_{c,\ell}^{I}(r) \\ iA_{\ell} \ f_{c,\ell}^{R}(r) + iB_{\ell} \ f_{c,\ell}^{I}(r) \end{pmatrix} \rightarrow \frac{A_{\ell}/B_{\ell}}{\delta_{\ell}} \rightarrow \bar{\delta}_{\ell} \\ \Rightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \sim (1 + \tan^{2}(\frac{\theta}{2}))|f(\theta)|^{2} \quad \text{with} \quad f(\theta) \sim \sum_{\ell} P_{\ell}(\cos(\theta))e^{2i\delta_{\ell}} \end{split}$$

Phase-shift model Implementation

Goals:

Precise cross sections

Efficient algorithm

Phase-shift model Implementation

Goals:

Precise cross sections

Efficient algorithm

Implementational Challenges:

- \circ # partial waves dependents on initial energy: $\ell_{\sf max} \in \{15, \dots, 250\}$
- High partial waves require high numerical precision
- \circ Coulomb solutions require precise ${}^1F^1(a, b, z)$ with complex arguments
- \circ Partial wave sum \sum_{ℓ} need to be resummed to achieve convergence
- Choice of numerical solvers and the initial values

Phase-shift model Implementation

Goals:

Precise cross sections

Efficient algorithm

Implementational Challenges:

- \circ # partial waves dependents on initial energy: $\ell_{\mathsf{max}} \in \{15, \dots, 250\}$
- High partial waves require high numerical precision
- \circ Coulomb solutions require precise ${}^1F^1(a, b, z)$ with complex arguments
- \circ Partial wave sum \sum_{ℓ} need to be resummed to achieve convergence
- Choice of numerical solvers and the initial values

Python package phasr [https://pypi.org/project/phasr]

- o different charge distribution parameterizations implemented
- \circ calculates bound state and continuums solutions o overlap integrals
- $\circ\,$ calculates elastic scattering cross sections using the phase shift model
- Recent addition: Parity violating electron scattering (PVES)

Nuclei with J > 0

27
Al $(J=\frac{5}{2})$ requires $L>0$ contributions

Employ ab-initio calculations (using IMSRG) [talk: M. Heinz]

- \circ Subtract and remove data points dominated by L > 0
- So far: No Coulomb corrections for L > 0

Fourier-Bessel parameterization:

$$(q_n = \frac{n\pi}{R} \text{ s.t. } j_0(q_n R) = 0)$$
 [Dreher et al., 1974]

$$\rho_0(r) = \begin{cases} \sum_{n=1}^{N} a_n j_0(q_n r) &, r \leq R \\ 0 &, r > R \end{cases}$$

- Total charge fulfilled by construction
- Constraints from muonic atoms (Barrett moment)

Fourier-Bessel parameterization:

$$(q_n = \frac{n\pi}{R} \text{ s.t. } j_0(q_n R) = 0)$$
 [Dreher et al., 1974]

$$\rho_0(r) = \begin{cases} \sum_{n=1}^{N} a_n j_0(q_n r) &, r \leq R \\ 0 &, r > R \end{cases}$$

- Total charge fulfilled by construction
- Constraints from muonic atoms (Barrett moment)

- Most data from the 70s & 80s.
- Many datasets not available at all or only in PhD theses
- Uncertainty documentation rudimentary

o Fourier-Bessel parameterization:

$$(q_n = \frac{n\pi}{R} \text{ s.t. } j_0(q_n R) = 0)$$
 [Dreher et al., 1974]

$$\rho_0(r) = \begin{cases} \sum_{n=1}^N a_n j_0(q_n r) &, r \leq R \\ 0 &, r > R \end{cases}$$

- Total charge fulfilled by construction
- o Constraints from muonic atoms (Barrett moment)
 - o Practical challenges:
 - Most data from the 70s & 80s
 - Many datasets not available at all or only in PhD theses
 - Uncertainty documentation rudimentary
 - Computationally intensive (w.r.t. uncertainties)
 → Need to scan over R, N

• Fourier-Bessel parameterization:

$$(q_n = \frac{n\pi}{R} \text{ s.t. } j_0(q_n R) = 0)$$
 [Dreher et al., 1974]

$$\rho_0(r) = \begin{cases} \sum_{n=1}^{N} a_n j_0(q_n r) &, r \leq R \\ 0 &, r > R \end{cases}$$

- Total charge fulfilled by construction
- o Constraints from muonic atoms (Barrett moment)

- Most data from the 70s & 80s
- Many datasets not available at all or only in PhD theses
- Uncertainty documentation rudimentary
- o Computationally intensive (w.r.t. uncertainties)
 - \rightarrow Need to scan over R, N

Carried out for ²⁷Al, ^{40,48}Ca, ^{48,50}Ti

Results available in python notebook [2406.06677]

Estimate uncertainties

Suppress overparametrization:

Estimate uncertainties

Suppress overparametrization:

- "statistical" uncertainties:
 From data uncertainties
 (stat., syst. & corr.)
- systematical uncertainties:
 From scan over R, N
 (envelope or individual)

Charge density results

Application to leading overlap integrals

Dipole overlap integral

Dipole overlap integral

$$\underline{\text{Dipole:}} \quad \underline{D} = -\frac{4}{\sqrt{2}} m_{\mu} \int_{0}^{\infty} dr \ E(r) \left[g_{-1}^{(e)}(r) f_{-1}^{(\mu)}(r) + f_{-1}^{(e)}(r) g_{-1}^{(\mu)}(r) \right]$$

- Only depends on charge density ρ_0 :
 - \circ electric field E(r) from $\rho_0(r)$
 - wavefunctions $\mathbf{g}_{\kappa}^{(\ell)}$, $\mathbf{f}_{\kappa}^{(\ell)}$ from solving Dirac equation with V(r)

$$E(r) = \frac{\sqrt{4\pi\alpha}}{r^2} \int_0^r dr' \, r'^2 \rho_0(r')$$

$$V(r) = -\sqrt{4\pi\alpha} \int_0^\infty dr' \, E(r')$$

Dipole overlap integral

$$\underline{\text{Dipole:}} \quad \underline{D} = -\frac{4}{\sqrt{2}} m_{\mu} \int_{0}^{\infty} dr \ E(r) \left[g_{-1}^{(e)}(r) f_{-1}^{(\mu)}(r) + f_{-1}^{(e)}(r) g_{-1}^{(\mu)}(r) \right]$$

- Only depends on charge density ρ_0 :
 - \circ electric field E(r) from $ho_0(r)$
 - wavefunctions $\mathbf{g}_{\kappa}^{(\ell)}$, $\mathbf{f}_{\kappa}^{(\ell)}$ from solving Dirac equation with V(r)

$$E(r) = \frac{\sqrt{4\pi\alpha}}{r^2} \int_0^r dr' \, r'^2 \rho_0(r')$$

$V(r) = -\sqrt{4\pi\alpha} \int_{r}^{\infty} dr' E(r')$

Results with propagated uncertainties

$$D(^{40}Ca) = 0.07531(5)$$
 $D(^{48}Ca) = 0.07479(10)$
 $D(^{48}Ti) = 0.0864(1)$ $D(^{27}AI) = 0.0359(2)$

- o For the first time: Fully quantified uncertainties
- o Consistent with results from [Kitano et al., 2002]
- \circ Contain individual uncertainty components and correlations from ho_0

- ∘ Requires proton and neutron densities $\rho_N \leftrightarrow M_N$ responses:
 - $\rho_p \approx \rho_0$ (from electron scattering)
 - $\rho_n \approx \rho_w$ (from parity violating electron scattering)
 - \rightarrow Not ideal, PVES only recently measured and only for a few nuclei

- ∘ Requires proton and neutron densities $\rho_N \leftrightarrow M_N$ responses:
 - $\rho_p \approx \rho_0$ (from electron scattering)
 - $\circ \rho_n \approx \rho_w$ (from parity violating electron scattering)
 - \rightarrow Not ideal, PVES only recently measured and only for a few nuclei
- \circ Empirical determination of $\rho_{\rm w}$ from experiments currently unfeasible
- Need theoretical nuclear structure calculations:
- o nuclear shell-model:

- Ab-initio approaches:
- \rightarrow precision of neutron responses unclear \rightarrow correlations are very stable

- ∘ Requires proton and neutron densities $\rho_N \leftrightarrow M_N$ responses:
 - $\rho_p \approx \rho_0$ (from electron scattering)
 - $\rho_n \approx \rho_w$ (from parity violating electron scattering)
 - ightarrow Not ideal, PVES only recently measured and only for a few nuclei
- \circ Empirical determination of ho_{w} from experiments currently unfeasible
- Need theoretical nuclear structure calculations:
- nuclear shell-model:

- Ab-initio approaches:
- ightarrow precision of neutron responses unclear ightarrow correlations are very stable

Establish correlation using IMSRG [talk: M. Heinz]

Correlations

 \circ observed strong correlation between overlap integrals and $\left\langle r^{2}\right\rangle _{\mathrm{ch}}$

Correlations

- \circ observed strong correlation between overlap integrals and $\left\langle r^{2}\right\rangle _{\mathrm{ch}}$
- uncertainties propagated including covariances: [talk: M. Heinz] from correlation / fit and propagated from charge distribution

	I _i	our result	Kitano et al.
²⁷ AI	S ^(p) S ⁽ⁿ⁾	0.01579(2)(19) 0.01689(5)(21)	0.0155 0.0167
AI	$V^{(p)}$ $V^{(n)}$	0.01635(2)(18) 0.01750(5)(21)	0.0161 0.0173
⁴⁸ Ti	$S^{(p)}$ $S^{(n)}$ $V^{(p)}$ $V^{(n)}$	0.03742(05)(5) 0.04305(25)(6) 0.04029(04)(5) 0.04646(24)(5)	0.0368 0.0435 0.0396 0.0468

Uncertainties and Covariances

<u>Uncertainties & Covariances</u> from correlations & nuclear structure:

+ Uncertainties & Covariances from charge distributions

Uncertainties and Covariances

<u>Uncertainties & Covariances</u> from correlations & nuclear structure:

+ Uncertainties & Covariances from charge distributions

Combined Covariances:

	²⁷ AI						
	D	S ^(p)	S ⁽ⁿ⁾	$V^{(p)}$	V ⁽ⁿ⁾		
D	1.0000	0.7205	0.7030	0.7210	0.7028		
$S^{(p)}$		1.0000	0.9656	1.0000	0.9645		
$S^{(n)}$			1.0000	0.9664	1.0000		
$V^{(p)}$				1.0000	0.9654		
<i>V</i> ⁽ⁿ⁾					1.0000		

11					
	D	$S^{(p)}$	S ⁽ⁿ⁾	$V^{(p)}$	$V^{(n)}$
D	1.0000	0.4657	0.1169	0.5003	0.1163
$S^{(p)}$		1.0000	0.1118	0.9991	0.0916
$S^{(n)}$			1.0000	0.1176	0.9997
$V^{(p)}$				1.0000	0.0978
$V^{(n)}$					1.0000

48**T**:

Comparison to PVES

 Deduction of quantities from PVES: radii & skin, (weak) form factor

Comparison to PVES

- Deduction of quantities from PVES: radii & skin, (weak) form factor
- Coulomb corrections via phasr:

$$A_{RL} \sim rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(V_{\mathrm{ch}} + V_{\mathrm{w}}) - rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(V_{\mathrm{ch}} - V_{\mathrm{w}})$$

ightarrow require full ho_0 and ho_{w} for V_{ch} and V_{w}

Comparison to PVES

- Deduction of quantities from PVES: radii & skin, (weak) form factor
- Coulomb corrections via phasr:

$$m{A_{RL}} \sim rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(V_{\mathrm{ch}} + V_{\mathrm{w}}) - rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(V_{\mathrm{ch}} - V_{\mathrm{w}})$$

- ightarrow require full ho_0 and ho_w for $V_{
 m ch}$ and $V_{
 m w}$
- Point-wise correlation for ρ_p , ρ_n , ρ_w :

Comparison to PVES

- Deduction of quantities from PVES: radii & skin, (weak) form factor
- Coulomb corrections via phasr:

$$A_{RL} \sim rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(V_{ch} + V_{w}) - rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(V_{ch} - V_{w})$$

ightarrow require full ho_0 and ho_w for $V_{
m ch}$ and $V_{
m w}$

∘ Point-wise correlation for ρ_p , ρ_n , ρ_w :

depend on:
$$S_L = M_L, \Phi_L'', \Sigma_L', \Sigma_L'', \Delta_L, \dots$$

depend on:
$$S_L = M_L, \Phi_L'', \Sigma_L', \Sigma_L'', \Delta_L, \dots$$

- $\circ L > 0$ leads to more complex angular integrals
- o more electron partial waves contribute

depend on:
$$S_L = M_L, \Phi_L'', \Sigma_L', \Sigma_L'', \Delta_L, \dots$$

- $\circ L > 0$ leads to more complex angular integrals
- o more electron partial waves contribute
- o integral weights are Bessel transforms of structure functions:

$$\mathrm{e.g.:} \qquad \quad \rho_N^{\mathcal{S}_L}(r) = \frac{4\pi}{(2\pi)^3} \int_0^\infty \mathrm{d}q \, q^2 j_L(qr) F_N^{\mathcal{S}_L}(q)$$

depend on:
$$S_L = M_L, \Phi_L'', \Sigma_L', \Sigma_L'', \Delta_L, \dots$$

- $\circ L > 0$ leads to more complex angular integrals
- o more electron partial waves contribute
- o integral weights are Bessel transforms of structure functions:

e.g.:
$$\rho_N^{\mathcal{S}_L}(r) = \frac{4\pi}{(2\pi)^3} \int_0^\infty \mathrm{d}q \, q^2 j_L(qr) F_N^{\mathcal{S}_L}(q)$$

- Again employment of IMSRG for $F_N^{S_L}$:
 - $\rightarrow L > 0$ computationally expensive, but feasible

Overlap integrals for subleading responses well on the way:

depend on:
$$S_L = M_L, \Phi_L'', \Sigma_L', \Sigma_L'', \Delta_L, \dots$$

- \circ L > 0 leads to more complex angular integrals
- more electron partial waves contribute
- o integral weights are Bessel transforms of structure functions:

$$\mathrm{e.g.:} \qquad \quad \rho_N^{\mathcal{S}_L}(r) = \frac{4\pi}{(2\pi)^3} \int_0^\infty \mathrm{d}q \, q^2 j_L(qr) F_N^{\mathcal{S}_L}(q)$$

- Again employment of IMSRG for $F_N^{S_L}$:
 - ightarrow L>0 computationally expensive, but feasible

Unclear: Correlation to which experimentally accessible quantities?

Summary:

- Comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - o Goal: Discriminate BSM operators
 - Controlled uncertainty estimates

Summary:

- Comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - Goal: Discriminate BSM operators
 - Controlled uncertainty estimates
- \circ Indirect limits for $P \to \bar{\mu}e$
- Uncertainty estimates for charge distributions
- Phase-shift model Python package phase

Summary:

- Comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - Goal: Discriminate BSM operators
 - Controlled uncertainty estimates
- \circ Indirect limits for $P \to \bar{\mu}e$
- Uncertainty estimates for charge distributions
- Phase-shift model Python package phase
- Overlap integrals from correlations using ab-initio calculations

Summary:

- Comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - Goal: Discriminate BSM operators
 - Controlled uncertainty estimates
- Indirect limits for $P \rightarrow \bar{\mu}e$
- Uncertainty estimates for charge distributions
- Phase-shift model Python package phase
- Overlap integrals from correlations using ab-initio calculations

Outlook:

- Subleading nuclear responses
- Relevance of 2-body currents
- Coulomb corrections in PVES

Thank you for your attention!

Thanks to my Collaborators/Co-Authors:

Matthias Heinz, Martin Hoferichter, Takayuki Miyagi, Achim Schwenk

References I

Hoferichter, M., J. Menéndez, and F. Noël (Apr. 2023).

```
In: Phys. Rev. Lett. 130.13, p. 131902. DOI: 10.1103/PhysRevLett.130.131902. arXiv: 2204.06005 [hep-ph].
Noël, F. and M. Hoferichter (2024). "Uncertainty quantification for \mu \to e conversion in nuclei: charge distributions".
      In: JHEP 08, p. 052. DOI: 10.1007/JHEP08(2024)052. arXiv: 2406.06677 [nucl-th].
Heinz, M. et al. (Dec. 2024). "Ab initio calculations of overlap integrals for u \to e conversion in nuclei". In:
      arXiv: 2412.04545 [nucl-th].
Kitano, R., M. Koike, and Y. Okada (2002).
     "Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei".
      In: Phys. Rev. D 66. [Erratum: Phys. Rev. D 76, 059902 (2007)], p. 096002. DOI: 10.1103/PhysRevD.76.059902.
      arXiv: hep-ph/0203110.
Davidson, S., Y. Kuno, and A. Saporta (2018), ""Spin-dependent" u \rightarrow e conversion on light nuclei".
      In: Eur. Phys. J. C 78.2, p. 109, DOI: 10.1140/epic/s10052-018-5584-8, arXiv: 1710.06787 [hep-ph].
Serot, B. D. (1978).
     "Semileptonic Weak and Electromagnetic Interactions with Nuclei: Nuclear Current Operators Through Order (v/c)^2_{\text{purplear}}".
      In: Nucl. Phys. A 308, pp. 457-499, DOI: 10.1016/0375-9474(78)90561-4.
Crivellin, A. et al. (2017).
     "Renormalisation-group improved analysis of \mu \to e processes in a systematic effective-field-theory approach".
```

Cirigliano, V., S. Davidson, and Y. Kuno (2017). "Spin-dependent $\mu \to e$ conversion". In: *Phys. Lett. B* 771, pp. 242–246.

Hagen, G. et al. (2016). "Neutron and weak-charge distributions of the 48Ca nucleus". In: Nature Phys. 12.2, pp. 186–190.

In: Phys. Rev. C 100.6, p. 061304, DOI: 10.1103/PhysRevC.100.061304, arXiv: 1908.09739 [nucl-th].

"Nuclear charge and magnetization density distribution parameters from elastic electron scattering".

"Improved Limits on Lepton-Flavor-Violating Decays of Light Pseudoscalars via Spin-Dependent $u \to e$ Conversion in Nuclei".

In: Atom. Data Nucl. Data Tabl. 36, pp. 495–536. DOI: 10.1016/0092-640X(87)90013-1.

DOI: 10.1016/j.physletb.2017.05.053. arXiv: 1703.02057 [hep-ph].

DOI: 10.1038/nphys3529. arXiv: 1509.07169 [nucl-th].

Vries, H. de, C. W. de Jager, and C. de Vries (1987).

In: JHEP 05, p. 117, DOI: 10.1007/JHEP05(2017)117, arXiv: 1702.03020 [hep-ph].

Payne, C. G. et al. (2019). "Coherent elastic neutrino-nucleus scattering on ⁴⁰Ar from first principles".

References II

Dreher, B. et al. (Dec. 1974).

"The determination of the nuclear ground state and transition charge density from measured electron scattering data". In: Nucl. Phys. A 235.1, pp. 219–248. DOI: 10.1016/0375-9474(74)90189-4.

Radii

- Qualitative radii for the considered nuclei
- Statistical uncertainties
 - based on fit statistics and data uncertainties
- Systematical uncertainties
 - based on different R, N with two strategies

All parameterizations with uncertainties and correlations are made available in a python notebook

Nucleus	$\sqrt{\langle r^2 angle}$ [fm]	Refs.
²⁷ AI	$2.996(11) {(43)[44] \atop ({}^{+26}_{-33})[35]}$	3.035(2)
	$3.063(3) {(30)[31] \atop (^{+0}_{-1})[3]}$	3.0610(31)
⁴⁰ Ca	$3.452(3) \binom{8}{\binom{+1}{-9}} \binom{9}{10}$	3.450(10)
	$3.4771(17)_{\binom{+0}{-5}}^{\binom{17}{17}}[24]$	3.4776(19)
⁴⁸ Ca	$3.4499(29)\binom{(31)[42]}{\binom{+42}{-52}[60]}$	3.451(9)
	$3.475(2)^{\binom{10}{10}}_{\binom{+0}{-3}}[4]$	3.4771(20)
⁴⁸ Ti	$3.62(3) \binom{(8)[8]}{\binom{+2}{-3}[4]}$	3.597(1)
	$3.596(3)^{{57} \choose {-1}}[57] \choose {-1}[3]$	3.5921(17)

Solve Coulomb numerically

Comparison ⁴⁰Ca

⁴⁰ Ca							
$R \backslash N_x$	7	8	9	10	11	12	13
6.50				1.416			
6.75		1.153	1.109	1.129			
7.00		1.101	1.077	1.096			
7.25		1.071	1.082	1.099	1.119		
7.50	1.107	1.085	1.087	1.101	1.121		
7.75		1.123	1.085	1.103	1.117		
8.00			1.087	1.104	1.120	1.141	
8.25		1.140	1.096	1.105	1.121	1.139	
8.50		1.107	1.111	1.128	1.119	1.137	
8.75			1.135	1.113	1.113	1.131	
9.00			1.139	1.122	1.107	1.127	1.148
9.25			1.208	1.150	1.135	1.149	1.171
9.50						1.196	1.186

Systematic uncertainty bands

Full tree of $\mu ightarrow e$ conversion

$\mu \rightarrow e$ conversion Lagrangian

$$\mathcal{L}_{\text{eff}}^{\mu \to e} = \sum_{Y = L, R} \left(\sum_{q = u, d, s} \sum_{X = S, P, Y} C_Y^{X, q} \ L_Y^X \ Q^{X, q} + \sum_{X = D, GG, G\tilde{G}} C_Y^X \ L_Y^X \ Q^X + \text{h.c.} \right),$$

$$L_Y^S = \Lambda^{-2} \ \overline{e_Y} \mu, \qquad \qquad Q^{S, q} = \bar{q} q,$$

$$L_Y^P = L_Y^S, \qquad \qquad Q^{P, q} = \bar{q} \gamma^5 q,$$

$$L_Y^{V, \mu} = \Lambda^{-2} \ \overline{e_Y} \gamma^{\mu} \mu, \qquad \qquad Q_{\mu}^{V, q} = \bar{q} \gamma_{\mu} q,$$

$$L_Y^{A, \mu} = L_Y^{V, \mu}, \qquad \qquad Q_{\mu}^{A, q} = \bar{q} \gamma_{\mu} \gamma^5 q,$$

$$L_Y^{T, \mu \nu} = \Lambda^{-2} \ \overline{e_Y} \sigma^{\mu \nu} \mu, \qquad \qquad Q_{\mu}^{T, q} = \bar{q} \sigma_{\mu \nu} q,$$

$$L_Y^{GG} = \Lambda^{-1} \ L_Y^S, \qquad \qquad Q^{GG} = \alpha_S G_{\alpha\beta}^a G_a^{\alpha\beta},$$

$$L_Y^{G\tilde{G}} = \Lambda^{-1} \ L_Y^S, \qquad \qquad Q^{G\tilde{G}} = i\alpha_S G_{\alpha\beta}^a \tilde{G}_a^{\alpha\beta},$$

$$L_Y^{D, \mu \nu} = \Lambda \ L_Y^{T, \mu \nu}, \qquad \qquad Q_{\mu \nu}^{D} = F_{\mu \nu},$$

hadronic matrix elements

$$\langle N | \, \bar{q}q \, | \, N \rangle = \bar{u}_N(p',s') \left(\frac{m_N}{m_q} f_q^N(q) \right) u_N(p,s),$$

$$\langle N | \, \bar{q}i\gamma^5 q \, | \, N \rangle = \bar{u}_N(p',s') \left(\frac{m_N}{m_q} G_5^{q,N}(q) i \gamma^5 \right) u_N(p,s),$$

$$\langle N | \, \bar{q}\gamma^\mu q \, | \, N \rangle = \bar{u}_N(p',s') \left(\gamma^\mu F_1^{q,N}(q) - \frac{i \sigma^{\mu\nu} q_\nu}{2m_N} F_2^{q,N}(q) \right) u_N(p,s),$$

$$\langle N | \, \bar{q}\gamma^\mu \gamma^5 q \, | \, N \rangle = \bar{u}_N(p',s') \left(\gamma^\mu \gamma^5 G_A^{q,N}(q) - \gamma^5 \frac{q^\mu}{2m_N} G_P^{q,N}(q) \right) u_N(p,s),$$

$$\langle N | \, \bar{q}\sigma^{\mu\nu} q \, | \, N \rangle = \bar{u}_N(p',s') \left(\sigma^{\mu\nu} F_{1,T}^{q,N}(q) - 2 \gamma^{[\mu} \frac{i q^\nu]}{m_N} F_{2,T}^{q,N}(q) - 4 p^{[\mu} \frac{i q^\nu]}{m_N^2} F_{3,T}^{q,N}(q) \right) u_N(p,s),$$

$$\langle N | \, G_{\mu\nu}^a G_a^{\mu\nu} \, | \, N \rangle = \bar{u}_N(p',s') \left(\frac{4\pi}{\alpha_s} a_N(q) \right) u_N(p,s),$$

$$\langle N | \, G_{\mu\nu}^a \tilde{G}_a^{\mu\nu} \, | \, N \rangle = \bar{u}_N(p',s') \left(i \frac{4\pi}{\alpha_s} \tilde{a}_N(q) \gamma^5 \right) u_N(p,s).$$

Non-rel. expansion

$$\begin{split} \bar{u}_{N'} \mathbb{1} u_N &= \chi_{s'}^\dagger \left(\mathbb{1} + \frac{-\vec{q}^2 - 4\vec{p}^2 + 4(\vec{q} \cdot \vec{p}) - 2i(\vec{q} \cdot (\vec{\sigma} \times \vec{p}))}{8m_N^2} \right) \chi_s, \\ \bar{u}_{N'} \gamma^5 u_N &= \chi_{s'}^\dagger \left(\frac{(\vec{q} \cdot \vec{\sigma})}{2m_N} \right) \chi_s, \\ \bar{u}_{N'} \gamma^0 u_N &= \chi_{s'}^\dagger \left(\mathbb{1} + \frac{-\vec{q}^2 + 2i(\vec{q} \cdot (\vec{\sigma} \times \vec{p}))}{8m_N^2} \right) \chi_s, \\ \bar{u}_{N'} \gamma^i u_N &= \chi_{s'}^\dagger \left(\mathbb{1} + \frac{-\vec{q}^2 + 2i(\vec{q} \cdot (\vec{\sigma} \times \vec{p}))}{8m_N^2} \right) \chi_s, \\ \bar{u}_{N'} \gamma^0 \gamma^5 u_N &= \chi_{s'}^\dagger \left(\frac{-(\vec{q} \cdot \vec{\sigma}) + 2(\vec{\sigma} \cdot \vec{p})}{2m_N} \right) \chi_s, \\ \bar{u}_{N'} \gamma^i \gamma^5 u_N &= \chi_{s'}^\dagger \left(\sigma_i + \frac{-\vec{q}^2 \sigma_i + 2i(\vec{q} \times \vec{p})_i + 2(\vec{q} \times (\vec{\sigma} \times \vec{p}))_i}{8m_N^2} \right) \\ &+ \frac{-4\vec{p}^2 \sigma_i - 2q_i(\vec{\sigma}\vec{p}) + 2(\vec{q} \cdot \vec{p})\sigma_i + 4(\vec{\sigma} \cdot \vec{p})p_i}{8m_N^2} \right) \chi_s, \\ \bar{u}_{N'} \sigma^{0i} u_N &= \chi_{s'}^\dagger \left(\frac{iq_i + (\vec{q} \times \vec{\sigma})_i + 2(\vec{\sigma} \times \vec{p})_i}{2m_N} \right) \chi_s, \\ \epsilon_{ijk} \ \bar{u}_{N'} \sigma^{ij} u_N &= 2 \ \chi_{s'}^\dagger \left(\sigma_k + \frac{-\vec{q}^2 \sigma_k - 2i(\vec{q} \times \vec{p})_k - 2(\vec{q} \times (\vec{\sigma} \times \vec{p}))_k}{8m_N^2} \right) \chi_s. \\ &+ \frac{+2q_k(\vec{\sigma} \cdot \vec{p}) + 2(\vec{q} \cdot \vec{p})\sigma_k - 4(\vec{\sigma} \cdot \vec{p})p_k}{8m_N^2} \right) \chi_s. \end{split}$$

Non-relativistic Operators

$$\begin{split} h^{M} &= \mathbb{1}, & h^{\Sigma} = \sigma_{i}, \\ h^{\Delta}_{i} &= \frac{ip_{i}}{q}, & h^{\Omega} &= \frac{i(\vec{\sigma} \cdot \vec{p})}{q}, & h^{\Phi}_{i} &= \frac{-(\vec{\sigma} \times \vec{p})_{i}}{q}, \\ h^{\Omega'}_{i} &= \frac{i(\vec{q} \cdot \vec{\sigma})(\vec{\sigma} \cdot \vec{p})}{q^{2}}, & h^{\Omega''}_{i} &= \frac{-\vec{p}^{2}}{q^{2}}, & h^{\Theta}_{i} &= \frac{-\sigma_{i}\vec{p}^{2}}{q^{2}}, \\ h^{\Pi}_{i} &= \frac{-(\vec{\sigma} \cdot \vec{p})p_{i}}{q^{2}}, & h^{\Xi}_{i} &= \frac{-(\vec{q} \cdot \vec{\sigma})p_{i}}{q^{2}}, & h^{\Gamma}_{i} &= \frac{i(\vec{q} \cdot \vec{p})\sigma_{i}}{q^{2}}, \end{split}$$

 $q_i, p_i \leftrightarrow -i \vec{\nabla}_i$ acting on either one or both nucleons

$$\begin{split} i\mathcal{M}_{Y} &= \int \mathrm{d}^{3}x \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \sum_{i=1}^{A} \sum_{S} \tilde{I}_{S,Y}^{(m)}(\vec{q}) \ e^{-i\vec{q}\cdot\vec{x}} \left\langle JM_{f} \right| \hat{h}_{(m)}^{S,N_{i}}(\vec{x}) \left| JM_{i} \right\rangle \\ &= \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \sum_{i=1}^{A} \sum_{S=M,\Omega} \tilde{I}_{S,Y}(\vec{q}) \ \int \mathrm{d}^{3}x \ e^{-i\vec{q}\cdot\vec{x}} \left\langle JM_{f} \right| \hat{h}^{S,N_{i}}(\vec{x}) \left| JM_{i} \right\rangle \\ &+ \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \sum_{i=1}^{A} \sum_{S=\Sigma,\Delta,\Phi} \tilde{I}_{S,Y}^{j}(\vec{q}) \ \int \mathrm{d}^{3}x \ e^{-i\vec{q}\cdot\vec{x}} \left\langle JM_{f} \right| \hat{h}_{j}^{S,N_{i}}(\vec{x}) \left| JM_{i} \right\rangle \end{split}$$

$$\tilde{l}_{S,Y}^{(m)}(\vec{q}) = \sum_{Y} C_{Y,X,S}^{(n,m)}(\vec{q}) \int d^3x' \, \overline{\Psi_{e_Y}^{\kappa',t'}(x')} \Gamma_X^{(n)} \Psi_{\mu}^{(1s),t}(x') \, e^{i\vec{q}\cdot\vec{x'}}$$

Multipole Names

		1	$\vec{\sigma}\vec{\nabla}$	$\vec{\nabla}$	$\vec{\sigma}$	$\vec{\sigma} \times \vec{\nabla}$
$h_{\mu=0}$	\mathcal{M}	Μ	Ω			
$h_{\mu=\pm}$	\mathcal{T}^{mag} \mathcal{T}^{el}			$rac{\Delta}{\Delta'}$	$\Sigma \ \Sigma'$	Φ Φ'
$h_{\mu=3}$	\mathcal{L}			_	Σ''	Φ''

For an elastic process:

$$\begin{split} \langle M||\Sigma||M\rangle &= 0, & \langle M||\Delta'||M\rangle = 0, \\ \langle M||\Omega||M\rangle &= -\frac{1}{2} \, \langle M||\Sigma''||M\rangle \,, & \langle M||\Delta''||M\rangle = +\frac{1}{2} \, \langle M||M||M\rangle \,, \\ \langle M||\Phi||M\rangle &= +\frac{1}{2} \, \langle M||\Sigma'||M\rangle \,. \end{split}$$

Multipoles

$$\begin{split} M^{i}_{JM} &= j_{J}(qr_{i})Y_{JM}(\hat{r}_{i}), \qquad \qquad \Omega^{i}_{JM} = j_{J}(qr_{i})Y_{JM}(\hat{r}_{i}) \left(\vec{\sigma} \cdot \frac{\vec{\nabla}_{i}}{q}\right), \\ \Delta^{i}_{JM} &= j_{J}(qr_{i})\vec{Y}_{JJM}(\hat{r}_{i}) \cdot \frac{\vec{\nabla}_{i}}{q}, \qquad \qquad \Delta^{i}_{JM} = -i \left(\frac{\vec{\nabla}_{i}}{q} \times j_{J}(qr_{i})\vec{Y}_{JJM}(\hat{r}_{i})\right) \cdot \frac{\vec{\nabla}_{i}}{q}, \\ \Delta^{\prime\prime}_{JM}^{i} &= \left(\frac{\vec{\nabla}_{i}}{q} j_{J}(qr_{i})Y_{JM}(\hat{r}_{i})\right) \cdot \frac{\vec{\nabla}_{i}}{q}, \qquad \qquad \Sigma^{i}_{JM} = j_{J}(qr_{i})\vec{Y}_{JJM}(\hat{r}_{i}) \cdot \vec{\sigma}, \\ \Sigma^{\prime}_{JM}^{i} &= -i \left(\frac{\vec{\nabla}_{i}}{q} \times j_{J}(qr_{i})\vec{Y}_{JJM}(\hat{r}_{i})\right) \cdot \vec{\sigma}, \qquad \Sigma^{\prime\prime}_{JM}^{i} &= \left(\frac{\vec{\nabla}_{i}}{q} j_{J}(qr_{i})Y_{JM}(\hat{r}_{i})\right) \cdot \vec{\sigma}, \\ \Phi^{i}_{JM} &= i j_{J}(qr_{i})\vec{Y}_{JJM}(\hat{r}_{i}) \cdot \left(\vec{\sigma} \times \frac{\vec{\nabla}_{i}}{q}\right), \qquad \Phi^{\prime\prime}_{JM}^{i} &= \left(\frac{\vec{\nabla}_{i}}{q} \times j_{J}(qr_{i})\vec{Y}_{JJM}(\hat{r}_{i})\right) \cdot \left(\vec{\sigma} \times \frac{\vec{\nabla}_{i}}{q}\right), \end{split}$$

Prefactors

$$\begin{split} C_{Y,S,M} &= \left(1 - \frac{\vec{q}^2}{8m_N^2}\right) C_Y^{S,S}, & C_{Y,S,\Sigma}^i &= \frac{q^i}{2m_N} C_Y^{S,P}, \\ C_{Y,S,\Delta}^i &= \frac{-iqq^i}{2m_N^2} C_Y^{S,S}, & C_{Y,S,\Phi}^i &= \frac{iqq^i}{4m_N^2} C_Y^{S,S}, \\ C_{Y,V^0,M} &= C_Y^{V,V} + \frac{\vec{q}^2}{8m_N^2} \left(4 C_Y^{V,T} - C_Y^{V,V}\right), & C_{Y,V^0,\Sigma}^i &= \frac{-iq^i}{2m_N} C_Y^{V,A}, \\ C_{Y,V^0,\Phi}^i &= \frac{iqq^i}{4m_N^2} \left(4 C_Y^{V,T} - C_Y^{V,V}\right), & C_{Y,V^0,\Omega}^i &= \frac{-iq}{2m_N} C_Y^{V,A}, \\ C_{Y,V^0,\Phi}^{i,j} &= \delta^{ij} \frac{iq}{m_N} C_Y^{V,V} + \frac{-q\epsilon^{iij}q_l}{4m_N^2} C_Y^{V,A}, & C_{Y,V^0,\Omega}^i &= \frac{q^i}{2m_N} C_Y^{V,A}, \\ C_{Y,\bar{V},\Phi}^{i,j} &= \frac{q\epsilon^{iij}q_l}{4m_N^2} C_Y^{V,A}, & C_{Y,\bar{V},\Omega}^i &= \frac{-iqq^i}{4m_N^2} C_Y^{V,A}, \\ C_{Y,\bar{V},\Sigma}^{i,j} &= (-\delta^{ij}) \left(1 - \frac{\vec{q}^2}{8m_N^2}\right) C_Y^{V,A} + \frac{i\epsilon^{iij}q_l}{2m_N} \left(2 C_Y^{V,T} - C_Y^{V,V}\right) + \frac{-iq^iq^j}{2m_N^2} C_Y^{V,P}, \\ C_{Y,\bar{T},M}^i &= \frac{iq^i}{m_N} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right), & C_{Y,\bar{T},\Sigma}^{i,j} &= \frac{-\epsilon_{iij}q_l}{m_N} C_Y^{T,T}, \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{2q}{m_N} \delta^{ij} C_Y^{T,T}, & C_{Y,\bar{T},\Delta}^{ij} &= \frac{qq_i\epsilon^{iij}}{2m_N^2} C_Y^{T,T} + \delta^{ij} \frac{q^2 - q^iq^j}{4m_N^2} C_Y^{T,V}, & C_{Y,\bar{T},\Phi}^{i,j} &= \frac{qq_i\epsilon^{iij}}{4m_N^2} C_Y^{T,T}, \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{2m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T},\Phi}^{i,j} &= \frac{qq_i\epsilon^{iij}}{4m_N^2} C_Y^{T,T}, \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{2m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T},\Phi}^{i,j} &= \frac{qq_i\epsilon^{iij}}{4m_N^2} C_Y^{T,T}, \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{2m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T},\Phi}^{i,j} &= \frac{qq_i\epsilon^{iij}}{4m_N^2} C_Y^{T,T}, \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{2m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T},\Delta}^{i,j} &= \frac{qq_i\epsilon^{iij}}{4m_N^2} C_Y^{T,T} \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{2m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T},\Delta}^{i,j} &= \frac{qq_i\epsilon^{iij}}{4m_N^2} C_Y^{T,T} \\ C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{2m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T},\Delta}^{i,j} &= \frac{q\epsilon_{iij}q^l}{4m_N^2} \left(C_Y^{T,S} - C_Y^{T,T} + C_Y^{T,V}\right). & C_{Y,\bar{T}$$

$$\overline{|\mathcal{M}|^2} = \sum_{Y=L,R} \frac{2}{\Lambda^4} \left| \Lambda \eta_e C_Y^D D + \sum_{N=n,p} \left(C_Y^{S,S} S^{(N)} + C_Y^{V,V} V^{(N)} \right) \right|^2$$

$$S^{(N)} = \frac{1}{2\sqrt{2}} \int_0^\infty dr \ (\#N) \rho_N(r) \left[g_{-1}^{(e)}(r) g_{-1}^{(\mu)}(r) - f_{-1}^{(e)}(r) f_{-1}^{(\mu)}(r) \right]$$

$$V^{(N)} = \frac{1}{2\sqrt{2}} \int_0^\infty dr \ (\#N) \rho_N(r) \left[g_{-1}^{(e)}(r) g_{-1}^{(\mu)}(r) + f_{-1}^{(e)}(r) f_{-1}^{(\mu)}(r) \right]$$

$$D = -\frac{4m_\mu}{\sqrt{2}} \int_0^\infty dr \ E(r) \left[g_{-1}^{(e)}(r) f_{-1}^{(\mu)}(r) + f_{-1}^{(e)}(r) g_{-1}^{(\mu)}(r) \right]$$

 $= \sum_{Y=L,R} \frac{2}{\Lambda^4} \left| \Lambda \eta_e C_Y^D D + \sum_{N=n,p} \left(\frac{m_N}{m_q} C_Y^{S,q} f_q^N(0) S^{(N)} + C_Y^{V,q} F_1^{q,N}(0) V^{(N)} \right) \right|^2$

PVES

$$\begin{split} A_{\text{PVES}} &= \frac{(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega})_R - (\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega})_L}{(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega})_R + (\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega})_L} \approx -\frac{G_F q^2}{4\pi \alpha_{\text{el}} \sqrt{2}} \frac{Q^{\text{w}} F_0^{\text{w}}(q^2)}{Z F_0^{\text{ch}}(q^2)}, \\ Z F_L^{\text{ch}}(q^2) &= \left(1 - \frac{\left\langle r_p^2 \right\rangle}{6} q^2 - \frac{1}{8m_N^2} q^2\right) \mathcal{F}_L^{M_p}(q^2) - \frac{\left\langle r_n^2 \right\rangle}{6} q^2 \mathcal{F}_L^{M_n}(q^2) \\ &\quad + \frac{1 + 2\kappa_p}{4m_N^2} q^2 \mathcal{F}_L^{\Phi_p''}(q^2) + \frac{2\kappa_n}{4m_N^2} q^2 \mathcal{F}_L^{\Phi_n''}(q^2) + \mathcal{O}(q^4). \\ Q^{\text{w}} F_L^{\text{w}}(q^2) &= \left(Q_p^{\text{w}} \left(1 - \frac{\left\langle r_p^2 \right\rangle}{6} q^2 - \frac{1}{8m_N^2} q^2\right) - Q_n^{\text{w}} \frac{\left\langle r_n^2 \right\rangle + \left\langle r_{s,N}^2 \right\rangle}{6} q^2\right) \mathcal{F}_L^{M_p}(q^2) \\ &\quad + \left(Q_n^{\text{w}} \left(1 - \frac{\left\langle r_n^2 \right\rangle + \left\langle r_{s,N}^2 \right\rangle}{6} q^2 - \frac{1}{8m_N^2} q^2\right) - Q_p^{\text{w}} \frac{\left\langle r_n^2 \right\rangle + \left\langle r_{s,N}^2 \right\rangle}{6} q^2\right) \mathcal{F}_L^{M_n}(q^2) \\ &\quad + \frac{Q_p^{\text{w}}(1 + 2\kappa_p) + 2Q_n^{\text{w}}(\kappa_n + \kappa_{s,N})}{4m_N^2} q^2 \mathcal{F}_L^{\Phi_p''}(q^2) \\ &\quad + \frac{Q_n^{\text{w}}(1 + 2\kappa_p + 2\kappa_{s,N}) + 2Q_p^{\text{w}}\kappa_n}{4m_N^2} q^2 \mathcal{F}_L^{\Phi_n''}(q^2) \end{split}$$

Detailed Limits

	π^0	η	η'
$C_Y^{A,3}$	1.3×10^{-17}	_	_
$C_Y^{A,8}$	_	1.5×10^{-17}	4.0×10^{-20}
$C_{Y}^{A,0}$	_	2.9×10^{-19}	2.1×10^{-19}
$C_Y^{P,3}$	4.1×10^{-17}	_	_
$C_Y^{P,8}$	_	1.6×10^{-12}	2.1×10^{-14}
$C_Y^{P,0}$	_	4.1×10^{-12}	5.4×10^{-13}
C_Y^{GG}	-	5.8×10^{-15}	4.7×10^{-16}

Cancelation & RG corrections

$$C_{Y}^{A,u} = C_{Y}^{A,d}, \qquad C_{Y}^{A,s} = -\frac{2C_{Y}^{A,u}g_{A}^{u,0}}{g_{A}^{s,N}}, \frac{C_{Y}^{P,u}}{m_{u}} = \frac{C_{Y}^{P,d}}{m_{d}}, \qquad \frac{C_{Y}^{P,s}}{m_{s}} = \frac{4\pi}{\Lambda}C_{Y}^{G\tilde{G}}\frac{2g_{A}^{u,0}}{g_{A}^{u,0} - g_{A}^{s,N}}.$$

$$C_Y^{V,q} \simeq -3Q_q \frac{\alpha}{\pi} \log \frac{M_W}{m_N} C_Y^{A,q},$$