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DFT based models (very short recap)
● DFT is presently the only fully microscopical approach which can be applied throughout 

the entire nuclear chart
● Key element is the energy density functional (EDF). Encodes complex nuclear 

interactions into energy density
● Parameters of the EDF needs to be adjusted to empirical input. Some parameters better 

constrained than others. For example, time-odd part of the EDF not so well constrained
● To solve the many-body wave function, one needs to solve Hartree-Fock-Bogoliubov 

(HFB) equations. This gives quasiparticle states and the self-consistent mean-field.
● HFB equations can be solved by using a set of basis states or in coordinate space

● Spontaneous symmetry breaking important element. 
Allows to incorporate various correlations into the wave-function. 
Example: nuclear deformation

● In principle, symmetries broken at mean-field level should be 
restored. This is computationally costly and often neglected.

● Many methods to access excited states.
● This presentation focuses only on the linear response theory.
● See also talk by Jacek Dobaczewski b=0b<0 b>0
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HFB equations
● For the superfluid nuclear DFT, one needs to solve the Hartree-Fock-Bogoliubov (HFB) 

equation:

where h and Δ are the nuclear mean field and pairing field. λ denotes chemical potential.
● By solving this equation, we obtain the quasiparticle energies Ek and the matrices U and V 

which determine the generalized Bogoliubov quasiparticle transformation and the HFB 
vacuum state

● Nuclei with odd particle number are described as having one quasiparticle atop of the HFB 
vacuum:

● In this case, the effect of blocking needs to be taken into account when solving HFB eq.



  

Some terminology
● Linear response approach is sometimes referred as a random-phase-approximation (RPA)
● The RPA was developed at early 1950’s by Bohm and Pines. In they work, they 

considered collective plasma oscillations in electron gas.

● The name ”RPA” originated from one of their four requirements for collectivity assumption. 
Quoting from D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951):

● Although the ”RPA” is probably not very descriptive for the method, the name got stuck.
● The superfuild version of RPA is called as the quasiparticle-RPA (QRPA)



  

QRPA in search for physics beyond the SM
● Many experiments which search for physics beyond the standard model use atomic 

nucleus as a laboratory
● For this reason precise, nuclear structure input is required

● QRPA has been used to model nuclear structure for such cases. An (incomplete) list:
● Neutrinoless double-beta-decay: Connected to neutrino mass and its type (Dirac or 

Majorana mass)
● Nuclear Schiff moment: Connected to search for electric dipole moment
● Nuclear anapole moment: Originating from parity nonconserving interactions
● WIMP-nucleus scattering (within MQPM framework): Direct search of dark matter
● Muon-electron conversion



  

Linear response
● To access dynamical properties of the superfluid nuclei, in the framework of nuclear 

DFT, linear response (that is, the QRPA) is one of the most often employed method
● There are numerous ways to derive the (Q)RPA equations:

● By using the equations of the motion method.
● By starting from the time-dependent Hartree-Fock (for RPA) or HFB theory (for 

QRPA), and taking a small amplitude limit.
● By linearizing two-particle two-hole excitations (RPA)
● From perturbation theory with Green’s functions, by considering certain kind of 

diagrams.

● All these lead to the same set of equations
● Essentially linear response (or QRPA) describes

small amplitude oscillations around the HFB
state

QRPA oscillations around the HFB 
state (schematically)



  

Why to use iterative linear response methods?
● In the past, the QRPA has been often formulated

in its matrix form
• By diagonalizing the QRPA matrix, 

one can solve the eigenmodes of the QRPA 
phonon, described with X and Y amplitudes
• Unfortunately, computational cost of matrix QRPA 

becomes huge when spherical symmetry is broken
• This has been usually mitigated by introducing truncations on the used quasiparticle 

basis (which can lead to other problems)

• To avoid large CPU time cost, iterative linear response methods have been developed.
• Two examples: Finite amplitude method (FAM) and iterative Arnoldi diagonalization.

QRPA matrices A, B

HFB matrices U, V

Number of matrix elements for particle type



  

The finite amplitude method

1) Perform stationary HFB calculation

2) Introduce time-dependent q.p. operator as

4) Define oscillating part as

    Here h is small, and hence the amplitude 
    of oscillation is also small

3) Time-dependent HFB equation now reads
6) FAM equations then reads

5) Polarize system with an external field F

FAM: T. Nakatsukasa, et. al., PRC 76, 024318 (2007) 

7) Introduce a small imaginary width as

    Solve FAM eqs. iteratively for each w.

At the present, several FAM impelmentations exists, from spherical codes to axial and 3D 
Cartesian ones, utilizing many different EDF frameworks



  

FAM and nuclei with an odd particle number
● The FAM method can be also 

formulated for odd nuclei. This can be 
done either with exact blocking or with 
so-called equal filling approximation 
(EFA)

● The generalized density matrix at the 
HFB level for odd nuclei is

where fi is otherwise zero except 1 for 
blocked quasiparticle state.

● In EFA fi = 1/2 for blocked q.p. state 
and its time-reversed conjugate state.

● EFA, however, does not allow time-odd 
fields at the HFB level. This prevents 
computation of some particular 
operators

● In the normal even-even case, the 
induced density matrix contains only 
β+β+〉 and ββ〉 type of terms.

● With additional odd particle, there are 
also β+β〉 and ββ+〉 type of amplitudes, 
denoted here as P and Q.

● These new amplitudes are solved at 
the same time with X and Y, during the 
FAM iterations. The FAM eqs. are now

●

Afaik, no actual implementations yet 
for exact, self-consistent, blocking case



  

FAM and discrete low-lying states
● The FAM equations are usually solved 

with a given imaginary component γ in ω
● Depending on the value of γ, the QRPA 

poles show up more or less sharp peaks
● By scanning through real part of ω, 

transition strength function can be 
computed

● Does not give transitions rates to 
individual states

● Discrete low-lying states can be 
accessed via contour integration 
technique

● Similar technique also for computation of 
various energy weighted sum rules

integration integration 
contourcontour

Monopole transition strength in 24Mg, SLy4, Nsh=5

Re(ω)Im
(ω
)

= QRPA poles= QRPA poles
Discrete states: N. Hinohara, M. K., 
W. Nazarewicz, Phys. Rev. C 87, 064309 (2013)
Sum rules: N. Hinohara, M.K., W. Nazarewicz, 
E. Olsen, PRC 91, 044323 (2015)



  

Iterative Arnoldi diagonalization
● Another iterative methods is the iterative Arnoldi 

diagonalization, interoduced in J. Toivanen et al, 
Phys. Rev. C 81, 034312 (2010)

● Method is based on finding an approximation on 
eigenvalues and -vectors in Krylov subspace 
(similarly to non-Hermitian Lanczos method) 

● Resulting transition strength approaches to matrix 
QRPA and FAM ones with increasing number of 
iterations

● Original formulation for computation of transition 
strength function. Later, expanded to computation 
individual states in B. G. Carlsson et al, Phys. 
Rev. C 86, 014307 (2012)

2+ states in 132Sn. J. Toivanen et al, 
PRC81, 034312 (2010)



  

What about beta decays?
● The FAM equations were given as

● So far, we have considered like-particle 
QRPA. That is, we take index μ and ν to be 
of the same particle type (proton or 
neutron)

● In this case the FAM describes transitions 
where initial and final state are in the same 
nucleus

● Due to nucleon-nucleon interaction in H20 
and H02, proton and neutron amplitudes are 
coupled, when solving FAM eqs.

● Beta transitions can be addressed 
with pnFAM (i.e. pnQRPA)

● In this case, the external field F 
tries to change protons to neutrons 
or other way around

● One of the indexes in {μ,ν} is a 
proton index and the other is a 
neutron index

● In addition to β-decays, pnQRPA 
can be applied processes such as 
muon capture or double-beta-
decays



  

FAM and multipole transition strength functions
● The FAM is very suitable tool to compute 

transition strength functions. That is, 
transition strength from the ground state to 
excited state at energy ω

● The method allows to run calculations for 
very heavy deformed nuclei without any 
truncations in the quasiparticle basis with 
reasonable CPU and memory cost

● Trivially parallelizable: Each value of ω can 
be run independently in its own MPI 
process

Transition strength functions (isoscalar quadrupole, 
isovector quadrupole and isovector octupole) in 
240Pu from FAM-QRPA with SLy4. From M.K., et al, 
Phys. Rev. C 92, 051302(R) (2015)



  

Photoabsorption in heavy nuclei

From T. Oishi, M.K., N. Hinohara, PRC 93, 034329 (2016)



  

Deformation and splitting of giant resonances
● Due to the deformation, the position of 

the giant resonance is different for 
different K-modes

● This happens for all L>0 multipole 
operators

● Semiclassically this could be explained 
such that the oscillating frequency is 
different to each direction. That is, e.g. 
with dipole operator, the K=1 mode 
corresponds oscillation perpendicular to 
z-axis. 
With prolate deformation, this leads to 
higher ω compared to K=0 mode case, 
and conversely, other way around with 
oblate deformation.

Photoabsorption in Sm isotopes from FAM-
QRPA with SkM*. From T. Oishi, et.al, Phys. 
Rev. C 93, 034329 (2016)

K=0K=1

z

r^



  

Transition strength function and octupole deformation
● We are currently investigating the impact of octupole deformation (i.e. a pear-shape 

deformation) on the transition strength functions.
● For photoabsorption cross section, the impact seems to be small. However, for M1 

transitions, a notable difference can be seen at the low-lying transition strength
● Work done by Manu Kanerva



  

Induced transition densities
● The QRPA corresponds to a small 

amplitude oscillations around the static 
HFB density ρ0.

● The oscillating part of the density is 
determined by the QRPA amplitudes as

● For example, with isovector octupole 
operator, the induced transitions 
densities show a clear octupole-like 
shapes (see the fig)

● Low-lying iv. octupole modes in 240Pu 
show collectivity: The induced density 
covers large portion of the nuclear 
volume

Oscillating density rf in 240Pu with isovector octupole 
operator at w=11MeV with SLy4 for different K-modes. 
From M.K, et.al., Phys. Rev. C 92, 051302(R) (2015)



  

Spurious mode
● If the underlying HFB solution breaks some symmetry, this may cause a spurious QRPA mode to 

appear
● The spurious mode appears at zero energy
● This corresponds to the well-known Nambu-Goldstone (NG) mode
● The type of the spurious mode depends on which of the symmetry was broken

Spurious mode due to 
breaking of the spherical 
symmetry

Isoscalar quadrupole transition strength. 
From M.K, N.Hinohara, W.Nazarewicz, 
Phys. Rev. C 92, 051302(R) (2015)



  

Spurious mode and its removal
● Due to broken translational symmetry, a spurious mode appears with Kπ = 0–,1– operators. For 

broken rotation symmetry spurious mode appears with Kπ = 1+ operators.
● This Nambu-Goldstone mode should be in principle be decoupled from physical modes and be 

located at zero excitation energy.
● Due to finite size of the basis, spurious mode is located at finite excitation energy ω > 0.
● Spurious mode can be removed from transition strength, leaving only physical modes. However, 

due to finite basis size, this may not be perfect for more complicated operators
FAM-QRPA strength function for the response of 
the linear momentum operator for 26Mg with SLy4. 
The calculation was done with Nsh oscillator shells. 
From N. Hinohara, Phys. Rev. C 92, 034321 (2015).

Transition strength of isoscalar quadrupole operator 
before and after removal of the spurious mode. M.K., 
J. Phys: Conf. Series 1643 012142 (2020)



  

Thouless-Valatin moment of inertia
● Spurious NG mode can be used to obtain the 

Thouless-Valatin moment of inertia. It is 
obtained at ω = 0 from strength function S as

● For example, nuclear deformation breaks 
rotational symmetry. This leads to 
appearance of suprious mode on Kπ = 1+ 
channel.

● By applying J
y
 operator on the FAM 

calculation, the moment of inertia can be 
obtained at ω = 0.

● This gives the same result for moment of 
inertia as cranking calculation.

● This method can be used to obtain collective 
mass parameters for various collective 
Hamiltonian modes

● Nuclear superfluidity has a notable impact on 
the moment of inertia 

Rotational TV inertia as a function of deformation
K.Petrik, M.K., Phys. Rev. C 97, 034321 (2018)

Superfluid flow in 166Er, 
coming from the 
response to J

y
 operator. 

PRC97, 034321 (2018)



  

Beyond QRPA: quasiparticle-vibration coupling
● As was earlier discussed, QRPA corresponds to 

small amplitude oscillations (i.e. assumption of 
adiabaticy)

● However, this assumption may not work well at the 
higher frequency

● We have recently studied the impact phonon 
coupling in pnFAM for Gamow-Teller (GT) 
transitions

● In this formulation, the like-particle FAM amplitudes 
are used to construct a “spreading matrix” W, 
generating an additional term on FAM eqs:

● The inclusion of the phonon coupling improves the 
GT transition strength function when compared to 
experimental results

Gamow-Teller strength distribution with 
pnFAM and with quasiparticle-vibration 
couling included (pnFAM*)

See details in:
Q. Liu, J. Engel, N. Hinohara, M.K., 
Phys. Rev C 109, 044308 (2024)



  

Side note: Nuclear Schiff moment with FAM
● The observation of a non-zero electric dipole moment (EDM) in an atom ground state would 

implicate a violation of charge-parity (CP) symmetry, originating from a beyond standard model 
physics

● Various extensions of the standard model predict a much larger CP symmetry violation than 
present in the standard model. Presently, some of the tightest constraints for CP violation comes 
from EDM experiments

● Due to the screening effects, the nuclear quantity which induces the atomic EDM is the nuclear 
Schiff moment. It can be calculated as

where S
0
 is the Schiff operator, V

PT
 is the parity an time-reversal violating interaction, and Ψ

0
 is 

the nuclear ground state

● For certain kind of nuclei the FAM can be used to compute the Schiff moment



  

Side note: Nuclear Schiff moment with FAM
● Ongoing project, in collaboration with J. Engel, 

to compute nuclear Schiff moment from linear 
response theory

● Due to interference of two different operators, 
the transition strength function oscillates 
strongly

● A better suited approach is to use the contour 
integration technique developed for sum rules

● This allows also to circumvent the pole 
associated to spurious mode

PRELIMINARY

PRELIMINARY



  

Operators for μ- → e- conversion
● The operator connected to nuclear structure aspects in muon-electron conversion is

● This is used to compute vector and axial-vector transition strengths for incoherent part of the 
process as 

● Spherical Bessel function jk(qr) can be approximated as a polynomial when argument qr is not 
too large. 

● Linear response theory is very much suitable for computation of this kind of transition strength 
functions

● For the ground-state to ground-state part of the process, DFT-based approaches should also 
work very well

Eqs. from J. Kostensalo et al, PRC 98, 065504 (2018)



  

Summary
● The linear response theory is a very versatile tool for nuclear structure 

calculations for various processes

● Iterative linear response methods allow calculations with reasonable CPU and 
memory cost for heavy deformed nuclei

● In addition to transition strength function, these methods can be used to 
compute mass parameters microscopically for various collective Hamiltonian 
models

● Nuclei with an odd particle number not much yet addressed with linear 
response methods. They would offer many interesting opportunities

● Ongoing project to compute nuclear Schiff moment

● FAM could be utilized for nuclear structure calculations for the μ- → e- 
conversion process



  

Backup slides



  

Spurious mode and its removal
● Physical FAM amplitudes can be obtained from calculated ones by removing spurious component 

as

● Here P ≡ P20 and Q ≡ Q20 are some operators, connected to broken symmetry, with canonical 
commutation relation 

● The operator Q may not have an analytical form in all cases. In such kind of situation, it can be 
obtained from response to P operator at zero frequency as

where S(P,0) is the computed strength function of P at ω = 0.
● See more information at N. Hinohara, PRC 92, 034321 (2015)



  

Sum rule method
● Energy weighted sum rules within the FAM framework can 

be calculated by a complex integration technique
● A path circulating all QRPA poles gives the sum rule of 

associated operator
● Method works for any power of energy or inverse energy 

weight

● Converges fast as a number of integration points
● Comparison of energy weighted sum rule to Thouless 

theorem and inverse energy weighted sum rule to dielectric 
theorem shows excellent correspondence

● See N. Hinohara, M. Kortelainen, W. Nazarewicz, and E. 
Olsen, PRC 91, 044323 (2015)

● Depending on the selected energy weight, not all of the parts 
of the contour are required to be calculated. 

● For example, with inverse energy weight, it is actually 
enough to calculate the smaller arc A

2
. Larger arc vanishes 

due to Jordan’s lemma and I
1
 and I

2
 cancel each other.

● The radius of A
2
 should be selected so that the spurious 

mode is left outside of the contour



  

Giant resonances
● Giant resonances are small amplitude, high frequency modes, having typically large collectivity. 

Usually, around the giant resonance energy, there are numerous states close to each other
● Most important ones are the giant dipole, quadrupole and monopole resonances. These can be 

observed, for example, with photo-nuclear reactions or electron scattering experiments
● Semiclassically, giant resonances can thought to be shape or spin oscillations of neutron and 

proton matter
● There is no isoscalar dipole resonance, since this would just correspond to movement of the 

center of mass

A. Tamii, et. al., Eur. Phys. J. A 50, 28  (2014)

Giant dipole resonance, exp. result

Fig. from Texas A&M Univ., Cyclotron Institute
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