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Motivation

◦ Upcoming major experimental improvements [see: talks from Monday]
→ Increase NP reach by several orders of magnitude
→ Enable to study subleading responses quantitatively (?)

◦ In particular beyond leading order: lots of operators contribute
→ Disentangling NP operators is theoretically feasible but difficult
→ Discriminability might be drowned in theory uncertainties

Necessities
◦ Framework that consistently

considers all operators
◦ Assessing theory uncertainties

(also from nuclear & Coulomb)

This Talk:
◦ Schematical Framework introduction including subleading responses
◦ Uncertainty assessment for leading responses [see also: talk: M. Heinz]
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µ→ e conversion framework

µ→ e conversion framework components
Many different scales matter:

Λ ≳TeV?

SMEFT

∼ mW

∼ 100GeV
integrate out

heavy SM particles

LEFT
qµ→ qe

q ∈ {u, d, s}, g

∼ mN

∼ 1GeVhadronizationℓ ∈ {e, µ, τ}, νℓ, γ

ChPT
Nµ→ Ne

N ∈ {p, n}, π, η, η′, . . .

∼ mπ

∼ 100MeV

∼ Eb

∼ 1MeV

Coulomb
corrections

µ(1s), ẽ, . . .

numerically solve
Dirac equation

nuclear
response

M = 27Al,48Ti, . . .

NR expansion,
multipoles

µ→ e conversion:
Mµ(1s)→Mẽ

Objectives:

◦ Compare different probes:
e.g.: µ→ e vs. P → µ̄e
◦ Discriminate BSM operators
◦ Control theory uncertainties:
◦ Hadronic matrix elements
◦ Nuclear response
◦ Coulomb corrections

◦ RG corrections

µ

µ

A, Z

e
A, Z

µ→ e conversion

=

⊗
p n

p ⊗ p
n

p
n

qi qi

⊗

q1

q̄2

ℓ1

ℓ̄2

Coulomb corrections nuclear response hadronic matrix elements

(short distance) EFT operators

At all steps uncertainties need to be controlled!
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Objectives:
◦ Compare different probes:

e.g.: µ→ e vs. P → µ̄e
◦ Discriminate BSM operators
◦ Control theory uncertainties:
◦ Hadronic matrix elements
◦ Nuclear response
◦ Coulomb corrections

◦ RG corrections

µµ

A, Z

e
A, Z

µ→ e conversion

= ⊗
p n

p ⊗ p
n

p
n

qi qi

⊗

q1

q̄2

ℓ1

ℓ̄2

Coulomb corrections nuclear response hadronic matrix elements (short distance) EFT operators

At all steps uncertainties need to be controlled!
F. Noël (Uni Bern, ITP) Uncertainty quantification 16.04.25 4 / 27



µ→ e conversion framework

Decomposition of the hadronic side

µ

⊗

p n
p

⊗

p
n

p
n

qi qi

⊗

q1

q̄2

ℓ1

ℓ̄2

scalar

scalar

vector

vector tensor

pseudo
scalar

pseudo
scalar

axial
vector

axial
vector

pseudo
scalar

M Φ′′ Σ′′ Σ′ ∆ Φ′

tensor

tensor vector scalar

GG dipole GG̃

EFT
operators

hadronic
matrix

elements

multipole
decomposition

[Serot, 1978]

nuclear
response

Spin Independent Spin Dependent

+ Combine with Coulomb corrections on the leptonic side

◦ SI: coherently enhanced; ΓSI ∼ #N2; e.g. [Kitano et al., 2002,. . . ]

◦ SD: not coherently enhanced; only for J > 0; e.g. [Davidson et al., 2018,. . . ]
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µ→ e conversion framework

Overlap Integrals
◦ Overlap integrals combine nuclear responses and Coulomb corrections

µ
Conversion

Rate
= ⊗

p n
p ⊗ p

n
p
n

qi qi

⊗

q1

q̄2

ℓ1

ℓ̄2

Coulomb corrections nuclear response hadronic matrix elements (short distance) EFT operator

Overlap Integrals
[Kitano et al., 2002]

Leading / SI overlap integrals:

scalar: S(N) =
1

2
√

2

∫ ∞

0
dr (#N)ρN(r )

[
g (e)
−1 (r ) g (µ)

−1 (r )− f (e)−1 (r ) f (µ)−1 (r )
]

vector: V (N) =
1

2
√

2

∫ ∞

0
dr (#N)ρN(r )

[
g (e)
−1 (r ) g (µ)

−1 (r ) + f (e)−1 (r ) f (µ)−1 (r )
]

dipole: D = −4mµ√
2

∫ ∞

0
dr E (r )

[
g (e)
−1 (r ) f (µ)−1 (r ) + f (e)−1 (r ) g (µ)

−1 (r )
]

︸ ︷︷ ︸
electron and muon wave functions

◦ Development of subleading overlap integrals is currently in process
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Example: Indirect limits for P → µ̄e from µ→ e
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Example: Indirect limits for P → µ̄e from µ→ e Deduced Limits

Deduced Limits for P → µe
◦ Same underlying operators: P, A, GG̃ ,

but not the same linear combinations

◦ Consider first one operator at a time:
µ→ e (exp.) P → µ̄e (derived) current limit

BRTi < 6.1× 10−13
BRπ0≲ 4× 10−17 < 3.6× 10−10

BRη≲ 5× 10−13 < 6.0× 10−6

BRη′≲ 7× 10−14 < 4.7× 10−4

(scan over all "one operator at a time"-scenarios and choices for matrix elements)

◦ For a rigorous limits we need to scan over all Wilson coefficients
→ ∃ (fine-tuned) scenarios where µ→ e vanishes exactly

◦ In this scenario π0 → µ̄e vanishes as well:
rigorous limit: Brπ0→µ̄e< 1.0× 10−13 (

exp: < 3.6 · 10−10)
◦ For η(′) → µ̄e: in principle, no strict limits
◦ Cancellation easily lifted by RG corrections

[Crivellin et al., 2017; Cirigliano et al., 2017]

A

ℓ1

ℓ̄2

q1

q̄2

∼ V

ℓ1

ℓ̄2

q1

q̄2
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→ ∃ (fine-tuned) scenarios where µ→ e vanishes exactly

◦ In this scenario π0 → µ̄e vanishes as well:
rigorous limit: Brπ0→µ̄e< 1.0× 10−13 (

exp: < 3.6 · 10−10)

◦ For η(′) → µ̄e: in principle, no strict limits
◦ Cancellation easily lifted by RG corrections

[Crivellin et al., 2017; Cirigliano et al., 2017]
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Example: Indirect limits for P → µ̄e from µ→ e Prospects

Future projection for π0 → µ̄e

With values from Mu2e or COMET the limits become even stronger

◦ Combining the limits from Ti and Al we find:

1e-14 1e-12 1e-10 1e-08
1e-17

1e-16

1e-15

1e-14

1e-13

Br[µ → e, Al]

B
r[
π
0
→

µ
e]

[Hoferichter, Menéndez, FN, 2023]
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Controlling uncertainties Quantitative charge density inputs

Controlling uncertainties
◦ Hadronic matrix elements: from LatticeQCD & Phenomenology

◦ Nuclear structure:
◦ So far: (empirical) nuclear shell-model calculations:
→ Uncertainty estimate difficult; esp. for neutron response

◦ Ab-initio approaches:
→ Often uncertainties dominated by chiral Hamiltonian
and not by many-body solutions
→ Often correlations between responses much more stable

[Hagen et al., 2016; Payne et al., 2019]

◦ Charge form factor given by charge density mediates dipole
and overlaps with M, Φ′′ response

◦ Coulomb corrections:
◦ Solve Dirac eq. in nucleus potential given by charge density

µ

⊗

p n
p

⊗

p
n

p
n

Charge densities with quantified uncertainties required

So far: As Fourier-Bessel series without uncertainties
→ Redo extraction from elastic electron nucleus scattering

[Vries et al., 1987]
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Controlling uncertainties Electron scattering

How to describe elastic electron scattering?

Typical description via Plane Wave Born Approximation

N

e− e−

N

q γ

180◦−θ dσ

dΩ
=

(
dσ

dΩ

)
Mott
× E ′e

Ee
×
∣∣F (q, θ)

∣∣2

∣∣F (q, θ)
∣∣2 = ∑

L even
≤2J

∣∣ZF ch
L (q)

∣∣2 + ( 1
2 + tan2 θ

2
)

∑
L odd
≤2J

∣∣F mag
L (q)

∣∣2

J = 0:

F (q, θ) = ZF ch
0 (q) F .T .←−→ ρ0(r )

◦ defines charge density
◦ strongly dominating

J > 0:

F (q, θ) ⊃ F ch
L>0, F mag

L

◦ become relevant where F ch
0

small (zeroes, high q, high θ)
◦ subtract before extraction

Even for J = 0 insufficient → Coulomb corrections
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Controlling uncertainties Electron scattering

Coulomb corrections

◦ Coulomb corrections fill out minima and shift the crosssection
◦ Not properly accounted for by approximative methods

F. Noël (Uni Bern, ITP) Uncertainty quantification 16.04.25 13 / 27



Controlling uncertainties Electron scattering

Phase-shift model

◦ Born approximation
assumes plane waves
◦ Finite extend of the nucleus

distorts wave functions
→ results in phase shift δℓ,

contains info about dσ/dΩ

F ch
0 (q) F.T.←−→ ρ0(r )→ V (r ) Dirac-eq.−−−−→ dσ

dΩ︸ ︷︷ ︸
phase-shift model

Solve Dirac equation numerically:

∀ℓ :
[

ψℓ∼
(

gℓ(r )
i fℓ(r )

)
r→∞−−→

(
cos(kr + δ′ℓ(r ))
i sin(kr + δ′ℓ(r ))

)
→ δ′ℓ(r ) = δ′ℓ,c(r ) + δ̄ℓ

δℓ = δℓ,c+ δ̄ℓ

]
⇒ dσ

dΩ
∼ (1 + tan2( θ

2
)
)|f (θ)|2 with f (θ) ∼∑

ℓ

Pℓ(cos(θ))e2iδℓ
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Controlling uncertainties Electron scattering

Phase-shift model Implementation
Goals:
◦ Precise cross sections ◦ Efficient algorithm

Implementational Challenges:
◦ # partial waves dependents on initial energy: ℓmax ∈ {15, . . . , 250}
◦ High partial waves require high numerical precision
◦ Coulomb solutions require precise 1F 1(a, b, z) with complex arguments
◦ Partial wave sum ∑ℓ need to be resummed to achieve convergence
◦ Choice of numerical solvers and the initial values

Python package phasr [https://pypi.org/project/phasr]

◦ different charge distribution parameterizations implemented
◦ calculates bound state and continuums solutions → overlap integrals
◦ calculates elastic scattering cross sections using the phase shift model
◦ Recent addition: Parity violating electron scattering (PVES)

F. Noël (Uni Bern, ITP) Uncertainty quantification 16.04.25 15 / 27
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Controlling uncertainties Electron scattering

Nuclei with J > 0

27Al (J = 5
2) requires L > 0 contributions

◦ Employ ab-initio calculations (using IMSRG) [talk: M. Heinz]

ZF ch
L F mag

L

◦ Subtract and remove data points dominated by L > 0
◦ So far: No Coulomb corrections for L > 0
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Controlling uncertainties Extracted charge densities

Extracting charge densities from electron scattering
◦ Fourier-Bessel parameterization:

(qn = nπ
R s.t. j0(qnR) = 0) [Dreher et al., 1974]

ρ0(r ) =
{

∑N
n=1 an j0(qnr ) , r ≤ R

0 , r > R
◦ Total charge fulfilled by construction
◦ Constraints from muonic atoms (Barrett moment)

◦ Practical challenges:
◦ Most data from the 70s & 80s
◦ Many datasets not available at all

or only in PhD theses
◦ Uncertainty documentation rudimentary
◦ Computationally intensive (w.r.t. uncertainties)
→ Need to scan over R, N

Carried out for 27Al, 40,48Ca, 48,50Ti

Results available in python notebook [2406.06677]

F. Noël (Uni Bern, ITP) Uncertainty quantification 16.04.25 17 / 27
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Controlling uncertainties Extracted charge densities

Estimate uncertainties
Suppress overparametrization:

◦ "statistical" uncertainties:
From data uncertainties
(stat., syst. & corr.)
◦ systematical uncertainties:

From scan over R, N
(envelope or individual)
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Controlling uncertainties Extracted charge densities

Charge density results
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Application to leading overlap integrals

Application to leading overlap integrals
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Application to leading overlap integrals

Dipole overlap integral

Dipole: D = − 4√
2

mµ

∫ ∞

0
dr E (r )

[
g (e)
−1 (r ) f (µ)−1 (r ) + f (e)−1 (r ) g (µ)

−1 (r )
]

◦ Only depends on charge density ρ0:
◦ electric field E (r ) from ρ0(r )
◦ wavefunctions g (ℓ)

κ , f (ℓ)κ from
solving Dirac equation with V (r )

E (r ) =
√

4πα

r2

∫ r

0
dr ′ r ′2ρ0(r ′)

V (r ) = −
√

4πα
∫ ∞

r
dr ′ E (r ′)

Results with propagated uncertainties

D
(40Ca

)
= 0.07531(5) D

(48Ca
)
= 0.07479(10)

D
(48Ti

)
= 0.0864(1) D

(27Al
)
= 0.0359(2)

◦ For the first time: Fully quantified uncertainties
◦ Consistent with results from [Kitano et al., 2002]

◦ Contain individual uncertainty components and correlations from ρ0
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Application to leading overlap integrals

Scalar and Vector overlap integrals

Scalar: S(N) =
#N
2
√

2

∫ ∞

0
dr ρN(r )

[
g (e)
−1 (r )g

(µ)
−1 (r )− f (e)−1 (r )f

(µ)
−1 (r )

]
Vector: V (N) =

#N
2
√

2

∫ ∞

0
dr ρN(r )

[
g (e)
−1 (r )g

(µ)
−1 (r ) + f (e)−1 (r )f

(µ)
−1 (r )

]

◦ Requires proton and neutron densities ρN ↔ MN responses:
◦ ρp ∼∼∼ ρ0 (from electron scattering)
◦ ρn ∼∼∼ ρw (from parity violating electron scattering)
→ Not ideal, PVES only recently measured and only for a few nuclei

◦ Empirical determination of ρw from experiments currently unfeasible
◦ Need theoretical nuclear structure calculations:
◦ nuclear shell-model:
→ precision of neutron responses unclear

◦ Ab-initio approaches:
→ correlations are very stable

Establish correlation using IMSRG [talk: M. Heinz]
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Application to leading overlap integrals

Correlations
◦ observed strong correlation between

overlap integrals and
〈
r2〉

ch

◦ uncertainties propagated including
covariances: [talk: M. Heinz]
from correlation / fit and propagated
from charge distribution

Ii our result Kitano et al.

27Al

S(p) 0.01579(2)(19) 0.0155
S(n) 0.01689(5)(21) 0.0167
V (p) 0.01635(2)(18) 0.0161
V (n) 0.01750(5)(21) 0.0173

48Ti

S(p) 0.03742(05)(5) 0.0368
S(n) 0.04305(25)(6) 0.0435
V (p) 0.04029(04)(5) 0.0396
V (n) 0.04646(24)(5) 0.0468
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r2 ref
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NNLOsat
1.8/2.0 (EM)
shell-model

2.0/2.0 (EM)
2.0/2.0 (PWA)
2.2/2.0 (EM)

1.8/2.0 (EM7.5)
1.8/2.0 (sim7.5)
Samples from
Hu et al. (2022)
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Application to leading overlap integrals

Uncertainties and Covariances

Uncertainties & Covariances
from correlations & nuclear structure:

2 1 0 +1 +2
0

1

2

3

4

5

6

7

8
S(n) model-data

68%

+ Uncertainties & Covariances
from charge distributions

Combined Covariances:
27Al

D S(p) S(n) V (p) V (n)

D 1.0000 0.7205 0.7030 0.7210 0.7028
S(p) 1.0000 0.9656 1.0000 0.9645
S(n) 1.0000 0.9664 1.0000
V (p) 1.0000 0.9654
V (n) 1.0000

48Ti

D S(p) S(n) V (p) V (n)

D 1.0000 0.4657 0.1169 0.5003 0.1163
S(p) 1.0000 0.1118 0.9991 0.0916
S(n) 1.0000 0.1176 0.9997
V (p) 1.0000 0.0978
V (n) 1.0000
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Application to leading overlap integrals

Comparison to PVES
◦ Deduction of quantities from PVES:

radii & skin, (weak) form factor

◦ Coulomb corrections via phasr:

ARL ∼
dσ

dΩ
(Vch + Vw)−

dσ

dΩ
(Vch − Vw)

→ require full ρ0 and ρw for Vch and Vw

◦ Point-wise correlation for ρp, ρn, ρw:
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Application to leading overlap integrals

Outlook: Subleading responses

◦ Overlap integrals for subleading responses well on the way:

depend on: SL= ML, Φ′′L, Σ′L, Σ′′L, ∆L, . . .

◦ L > 0 leads to more complex angular integrals
◦ more electron partial waves contribute
◦ integral weights are Bessel transforms of structure functions:

e.g. : ρSL
N (r ) = 4π

(2π)3

∫ ∞

0
dq q2jL(qr )F SL

N (q)

◦ Again employment of IMSRG for F SL
N :

→ L > 0 computationally expensive, but feasible

Unclear: Correlation to which experimentally accessible quantities?
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Conclusion

Conclusion
Summary:
◦ Comprehensive EFT framework with nuclear responses

and Coulomb corrections at the same time
◦ Goal: Discriminate BSM operators
◦ Controlled uncertainty estimates

◦ Indirect limits for P → µ̄e
◦ Uncertainty estimates for charge distributions
◦ Phase-shift model Python package phasr

◦ Overlap integrals from correlations
using ab-initio calculations

Outlook:
◦ Subleading nuclear responses
◦ Relevance of 2-body currents
◦ Coulomb corrections in PVES
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Thank you for your attention!

µ e I am speed!

I am speed!

Thanks to my Collaborators/Co-Authors:

Matthias Heinz, Martin Hoferichter, Takayuki Miyagi, Achim Schwenk
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References Radii

Radii

◦ Qualitative radii for the
considered nuclei
◦ Statistical uncertainties
◦ based on fit statistics and

data uncertainties
◦ Systematical uncertainties
◦ based on different R, N

with two strategies

All parameterizations with
uncertainties and correlations are

made available in a python
notebook

Nucleus
√
⟨r2⟩ [fm] Refs.

27Al
2.996(11) (43)[44]

(+26
−33)[35] 3.035(2)

3.063(3)(30)[31]
(+0
−1)[3]

3.0610(31)

40Ca
3.452(3) (8)[9]

(+1
−9)[10] 3.450(10)

3.4771(17)(17)[24]
(+0
−5)[17] 3.4776(19)

48Ca
3.4499(29) (31)[42]

(+42
−52)[60] 3.451(9)

3.475(2)(10)[10]
(+0
−3)[4]

3.4771(20)

48Ti
3.62(3) (8)[8]

(+2
−3)[4]

3.597(1)

3.596(3)(57)[57]
(+1
−1)[3]

3.5921(17)
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References Solve Coulomb

Solve Coulomb numerically
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References Fits examples

Comparison 40Ca

40Ca

R\Nx 7 8 9 10 11 12 13

6.50 1.416
6.75 1.153 1.109 1.129
7.00 1.101 1.077 1.096
7.25 1.071 1.082 1.099 1.119
7.50 1.107 1.085 1.087 1.101 1.121
7.75 1.123 1.085 1.103 1.117
8.00 1.087 1.104 1.120 1.141
8.25 1.140 1.096 1.105 1.121 1.139
8.50 1.107 1.111 1.128 1.119 1.137
8.75 1.135 1.113 1.113 1.131
9.00 1.139 1.122 1.107 1.127 1.148
9.25 1.208 1.150 1.135 1.149 1.171
9.50 1.196 1.186
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Systematic uncertainty bands
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References Full tree

Full tree of µ→ e conversion
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V P

V 0P V⃗ P

Operators:
∼ OX

Leptons and Quarks/Gluons:
∼ LX QX′

Hadronic matrix elements:
∼ LX ūNΓX′

uN

Expand Lorentz contraction

Non-relativistic expansion

Nucleon structures:
∼ LX hS

Nuclear response:
∼ ⟨M | ĥS |M⟩

Multipoles:
∼ S, S′, S′′

Elastic process
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References Formulas for µ→ e

µ→ e conversion Lagrangian

Lµ→e
eff = ∑

Y=L,R

 ∑
q=u,d ,s

∑
X=S,P,

V ,A,T

CX ,q
Y LX

Y QX ,q + ∑
X=D,
GG,GG̃

CX
Y LX

Y QX + h.c.

,

LS
Y = Λ−2 eY µ, QS,q = q̄q,

LP
Y = LS

Y , QP,q = q̄γ5q,

LV ,µ
Y = Λ−2 eY γµµ, QV ,q

µ = q̄γµq,

LA,µ
Y = LV ,µ

Y , QA,q
µ = q̄γµγ5q,

LT ,µν
Y = Λ−2 eY σµνµ, QT ,q

µν = q̄σµνq,

LGG
Y = Λ−1 LS

Y , QGG = αsGa
αβGαβ

a ,

LGG̃
Y = Λ−1 LS

Y , QGG̃ = iαsGa
αβG̃αβ

a ,

LD,µν
Y = Λ LT ,µν

Y , QD
µν = Fµν,
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References Formulas for µ→ e

hadronic matrix elements

⟨N | q̄q |N⟩ = ūN (p′, s ′)
(

mN
mq

f N
q (q)

)
uN (p, s),

⟨N | q̄iγ5q |N⟩ = ūN (p′, s ′)
(

mN
mq

Gq,N
5 (q)iγ5

)
uN (p, s),

⟨N | q̄γµq |N⟩ = ūN (p′, s ′)
(

γµF q,N
1 (q)− iσµνqν

2mN
F q,N

2 (q)
)

uN (p, s),

⟨N | q̄γµγ5q |N⟩ = ūN (p′, s ′)
(

γµγ5Gq,N
A (q)− γ5 qµ

2mN
Gq,N

P (q)
)

uN (p, s),

⟨N | q̄σµνq |N⟩ = ūN (p′, s ′)
(

σµνF q,N
1,T (q)− 2γ[µ iqν]

mN
F q,N

2,T (q)− 4p[µ iqν]

m2
N

F q,N
3,T (q)

)
uN (p, s),

⟨N |Ga
µνGµν

a |N⟩ = ūN (p′, s ′)
(

4π

αs
aN (q)

)
uN (p, s),

⟨N |Ga
µνG̃µν

a |N⟩ = ūN (p′, s ′)
(

i 4π

αs
ãN (q)γ5

)
uN (p, s).
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References Formulas for µ→ e

Non-rel. expansion

ūN ′ 1uN = χ†
s ′

(
1 +
−q⃗2 − 4⃗p2 + 4(⃗q · p⃗)− 2i (⃗q · (⃗σ × p⃗))

8m2
N

)
χs ,

ūN ′ γ
5uN = χ†

s ′
(
(⃗q · σ⃗)
2mN

)
χs ,

ūN ′ γ
0uN = χ†

s ′

(
1 +
−q⃗2 + 2i (⃗q · (⃗σ × p⃗))

8m2
N

)
χs ,

ūN ′ γ
i uN = χ†

s ′
(−qi + 2pi + i (⃗q × σ⃗)i

2mN

)
χs ,

ūN ′ γ
0γ5uN = χ†

s ′
(−(⃗q · σ⃗) + 2(⃗σ · p⃗)

2mN

)
χs ,

ūN ′ γ
i γ5uN = χ†

s ′

(
σi +

−q⃗2σi + 2i (⃗q × p⃗)i + 2(⃗q×(⃗σ×p⃗))i
8m2

N

+
−4⃗p2σi − 2qi (⃗σ⃗p) + 2(⃗q · p⃗)σi + 4(⃗σ · p⃗)pi

8m2
N

)
χs ,

ūN ′ σ
0i uN = χ†

s ′
(

iqi + (⃗q × σ⃗)i + 2(⃗σ × p⃗)i
2mN

)
χs ,

ϵijk ūN ′ σ
ij uN = 2 χ†

s ′

(
σk +

−q⃗2σk − 2i (⃗q × p⃗)k − 2(⃗q×(⃗σ×p⃗))k
8m2

N

+
+2qk (⃗σ · p⃗) + 2(⃗q · p⃗)σk − 4(⃗σ · p⃗)pk

8m2
N

)
χs .
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References Formulas for µ→ e

Non-relativistic Operators

hM = 1, hΣ = σi ,

h∆
i =

ipi
q , hΩ =

i (⃗σ · p⃗)
q , hΦ

i =
−(⃗σ× p⃗)i

q ,

hΩ′ =
i (⃗q · σ⃗)(⃗σ · p⃗)

q2 , hΩ′′ =
−⃗p2

q2 , hΘ
i =

−σi p⃗2

q2 ,

hΠ
i =

−(⃗σ · p⃗)pi
q2 , hΞ

i =
−(⃗q · σ⃗)pi

q2 , hΓ
i =

i (⃗q · p⃗)σi
q2 ,

qi , pi ↔ −i∇⃗i acting on either one or both nucleons
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References Formulas for µ→ e

Amplitude

iMY =
∫

d3x
∫ d3q

(2π)3

A

∑
i=1

∑
S

l̃ (m)
S,Y (⃗q) e−i q⃗ ·⃗x ⟨JMf | ĥS,Ni

(m)
(⃗x) |JMi ⟩

=
∫ d3q

(2π)3

A

∑
i=1

∑
S=M,Ω

l̃S,Y (⃗q)
∫

d3x e−i q⃗ ·⃗x ⟨JMf | ĥS,Ni (⃗x) |JMi ⟩

+
∫ d3q

(2π)3

A

∑
i=1

∑
S=Σ,∆,Φ

l̃ j
S,Y (⃗q)

∫
d3x e−i q⃗ ·⃗x ⟨JMf | ĥS,Ni

j (⃗x) |JMi ⟩ ,

l̃ (m)
S,Y (⃗q) = ∑

X
C (n,m)

Y ,X ,S (⃗q)
∫

d3x ′ Ψκ′,t ′
eY (x ′)Γ(n)

X Ψ(1s),t
µ (x ′) ei q⃗·x⃗ ′
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References Formulas for µ→ e

Multipole Names

1 σ⃗∇⃗ ∇⃗ σ⃗ σ⃗ × ∇⃗
hµ=0 M M Ω

hµ=±
T mag ∆ Σ Φ
T el ∆′ Σ′ Φ′

hµ=3 L ∆′′ Σ′′ Φ′′

For an elastic process:

⟨M ||Σ||M⟩ = 0, ⟨M ||∆′||M⟩ = 0,

⟨M ||Ω||M⟩ = −1
2 ⟨M ||Σ

′′||M⟩ , ⟨M ||∆′′||M⟩ = +
1
2 ⟨M ||M ||M⟩ ,

⟨M ||Φ||M⟩ = +
1
2 ⟨M ||Σ

′||M⟩ .
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References Formulas for µ→ e

Multipoles

M i
JM = jJ (qri )YJM (r̂i ), Ωi

JM = jJ (qri )YJM (r̂i )

(⃗
σ · ∇⃗i

q

)
,

∆i
JM = jJ (qri )Y⃗JJM (r̂i ) ·

∇⃗i
q , ∆′ i

JM = −i
(
∇⃗i
q ×jJ (qri )Y⃗JJM (r̂i )

)
· ∇⃗i

q ,

∆′′ i
JM =

(
∇⃗i
q jJ (qri )YJM (r̂i )

)
· ∇⃗i

q , Σi
JM = jJ (qri )Y⃗JJM (r̂i ) · σ⃗,

Σ′ i
JM = −i

(
∇⃗i
q ×jJ (qri )Y⃗JJM (r̂i )

)
· σ⃗, Σ′′ i

JM =

(
∇⃗i
q jJ (qri )YJM (r̂i )

)
· σ⃗,

Φi
JM = i jJ (qri )Y⃗JJM (r̂i ) ·

(⃗
σ× ∇⃗i

q

)
, Φ′ i

JM =

(
∇⃗i
q ×jJ (qri )Y⃗JJM (r̂i )

)
·
(⃗

σ× ∇⃗i
q

)
,

Φ′′ i
JM = i

(
∇⃗i
q jJ (qri )YJM (r̂i )

)
·
(⃗

σ× ∇⃗i
q

)
,
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References Formulas for µ→ e

Prefactors
CY ,S,M =

(
1− q⃗2

8m2
N

)
CS,S

Y , C i
Y ,S,Σ =

qi

2mN
CS,P

Y ,

C i
Y ,S,∆ =

−iqqi

2m2
N

CS,S
Y , C i

Y ,S,Φ =
iqqi

4m2
N

CS,S
Y ,

CY ,V 0,M = CV ,V
Y +

q⃗2

8m2
N

(
4CV ,T

Y − CV ,V
Y

)
, C i

Y ,V 0,Σ =
−qi

2mN
CV ,A

Y ,

C i
Y ,V 0,Φ =

iqqi

4m2
N

(
4CV ,T

Y − CV ,V
Y

)
, CY ,V 0,Ω =

−iq
mN

CV ,A
Y ,

C i ,j
Y ,V⃗ ,∆

= δij iq
mN

CV ,V
Y +

−qϵilj ql
4m2

N
CV ,A

Y , C i
Y ,V⃗ ,M =

qi

2mN
CV ,V

Y ,

C i ,j
Y ,V⃗ ,Φ

=
qϵilj ql
4m2

N
CV ,A

Y , C i
Y ,V⃗ ,Ω =

−iqqi

4m2
N

CV ,A
Y ,

C i ,j
Y ,V⃗ ,Σ

= (−δij )

(
1− q⃗2

8m2
N

)
CV ,A

Y +
iϵilj ql
2mN

(
2CV ,T

Y − CV ,V
Y

)
+
−iqi qj

2m2
N

CV ,P
Y ,

C i
Y ,T⃗ ,M =

iqi

mN

(
CT ,S

Y − CT ,T
Y + CT ,V

Y

)
, C i ,j

Y ,T⃗ ,Σ
=
−ϵilj ql

mN
CT ,T

Y ,

C i ,j
Y ,T⃗ ,Φ

=
2q
mN

δij CT ,T
Y ,

C i ,j
Y ,T⃗

⃗

,Σ
= δij

(
1− q⃗2

8m2
N

)
CT ,T

Y +
δij q⃗2 − qi qj

4m2
N

CT ,V
Y , C i ,j

Y ,T⃗

⃗

,Φ
=

qql ϵilj

4m2
N

CT ,T
Y

C i ,j
Y ,T⃗

⃗

,∆
=

qϵilj ql

2m2
N

(
CT ,S

Y − CT ,T
Y + CT ,V

Y

)
.
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References Formulas for µ→ e

Leading Terms

|M|2 = ∑
Y=L,R

2
Λ4

∣∣∣∣∣ΛηeCD
Y D + ∑

N=n,p

(
CS,S

Y S(N) + CV ,V
Y V (N)

)∣∣∣∣∣
2

= ∑
Y=L,R

2
Λ4

∣∣∣∣∣ΛηeCD
Y D + ∑

N=n,p
q=u,d ,s

(
mN
mq

CS,q
Y f N

q (0)S(N) + CV ,q
Y F q,N

1 (0)V (N)
)∣∣∣∣∣

2

S(N) =
1

2
√

2

∫ ∞

0
dr (#N)ρN (r )

[
g (e)
−1 (r ) g (µ)

−1 (r )− f (e)−1 (r ) f (µ)−1 (r )
]

V (N) =
1

2
√

2

∫ ∞

0
dr (#N)ρN (r )

[
g (e)
−1 (r ) g (µ)

−1 (r ) + f (e)−1 (r ) f (µ)−1 (r )
]

D = −4mµ√
2

∫ ∞

0
dr E (r )

[
g (e)
−1 (r ) f (µ)−1 (r ) + f (e)−1 (r ) g (µ)

−1 (r )
]
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References PVES

PVES

APVES =
( dσ

dΩ )R − ( dσ
dΩ )L

( dσ
dΩ )R + ( dσ

dΩ )L
≈ − GF q2

4παel
√

2
QwF w

0 (q2)

ZF ch
0 (q2)

,

ZF ch
L (q2) =

(
1− ⟨r

2
p ⟩
6 q2 − 1

8m2
N

q2
)
FMp

L (q2)− ⟨r
2
n ⟩
6 q2FMn

L (q2)

+
1+2κp
4m2

N
q2FΦ′′p

L (q2) + 2κn
4m2

N
q2FΦ′′n

L (q2) +O(q4).

QwF w
L (q2) =

(
Qw

p

(
1− ⟨r

2
p ⟩
6 q2 − 1

8m2
N

q2
)
−Qw

n
⟨r2

n ⟩+⟨r2
s,N⟩

6 q2
)
FMp

L (q2)

+

(
Qw

n

(
1− ⟨r

2
n ⟩+⟨r2

s,N⟩
6 q2 − 1

8m2
N

q2
)
−Qw

p
⟨r2

n ⟩
6 q2

)
FMn

L (q2)

+
Qw

p (1 + 2κp) + 2Qw
n (κn + κs,N )

4m2
N

q2FΦ′′p
L (q2)

+
Qw

n (1 + 2κp + 2κs,N ) + 2Qw
p κn

4m2
N

q2FΦ′′n
L (q2)
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References More details to P → µe

Detailed Limits

π0 η η′

CA,3
Y 1.3× 10−17 – –

CA,8
Y – 1.5× 10−17 4.0× 10−20

CA,0
Y – 2.9× 10−19 2.1× 10−19

CP,3
Y 4.1× 10−17 – –

CP,8
Y – 1.6× 10−12 2.1× 10−14

CP,0
Y – 4.1× 10−12 5.4× 10−13

CGG̃
Y – 5.8× 10−15 4.7× 10−16
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References More details to P → µe

Cancelation & RG corrections

CA,u
Y = CA,d

Y , CA,s
Y = −2CA,u

Y gu,0
A

g s,N
A

,

CP,u
Y
mu

=
CP,d

Y
md

,
CP,s

Y
ms

=
4π

Λ
CGG̃

Y
2gu,0

A
gu,0

A − g s,N
A

.

CV ,q
Y ≃ −3Qq

α

π
log MW

mN
CA,q

Y ,
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