Calculations of various muon decays in orbit

Contents

- 1. Introduction (2 slides)
- 2. Calculating lepton wave functions (7 slides)
- 3. Decay in orbit (10 slides)
- 4. μ -e conversion (8 slides)
- 5. Other lepton flavor violating processes

5-1. $\mu^- \rightarrow e^- X$ (8 slides) 5-2. $\mu^- \rightarrow e^- \gamma$ (7 slides)

5-3. $\mu^- e^- \rightarrow e^- e^-$ (8 slides)

6. Summary

Yuichi UESAKA

Dokkyo Medical University

1. Introduction

Various decays of muonic atoms

Standard processes

• $\mu^- \to e^- \nu_\mu \overline{\nu}_e$ (Decay in orbit) • $\mu^- \to e^- \nu_\mu \overline{\nu}_e \gamma$

The spectrum near the endpoint can be BG of $\mu^- \rightarrow e^-$ conv.

- $\mu^{-}(Z, A) \rightarrow \nu_{\mu}(Z 1, A)$ (Nuclear muon capture)
- $\mu^{-}(Z, A) \rightarrow \nu_{\mu}(Z 1, A)\gamma$ (Radiative muon capture)

LFV processes

• $\mu^- \rightarrow e^-$ • $\mu^-(Z, A) \rightarrow e^+(Z-2, A)$

"Lepton Number Violation" discussed in Joe Sato's talk yesterday

• $\mu^- \to e^- X$ • $\mu^- \to e^- \gamma$ X: invisible boson

$$\mu^{-}e^{-} \rightarrow e^{-}e^{-}$$

 e^{-} in atomic orbits

2/52

2. Calculating lepton wave functions

Bound muon & scattering electron

For calculating the $\mu^- \rightarrow e^-$ transition, we need wave functions of the bound μ^- & the scattering $e^$ to obtain the overlap integral.

(e.g., $\int dr \rho(r) \overline{\psi}_e(r) O \psi_\mu(r)$ for coherent μ -e conv.)

3/52

✓ Here, the emitted e^- w.f. is not a plane wave:

Its wave function is **distorted** by the nuclear Coulomb potential. The formula for the decay rate gets complicated because the electron w.f. should be expanded by its angular momenta.

 \checkmark In heavy nuclei, a bound muon is located near the nucleus.

Bohr radius: $\sim (m_{\mu}Z\alpha)^{-1} \sim 2 \times \frac{137}{Z}$ fm Nuclear radius: $\sim 1.2 \times A^{1/3}$ fm \checkmark comparable !!

rightarrow It is important to consider the finite nuclear size.

Dirac equation with Coulomb potential 4/52

$$[i\partial_{\mu}\gamma^{\mu} - m + eA_{\mu}\gamma^{\mu}]\psi(\mathbf{r}) = 0$$

 A_0 is replaced with the nuclear Coulomb potential.

$$\Box \hspace{-1.5cm} \triangleright \hspace{-1.5cm} E\psi(\boldsymbol{r}) = [-i\boldsymbol{\alpha}\cdot\nabla + m\beta - V(\boldsymbol{r})]\psi(\boldsymbol{r})$$

Assuming V(r) is <u>spherical</u>, we obtain the radial Dirac equation,

$$\begin{cases} \frac{dg_{\kappa}(r)}{dr} + \frac{1+\kappa}{r}g_{\kappa}(r) - \left(E+m-V(r)\right)f_{\kappa}(r) = 0 \qquad \psi_{\kappa}(r) = \begin{pmatrix} g_{\kappa}(r)\chi_{\kappa} \\ if_{\kappa}(r)\chi_{-\kappa} \end{pmatrix} \\ \frac{df_{\kappa}(r)}{dr} + \frac{1-\kappa}{r}f_{\kappa}(r) + \left(E-m-V(r)\right)g_{\kappa}(r) = 0 \\ \\ \kappa \text{ is the index of angular momenta: } \kappa = \begin{cases} -(l+1) & (j=l+1/2) \\ l & (j=l-1/2) \\ l & (j=l-1/2) \end{cases} \\ l: \text{ orbital ang. mom.} \quad j: \text{ total ang. mom.} \end{cases}$$

e.g., s-wave corresponds to $\kappa = -1$.

Calculation for bound states

5/52

What we want: the (binding) energy & wave functions

$$G(r) = rg(r) \quad \text{Boundary conditions:}$$

$$F(r) = rf(r) \quad G(0) = F(0) = 0$$

$$G(\infty) = F(\infty) = 0 \quad \frac{dG_{\kappa}(r)}{dr} + \frac{\kappa}{r}G_{\kappa}(r) - (E + m - V(r))F_{\kappa}(r) = 0$$

$$\frac{dF_{\kappa}(r)}{dr} - \frac{\kappa}{r}F_{\kappa}(r) + (E - m - V(r))G_{\kappa}(r) = 0$$

For a given *E*, we can solve the differential equations from both r = 0 and $r = \infty$.

If *E* is appropriate, it is expected that the two curves will be smoothly connected.

Calculation for bound states

A way to find the appropriate energy to get a smooth w.f.:

Wronskian at the matching point r_m ,

 $W(E) = g_{0 \to m}(r_m)g'_{\infty \to m}(r_m) - g'_{0 \to m}(r_m)g_{\infty \to m}(r_m)$

(If *E* gives the appropriate binding energy, W(E) = 0.)

Step 1: Look for the zero-point of W(E):

Step 2: Normalize the wave functions to satisfy the normalization condition:

$$4\pi \int_0^\infty dr \, r^2 \{g(r)^2 + f(r)^2\} = 1$$

6/52

7/52 **Bound wave functions** for 208 Pb (Z = 82, A = 208)

g(r) & f(r) of bound μ^- (1s)

Calculation for scattering states

Since the Coulomb potential violates the translation symmetry,

the momentum is no longer a good quantum number.

Multipole expansion:
$$\psi_p(\mathbf{r}) = 4\pi \sum_{\kappa} i^{l_{\kappa}} (l_{\kappa}, m, 1/2, s | j_{\kappa}, v) Y_{l_{\kappa}}^{m*}(\hat{p}) e^{-i\delta_{\kappa}} \psi_{\kappa}(r)$$

"p" indicates the boundary condition at infinity.

> What we want: wave functions & phase shift δ for a given <u>E</u>

The normalization is determined by the boundary condition:

8/52

 $\lim_{r \to \infty} g(r) = \cos \delta g^{reg}(r) - \sin \delta g^{irr}(r)$

 $g^{reg}(r)$ & $g^{irr}(r)$: solutions regular & irregular at r = 0of Dirac eq. without the potential

Scattering wave functions for 208 Pb (7 - 92, 4 - 209)

for 208 Pb (Z = 82, A = 208)

Distortion effects can be interpreted as follows:

① The value near r = 0 gets larger, to <u>enhance</u> the overlap with the bound muon.

(2) The effective momentum (wave number) gets larger,

to suppress the overlap with the bound muon.

3. Decay in orbit

J. Heeck, R. Szafron, & YU, PRD105, 053006; arXiv:2110.14667.

Decay in orbit (DIO)

10/52

- the "standard" decay of a muon, $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e$
- electron energy : $E_e < m_\mu E_b E_N$

cf. For free muons, $E_e \leq m_{\mu}/2$

due to the energy-momentum conservation of a two-body decay.

For muonic atoms, the nuclear recoil makes the tail of the spectrum.

Total width of DIO

The "standard" decay width of muonic atoms is given by

the sum of the DIO width and the nuclear capture width:

11/52

 $\Gamma_{\text{total}} = \Gamma_{\text{DIO}} + \Gamma_{\text{NC}}$

The width of DIO slightly depends on the nuclei:

(The Huff factor is important to determine Γ_{NC} from experiments.)

12/52

Spectrum of the DIO electron

E (MeV)

- $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e$ process in the nuclear Coulomb field
- μ^- : bound wave
- Solving Dirac eq. numerically ____^
- e^- : distorted wave

finite size of the nucleus

V

 \rightarrow notential V(r)density o(r)charge

rge density
$$\rho(r) \rightarrow \text{potential } V(r)$$

 $(r) = -e \int_{0}^{\infty} dr' r'^{2} \left[\frac{\theta(r-r')}{r} + \frac{\theta(r'-r)}{r'} \right] \rho(r)$
 $ightarrow \text{ bind a constraint of the sector of the$

DIO spectrum

13/52

- \checkmark Considering the finite size of the nucleus is important (unless Z is small) because the bound muon exists close to the nuclei.
- ✓ The e^- distortion enhances the low energy region

& suppresses high energy region.

Behavior near the endpoint

14/52

important to estimate BG of $\mu^- \rightarrow e^-$ conv.

• nuclear recoil O. Shanker, PRD25, 1847 (1981). A. Czarnecki et al., PRD84, 013006 (2011).

15/52

Radiative corrections

$$E_{\text{end}}' = E_{\text{end}} + \frac{\alpha m_{\mu} (Z\alpha)^2}{\pi} \left(\frac{11}{9} - \frac{2}{3} \log \left[\frac{2m_{\mu} Z\alpha}{m_e} \right] \right) \qquad \delta = \frac{2\alpha}{\pi} \left(\log \left[\frac{2m_{\mu}}{m_e} \right] - 1 \right) \simeq 0.023$$

16/52

Nuclear charge distribution

measured by electron scattering

W. Boeglin *et al.*, Nucl. Phys. A **477** (1988) 399. J. Wesseling *et al.*, PRC **55** (1997) 2773.

Different "fitting functions" are used:

Examples of fitting funtions

1. three(two)-parameter Fermi (3pF, 2pF)

$$\rho(r) = \frac{\rho_0}{1 + \exp\frac{r-c}{z}} \left(1 + \omega \frac{r^2}{c^2}\right) \qquad \omega = 0$$

2. there-parameter Gaussian (3pG)

$$\rho(r) = \frac{\rho_0}{1 + \exp\frac{r^2 - c^2}{z^2}} \left(1 + \omega \frac{r^2}{c^2}\right)$$

H. De Vries *et al.*, Atom. Data Nucl. Data Tabl. **36** (1987) 495.
G. Fricke *et al.*, Atom. Data Nucl. Data Tabl. **60** (1995) 177.
A. A. Kabir, PhD thesis, Kent State Univ., US (2015).

3. modified-harmonic oscillator (MHO)

$$\rho(r) = \rho_0 \left(1 + \omega \frac{r^2}{a^2} \right) \exp\left(-\frac{r^2}{a^2} \right)$$

- 4. Fourier-Bessel (FB)
- 5. Sum of Gaussians (SOG)
- There are nuclides which has only data of "radius". I. Angeli & K. P. Marinova, Atom. Data Nucl. Data Tabl. **99** (2013) 69. $\rho(r) = \frac{\rho_0}{1 + \exp \frac{r - c}{0.52} \int_{r_0}^{r_0} \frac{1}{1 + \exp \frac{r - c}{0.52} \int_$

Numerical results

Table of E'_{end} & B for various nuclides and models

	$E'_{\rm end}/{\rm MeV}$	$B_{1\mathrm{pF}}/\mathrm{MeV^{-6}}$	$B_{\rm FB}/{ m MeV^{-6}}$	$B_{\rm SOG}/{ m MeV^{-6}}$	$B_{\rm MHO}/{ m MeV^{-6}}$	$B_{\rm 3pF}/{ m MeV^{-6}}$	B_{3pG}/MeV^{-6}
$^{4}_{2}\mathrm{He}$	104.150			2.53×10^{-20}			
${}_{3}^{6}\mathrm{Li}$	104.637	1.20×10^{-19}	1.29×10^{-19}				
$_{3}^{7}$ Li	104.779	1.28×10^{-19}			1.31×10^{-19}		
$^9_4\mathrm{Be}$	104.949	4.97×10^{-19}			4.96×10^{-19}		
${}^{10}_5\mathrm{B}$	104.99	1.52×10^{-18}	1.56×10^{-18}		1.50×10^{-18}		
${}^{11}_{5}{ m B}$	105.044	1.53×10^{-18}			1.52×10^{-18}		
${}^{12}_6\mathrm{C}$	105.059	3.55×10^{-18}	3.53×10^{-18}	3.55×10^{-18}			
${}^{13}_{6}{ m C}$	105.097	3.56×10^{-18}			3.63×10^{-18}		
$^{14}_{7}N$	105.094	7.04×10^{-18}				7.13×10^{-18}	
$^{16}_{8}O$	105.106	1.22×10^{-17}	1.19×10^{-17}	1.20×10^{-17}	1.19×10^{-17}		
${}^{19}_{9}{ m F}$	105.118	1.85×10^{-17}				1.87×10^{-17}	
$^{20}_{10}$ Ne	105.081	2.79×10^{-17}				2.87×10^{-17}	
$^{22}_{10}$ Ne	105.108	2.89×10^{-17}				2.89×10^{-17}	
$^{23}_{11}$ Na	105.063	4.35×10^{-17}					
$^{24}_{12}\mathrm{Mg}$	105.011	6.17×10^{-17}		6.29×10^{-17}		6.10×10^{-17}	
				•			

•

J. Heeck, R. Szafron, & YU, PRD105, 053006; arXiv:2110.14667.

17/52

 $E_b \& E'_{end}$

18/52

B coefficient

- > The uncertainty from fitting functions is about 10%.
- The isotope differences are often of the same order

or even larger than the uncertainty.

19/52

➤ How large is the quadrupole deformation effects?

4. μ -e conversion

J. Heeck, R. Szafron, & YU, NPB980, 115833; arXiv:2203.00702.

(Coherent) $\mu^- \rightarrow e^-$ conversion

20/52

- charged lepton flavor violating (CLFV) process
- the energy of emitted e^- : $E_e = m_\mu E_b E_{\text{recoil}} \sim 105 \text{ MeV}$ $\begin{bmatrix} E_b : \text{binding energy of muon} \\ E_{\text{recoil}} : \text{nuclear recoil energy} \end{bmatrix} \sim 0.5 \text{ MeV}$ for Al

Effective Lagrangian beyond the SM ^{21/52}

Branching ratio

R. Kitano *et al.*, PRD**84**, 013006 (2011).

22/52

$$BR_{\rm SI} = \frac{32G_F^2}{\Gamma_{\rm capture}} \left[\left| C_{D,L} \frac{D}{4} + \sum_{N=p,n} \left(C_{S,L}^{NN} S^{(N)} + C_{V,R}^{NN} V^{(N)} \right) \right|^2 + \{L \Leftrightarrow R\} \right]$$

• overlap integrals

$$D = \frac{4m_{\mu}}{\sqrt{2}} \int_0^\infty dr \, r^2 \left[-E(r)\right] \left(g_e^- f_{\mu}^- + f_e^- g_{\mu}^-\right)$$

electric field

$$S^{(p)} = \frac{1}{2\sqrt{2}} \int_{0}^{\infty} dr \, r^{2} Z \rho^{(p)} \left(g_{e}^{-} g_{\mu}^{-} - f_{e}^{-} f_{\mu}^{-}\right) \qquad \rho^{(p)} : \text{proton density}$$

$$S^{(n)} = \frac{1}{2\sqrt{2}} \int_{0}^{\infty} dr \, r^{2} N \rho^{(n)} \left(g_{e}^{-} g_{\mu}^{-} - f_{e}^{-} f_{\mu}^{-}\right) \qquad \rho^{(n)} : \text{neutron density}$$

$$V^{(p)} = \frac{1}{2\sqrt{2}} \int_{0}^{\infty} dr \, r^{2} Z \rho^{(p)} \left(g_{e}^{-} g_{\mu}^{-} + f_{e}^{-} f_{\mu}^{-}\right)$$

$$V^{(n)} = \frac{1}{2\sqrt{2}} \int_{0}^{\infty} dr \, r^{2} N \rho^{(p)} \left(g_{e}^{-} g_{\mu}^{-} + f_{e}^{-} f_{\mu}^{-}\right)$$

Overlap integrals (dipole integral D)

> For Z < 30, the uncertainty due to ρ_c is less than 2%,

but grows to 8% for large Z.

23/52

> Isotope dependence exceeds the uncertainty at medium Z.

For $S^{(p)}$ and $V^{(p)}$, the uncertainty is estimated to range from 5% at low Z to 10% at high Z.

> For $S^{(n)}$ and $V^{(n)}$, the uncertainty is also 5% at low Z,

but more than 10% at high Z.

Quadrupole deformation

L. Borrel, D. G. Hitlin, S. Middleton, arXiv:2401.15025

25/52

(also shown yesterday by A. Czarnecki)

26/52

Complementarity of targets

cf. S. Davidson, Y. Kuno, & M. Yamanaka, PLB790 (2019) 380.

$$BR_{\rm SI} = \frac{32G_F^2}{\Gamma_{\rm capture}} \left[|\boldsymbol{v} \cdot \boldsymbol{C}_L|^2 + |\boldsymbol{v} \cdot \boldsymbol{C}_R|^2 \right]$$
$$\left[\boldsymbol{C}_L = \left(C_{D,R}, C_{V,L}^{pp}, C_{S,R}^{nn}, C_{V,L}^{nn}, C_{S,R}^{nn} \right) \right]$$

coefficient-space vector :

$$\boldsymbol{v} = \left(\frac{D}{4}, V^{(p)}, S^{(p)}, V^{(n)}, S^{(n)}\right)$$

If their directions of v are different, these targets are "complimentary".

misalignment angle :
$$\theta_{Al} = \arccos\left(\frac{\boldsymbol{v} \cdot \boldsymbol{v}_{Al}}{|\boldsymbol{v}||\boldsymbol{v}_{Al}|}\right)$$

Large θ_{Al} means high complimentarity to Al.

Complementarity of targets

High-Z targets have large complementary with AI.

- Low-Z targets
 - Li-7, Ti-50 have large θ_{Al} .

27/52

- cf. A/Z = 2.33 for Li-7
 - A/Z = 2.27 for Ti-50
 - (A/Z = 2.08 for Al-27)
- Ti would be a suitable next target for Al-based experiment ?
- cf. Ti-50, Ti-49, Cr-54 : natural abundance low Li-7, V-51 : (practically preferable?) natural abundance >90%

5. Other LFV processes

Other LFV processes in muonic atoms

μ⁻ → e⁻X
 X. G. i Tormo, D. Bryman, A. Czarnecki, & M. Dowling, PRD84, 113010; arXiv:1110.2874.
 YU, PRD102, 095007; arXiv:2005.07894.

• $\mu^- \rightarrow e^- \gamma$

YU, M. Yamanaka, & Y. Kuno, PRD111, 035017; arXiv:2411.10304.

• $\mu^-e^- \rightarrow e^-e^-$

M. Koike, Y. Kuno, J. Sato, & M. Yamanaka, PRL105, 121601; arXiv:1003.1578.
YU, Y. Kuno, J. Sato, T. Sato, & M. Yamanaka, PRD93, 076006; arXiv:1603.01522.
YU, Y. Kuno, J. Sato, T. Sato, & M. Yamanaka, PRD97, 015017; arXiv:1711.08979.
Y. Kuno, J. Sato, T. Sato, YU, & M. Yamanaka, PRD100, 075012; arXiv:1908.11653.

5-1. $\mu^- \to e^- X$

YU, PRD102, 095007; arXiv:2005.07894.

$\mu^+ \rightarrow e^+ X$ searches

29/52

➤ A. Jodidio *et al.* PRD **34**, 1967 (1986).

- + $1.8 \times 10^7 \ \mu^+$ that was highly polarized
- search for e^+ emitted in opposite direction for μ^+ polarization
- ${\rm Br}(\mu^+ \to e^+ X) < 2.6 \times 10^{-6}$ for $m_X = 0$

Mu3e Collab. A. Schöning, Talk at Flavour and Dark Matter Workshop, Heidelberg, September 28 (2017).

• Br < 10^{-8} (for 25MeV < m_X < 95MeV)

$\mu^- \rightarrow e^- X$ in a muonic atom

originally proposed by X. G. i Tormo et al., PRD 84, 113010 (2011).

Advantages over free muon decay

1. less background

---:
$$\mu^+ \rightarrow e^+ X$$
 (free)
---: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$ (free)
: $\mu^- \rightarrow e^- X$ (μ -gold)
: $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$ (μ -gold

different peak positions of signal & BG

30/52

- 2. more information : "spectrum", "dependence on nucleus", ...
- 3. huge # of muonic atoms in coming experiments (COMET, Mu2e, DeeMe)

Disadvantages

✓ non-monochromatic signal

✓ shorter lifetime of muonic atom

Effective models

A. Scalar X

(e.g. majoron induced by R-parity violation, ...)

also analyzed by X. G. i Tormo et al., PRD 84, 113010 (2011).

31/52

$$\mathcal{L}_{S0} = g_{S0}(\overline{e}\mu)X + [H.c.]$$

derivative coupling

yukawa coupling

(e.g. majoron, familon, axion, ...)

$$\mathcal{L}_{S1} = \frac{g_{S1}}{\Lambda_{S1}} (\overline{e} \gamma_{\alpha} \mu) \partial^{\alpha} X + [H.c.]$$

B. Vector X

$$\mathcal{L}_{V1} = \frac{g_{V1}}{\Lambda_{V1}} \left(\overline{e} \sigma_{\alpha\beta} \mu \right) X^{\alpha\beta} + [H.c.] \\ X^{\alpha\beta} = \partial^{\alpha} X^{\beta} - \partial^{\beta} X^{\alpha}$$

 e^- spectrum ($m_X = 0$)

32/52

Spectrum does not strongly depend on properties of X.

The sharper peak is obtained for the lighter nucleus because the width reflects the shape of the bound muon w.f.

e⁻ spectrum near endpoint

33/52

We can see spectra depending on operators!

Characteristic behavior of spectrum ^{34/52}

$$\frac{d\Gamma}{dE_e} = \frac{g_Y^2}{4\pi^2} p_e p_X \sum_{\kappa} (2j_{\kappa} + 1) |I_{\kappa}|^2$$
$$I_{\kappa} = \int_0^\infty dr r^2 j_{l_{\kappa}}(p_X r) \{g_{p_e}^{\kappa}(r) g_{\mu}^{1s}(r) - f_{p_e}^{\kappa}(r) f_{\mu}^{1s}(r)\}$$

Characteristic behavior of spectrum

✓ Main contribution comes from s-wave of emitted electron.

s-wave
$$(\kappa = -1)$$
 amplitude

$$I_{-1} = m_{\mu} \int_{0}^{\infty} dr r^{2} j_{0}(p_{X}r) \{g_{p_{e}}^{-1}(r)g_{\mu}^{1s}(r) - f_{p_{e}}^{-1}(r)f_{\mu}^{1s}(r)\}$$

$$j_{0}(p_{X}r) \simeq const. \text{ near the endpoint}$$

Characteristic behavior of spectrum ^{36/52}

Q. The reduced mass treatment is insufficient to include the nuclear mass?

5-2. $\mu^- \rightarrow e^- \gamma$

YU, M. Yamanaka, & Y. Kuno, PRD111, 035017; arXiv:2411.10304.

$\mu^- \rightarrow e^- \gamma$ in a muonic atom

• Rare decay of μ^- in orbit (not free μ^+)

- signal: a pair of $e^- \& \gamma$ with $E_e + E_{\gamma} = m_{\mu} E_b$ (E_b : binding energy)
- Typically, the signal $e^- \& \gamma$ are emitted back-to-back with $E_e \simeq E_{\gamma} \simeq 50$ MeV
 - $\checkmark~$ But it's not a strict two-body decay,

the spectrum is smeared.

- As well as dipole operator,
 <u>diphoton operator</u>(FF & FF̃) can be studied.
 - \checkmark The diphoton ope. can be directly restricted

as $\mu^+ \rightarrow e^+ \gamma \gamma$.

Disadvantages:

- Muonic atoms have shorter lifetime than free muons.
- Invariant mass $m_{e\gamma} \neq m_{\mu}$; Although the energy is (approximately) conserved, the 3-momentum is not in $\mu^- \rightarrow e^-\gamma$.

37/52

Decay rate

38/52

> Nucleus is treated as a static Coulomb potential.

$$d\Gamma = \frac{d^3 p_e}{(2\pi)^3 2E_e} \frac{d^3 p_{\gamma}}{(2\pi)^3 2E_{\gamma}} (2\pi) \delta \left(E_e + E_{\gamma} - E_{\mu}\right) \frac{1}{2} \sum_{spins} |\mathcal{M}|^2$$

transition amplitude

$$\mathcal{M} = -\frac{2im_{\mu}}{v^{2}} \int d^{3}r \overline{\psi}_{e}\left(\boldsymbol{r}\right) \sigma_{\alpha\beta} \left(D_{L}P_{L} + D_{R}P_{R}\right) \psi_{\mu}^{1s}\left(\boldsymbol{r}\right) p_{\gamma}^{\alpha} \epsilon^{s_{\gamma}*\beta} \exp\left(-i\boldsymbol{p}_{\gamma}\cdot\boldsymbol{r}\right)$$
$$-\frac{4i}{v^{3}} \int d^{3}r \overline{\psi}_{e}\left(\boldsymbol{r}\right) \left(C_{L}P_{L} + C_{R}P_{R}\right) \psi_{\mu}^{1s}\left(\boldsymbol{r}\right) p_{\gamma}^{\alpha} \epsilon^{s_{\gamma}*\beta} \exp\left(-i\boldsymbol{p}_{\gamma}\cdot\boldsymbol{r}\right) \left\langle N \mid F_{\alpha\beta} \mid N \right\rangle$$
$$-\frac{4i}{v^{3}} \int d^{3}r \overline{\psi}_{e}\left(\boldsymbol{r}\right) i\gamma_{5} \left(\tilde{C}_{L}P_{L} + \tilde{C}_{R}P_{R}\right) \psi_{\mu}^{1s}\left(\boldsymbol{r}\right) p_{\gamma}^{\alpha} \epsilon^{s_{\gamma}*\beta} \exp\left(-i\boldsymbol{p}_{\gamma}\cdot\boldsymbol{r}\right) \left\langle N \mid \tilde{F}_{\alpha\beta} \mid N \right\rangle$$

 \rightarrow The field strength F is replaced with nuclear electric field E.

$$\langle N | F_{\alpha\beta} | N \rangle = \begin{cases} -E_i & (\alpha = i, \beta = 0) \\ E_j & (\alpha = 0, \beta = j) \\ 0 & (\alpha = i, \beta = j) \end{cases} \qquad \left\langle N \left| \tilde{F}_{\alpha\beta} \right| N \right\rangle = \begin{cases} -\epsilon_{ijk} E_k & (\alpha = i, \beta = j) \\ 0 & (\alpha = 0 \text{ or } \beta = 0) \end{cases}$$

 \therefore In this calculation, we restrict ourselves to the case that the proton number is small. \rightarrow We assume "The nucleus is point-charge." & "The electron is plane wave."

Z dep. of the decay rate ($Z \le 30$)

39/52

Upper limits of BR from the past experiments

(green dashed: case that dipole & diphoton are equally interfered)

✓ diphoton: momentum distribution spreads more than dipole
 (dipole & diphoton are interfered, but 分布の形状が異なる=完全に打ち消されることはない)

Backgrounds

41/52

✓ Electrons & photons are produced in the ordinary muon decays:

▶ BG1: 2つのミューオンから出た電子と光子のエネルギー和が

▶ BG2: $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e \gamma$ におけるニュートリノが低エネルギーである事象 (physics BG) (ただしこれは無視できるほど小さい)

BG e^- & γ spectra

42/52

Effective branching ratio

43/52

Benchmark :	$r_{e\gamma} = 78 \text{ ps} \qquad \Delta_{x+y} =$	ergy resolution	Effective BR $B_{acc} = R_{\mu}\Delta t_{e\gamma} \frac{\Delta\Omega_{e\gamma}}{4\pi} f_{acc}$					
Signal (<mark>diphoton</mark>)	Al ($Z = 13$) 4.6×10^{-12}	Zn ($Z = 30$) 2.2 × 10 ⁻¹¹	R_{μ} : produced μ^{-} / time $\Delta t_{e\gamma}$: time resolution					
Signal (dipole)	1.2×10^{-13}	2.0×10^{-14}	$\Delta\Omega_{e\gamma}$: angular resolution					
accidental BG	1.2×10^{-10}	1.2×10^{-11}	f_{acc} : the rate that BG $e^- \& \gamma$ satisfy the energy condition					
BG $(\mu^- \rightarrow e^- \nu \overline{\nu} \gamma)$	1.5×10^{-15}	5.7×10^{-16}	large BGs					
$\int_{e_{\gamma}} constraint \theta_{e_{\gamma}} to optimize diphoton signal \theta_{e_{\gamma}}^{peak} - 0.01 < \theta_{e_{\gamma}} < \theta_{e_{\gamma}}^{peak} + 0.01 = = = = = = = = = = = = = = = = = = =$								
	AI (<i>Z</i> = 13)	Zn (<i>Z</i> = 30)						
Signal (diphoton)	7.1×10^{-14}	3.3×10^{-13}	Signal is twice larger					
Signal (dipole)	1.2×10^{-17}	1.6×10^{-17}	than BG !					
accidental BG	8.5×10^{-13}	1.1×10^{-13}	↑ There may be rooms					
BG $(\mu^- \rightarrow e^- \nu \overline{\nu} \gamma)$	2.6×10^{-19}	6.1×10^{-19}						

5-3. $\mu^- e^- \rightarrow e^- e^-$

YU, Y. Kuno, J. Sato, T. Sato, & M. Yamanaka, PRD93, 076006; arXiv:1603.01522. YU, Y. Kuno, J. Sato, T. Sato, & M. Yamanaka, PRD97, 015017; arXiv:1711.08979.

$\mu^-e^- \rightarrow e^-e^-$ in a muonic atom 44/52

M. Koike, Y. Kuno, J. Sato & M. Yamanaka, Phys. Rev. Lett. **105**, 121601 (2010).

Effective Lagrangian for $\mu^-e^- \rightarrow e^-e^-$

Branching ratio

47/52

Phys. Rev. Lett. **105**,121601 (2010).

48/52 To improve calculation for decay rate

✓ previous formula of CLFV decay rate by Koike et al.

Note

$$\Gamma_{\mu^- e^- \to e^- e^-} = 2\sigma v_{\rm rel} |\psi^e_{1S}(0)|^2 \propto (Z-1)^3$$

- \succ "Z dependence" comes from only $|\psi_{1S}^e(0)|^2$ (always $\Gamma \propto (Z-1)^3$)
- \succ emitted e^- s are expected to be back-to-back with equal energies

More quantitative estimation is needed ! (important for large Z)

Formulation for decay rate

49/52

$$\begin{split} \Gamma &= \sum_{f} \sum_{\overline{\iota}} (2\pi) \delta(E_{f} - E_{i}) \left| \left\langle \psi_{e}^{p_{1},s_{1}} \psi_{e}^{p_{2},s_{2}} \middle| H \middle| \psi_{\mu}^{1s,s_{\mu}} \psi_{e}^{1s,s_{e}} \right\rangle \right|^{2} \\ \text{partial wave expansion to express the distortion} \\ &\psi_{e}^{p,s} = \sum_{\kappa,\mu,m} 4\pi \, i^{l_{\kappa}} (l_{\kappa},m,1/2,s|j_{\kappa},\mu) Y_{l_{\kappa},m}^{*}(\hat{p}) e^{-i\delta_{\kappa}} \psi_{p}^{\kappa,\mu} \\ &\kappa : \text{index of angular momentum} \\ \text{solving "Dirac eq. with ϕ" numerically to get radial wave functions} \\ &\frac{dg_{\kappa}(r)}{dr} + \frac{1+\kappa}{r} g_{\kappa}(r) - (E+m+e\phi(r))f_{\kappa}(r) = 0 \\ &\frac{df_{\kappa}(r)}{dr} + \frac{1-\kappa}{r} f_{\kappa}(r) + (E-m+e\phi(r))g_{\kappa}(r) = 0 \\ \end{split}$$

Upper limits of BR (contact process)

50/52

51/52 Upper limits of BR (photonic process)

6. Summary

Summary

52/52

> For quantitively calculating muon decays in nuclei, we need to solve the Dirac equation with the nuclear Coulomb field, for $\mu^- \& e^-$.

Some LFV processes on nuclei are discussed:

• DIO, $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e$

• $\mu^- \rightarrow e^-$ conversion

Other possible LFVs

- $\mu^- \rightarrow e^- X$
- $\mu^- \rightarrow e^- \gamma$
- $\mu^-e^- \rightarrow e^-e^-$