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• Prologue:

• Connecting scales using EFTs: from BSM to nuclear physics

• EFTs for low-energy QCD and nuclear physics

• Chiral perturbation theory for mesons and baryons (π, N) 

• Nuclear EFT (Lecture by B. van Kolck)   

• (My talk:  Higgs-induced Lepton Flavor Violation) 

Outline
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• References to the original papers will be sloppy (e.g.  “Weinberg 
’79”) and may be incomplete:  apologies!

• Here is a selected list of lecture notes on EFT and ChPT: 

A note on references

• V. Bernard,  N. Kaiser, U. Meiβner,  hep-ph/9501384

• A. Manohar, hep-ph/9606222

• G. Ecker, hep-ph/9805500

• A. Pich, 1804.05664
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Connecting scales through EFT: 
from BSM to nuclear physics



1/Coupling 

M

vEW

Unexplored

Probing new physics at low energy

~ 250 GeV
Standard 

Model
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• New physics likely needed to address shortcomings of the Standard Model 



1/Coupling 

M

vEW

Energy Frontier
(direct access to UV d.o.f)

Precision Frontier
(indirect access to UV d.o.f)
(direct access to light d.o.f.)

We typically look for new physics with two complementary approaches
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• New physics likely needed to address shortcomings of the Standard Model 

Probing new physics at low energy
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1/Coupling 

M

vEW

Energy Frontier
(direct access to UV d.o.f)

Precision Frontier
(indirect access to UV d.o.f)
(direct access to light d.o.f.)

- L and B non conservation 
- CP violation  (w/o flavor)
- Flavor violation: quarks,  leptons
- Multi-TeV scale force mediators 
- Neutrino properties 
- Dark sectors
- …

 Hadronic and nuclear probes 
play a prominent role at the Precision Frontier

They involve multi-scale problems! 

- EWSB mechanism
- Higgs properties 
- Direct access to heavy particles 
- ... 

7

• New physics likely needed to address shortcomings of the Standard Model 

Probing new physics at low energy



Connecting scales
To connect UV physics to nuclei, use multiple EFTs

Matching      
to BSM 

scenarios  

Perturbative 
matching 
within SM

BSM dynamics

SMEFT

LEFT

ChPT (π, N)

Chiral EFT (NN, ..)
ΔEnuclear



Connecting scales
To connect UV physics to nuclei, use multiple EFTs

Hadronic 
matrix 

elements 

Nuclear   
matrix 

elements 

Non-perturbative strong interactions

Matching      
to BSM 

scenarios  

Perturbative 
matching 
within SM

BSM dynamics

SMEFT

LEFT

ChPT (π, N)

Chiral EFT (NN, ..)
ΔEnuclear



EFTs for low-energy QCD and 
nuclear physics



Coming up

• Chiral symmetry and its breaking

• Chiral Perturbation Theory (ChPT) for Goldstone modes (π)

• Heavy Baryon ChPT (N=n,p)

• Electroweak and BSM effects at low energy 
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Chiral symmetry
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Chiral symmetry

• For mq = 0,  invariant under independent U(3) transformations of left- and 
right-handed quarks:  L,R ∈ SU(3)

Chiral group G Baryon 
number

Anomalous: 
not a symmetry  
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Chiral symmetry

• Symmetry is broken explicitly by mq ≠0 (though mq/ΛQCD <<1)  

• For mq = 0,  invariant under independent U(3) transformations of left- and 
right-handed quarks:  L,R ∈ SU(3)
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Chiral symmetry

• Symmetry is broken explicitly by mq ≠0 (though mq/ΛQCD <<1)  

• For mq = 0,  invariant under independent U(3) transformations of left- and 
right-handed quarks:  L,R ∈ SU(3)

• Evidence of SU(3)V in hadron spectrum (but no parity doublets): what’s going on? 
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Spontaneous Symmetry Breaking
• Action is invariant under symmetry group,  but ground state is not

• For  V→∞:  degenerate, physically (but not unitarily) equivalent ground states 

• Continuous symmetry:  manifold of equivalent classical minima (→ vacua)

• Excitations along the valley of minima → massless states in the spectrum 
(Goldstone Bosons)
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Symmetry transformation
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SSB pattern

Identify GB through
 field redefinition —

x-dependent parameters of a 
(broken) symmetry transformation

acting on reference vacuum 
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A more realistic example

• Example: O(N) linear sigma model

Vacuum manifold
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• SSB pattern G→H:  GB fields ~ coordinates of the vacuum manifold G/H

Figure from A. Manohar 
hep-ph/9606222

φ0 = (0,0,v) 
Reference vacuum

N=3:   G=O(3),   H=O(2),    G/H = S2

Callan, Coleman, Wess, Zumino ‘69
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A more realistic example

• Example: O(N) linear sigma model

Vacuum manifold

13

• SSB pattern G→H:  GB fields ~ coordinates of the vacuum manifold G/H

Figure from A. Manohar 
hep-ph/9606222

φ0 = (0,0,v) 
Reference vacuum

N=3:   G=O(3),   H=O(2),    G/H = S2

N=3  

broken generatorsGoldstone fields

Callan, Coleman, Wess, Zumino ‘69

Non-linear representation of the group G,  
linear when restricted to H
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QCD: SSB of chiral SU(3)
• Empirical & theoretical evidence of breaking pattern 

Figure from M. Creutz 
1103.3304 • Vector subgroup SU(3)V  (L=R) unbroken 

and symmetry is approximately manifest 
in the QCD spectrum [Wigner-Weyl 
realization]

• Axial generators broken: no parity 
doublets,  but massless pseudoscalars  
(π,K,η) [Goldstone realization]



Low-energy EFT for GBs 

• Use  EFT methods to analyze the low-energy dynamics

• Identify relevant d.o.f. (GBs, n, p) and transformation under the chiral group  

• Write down most general Lagrangian consistent with chiral symmetry  

• Order interactions & amplitudes according to a power counting scheme

Relevant ratio of scales (EFT expansion parameter):   p/Λ 

‘High scale’ Λ:  scale of lowest QCD non-GB states ~ O(1 GeV) 

• At very low-E,  the only degrees of freedom (d.o.f)  are the Goldstone Bosons 
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‘Low scale’ p ~ pGB ~ EGB ~ MGB 

• Even though Mπ,K,η≠ 0 (due to mq ≠ 0), π,K,η are still the lightest hadrons



• Choice of GB fields (specialize to SU(2)):

Fields and their transformations
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• Matter fields: representations of unbroken subgroup SU(2)V   (isospin)

Chiral 
covariant 
derivative

Convenient 
building 

blocks to 
construct 
invariants 
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Effective Lagrangian (π)

17

For mq=0, chiral symmetry dictates that GB have derivative interactions:           
GBs interact weakly at low energy  
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• Require invariance of L under SU(n)LxSU(n)R and QCD discrete symmetries

• Organize L  as an expansion in powers of derivatives (low E expansion) and 
explicit symmetry breaking (quark mass)  



Effective Lagrangian (π)
• Require invariance of L under SU(n)LxSU(n)R and QCD discrete symmetries

• Organize L  as an expansion in powers of derivatives (low E expansion) and 
explicit symmetry breaking (quark mass)  
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- mq term gives GB mass terms MPS2 ~ B mq ~ p2
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- mq term easiest to derive if assume                            :  LQCD is ‘invariant’
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Effective Lagrangian (π)

- At leading order (O(p2)),  there appear two ‘low energy constants’ (LECs) not 
determined by symmetry:  F,  B 

- Determined by appropriate correlation functions (get their values from 
experiment or lattice QCD) 

- Counting rules:    𝜕 ~ p and  mq ~ p2

19

• Require invariance of L under SU(n)LxSU(n)R and QCD discrete symmetries

• Organize L  as an expansion in powers of derivatives (low E expansion) and 
explicit symmetry breaking (quark mass)  



Effective Lagrangian (π)

- Noether’s currents:  identify F with pion decay constant F= Fπ 

20

• Require invariance of L under SU(n)LxSU(n)R and QCD discrete symmetries

• Organize L  as an expansion in powers of derivatives (low E expansion) and 
explicit symmetry breaking (quark mass)  



Effective Lagrangian (π)

- Noether’s currents:  identify F with pion decay constant F= Fπ 
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- B determined at LO by quark condensate   
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• Require invariance of L under SU(n)LxSU(n)R and QCD discrete symmetries

• Organize L  as an expansion in powers of derivatives (low E expansion) and 
explicit symmetry breaking (quark mass)  



Effective Lagrangian (π)

- 2n-GB interaction vertices in terms of  F,  B:  ππ scattering, etc.

21

• Require invariance of L under SU(n)LxSU(n)R and QCD discrete symmetries

• Organize L  as an expansion in powers of derivatives (low E expansion) and 
explicit symmetry breaking (quark mass)  



Power counting (1)

22

How do we compute amplitudes to a given order in p/Λ?

• Higher derivative terms in the effective Lagrangian? 

• Loops?  

• What sets the scale of the derivative expansion? 



Power counting (1)
• Higher derivatives and/or mass insertions in effective Lagrangian: 
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Power counting (1)

• What about loops?  Start with        vertices 

• Higher derivatives and/or mass insertions in effective Lagrangian: 

k2

1/k2

k21/k2

d4k

Estimate straightforward in mass-independent regulators and subtraction schemes           
(such as dim reg): amplitude can only contain powers of p, while μ appears only in logs 
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Power counting (1)

• What about loops?  Start with        vertices 

• Higher derivatives and/or mass insertions in effective Lagrangian: 

k2

1/k2

k21/k2

d4k

Dependence on regularization / renormalization scale in loops (μ) canceled by 
the p4  low-energy constants:  S-matrix elements are μ-independent 
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• What about loops?  Start with        vertices 

• Higher derivatives and/or mass insertions in effective Lagrangian: 

25

U ! LU R†

L(2)
⇡ =

F 2

4
Tr

h
@µU @µU †

+ 2Bmq

�
U + U †�

i

L(e2)
⇡ = e2ZF 4

Tr

h
Qem

L UQem
R U †

i
� �2e2ZF 2 ⇡+⇡�

+ ...

L(1)
⇡N = N̄v iv ·rNv + gAN̄v S · uNv

vµ = (1,~0) Sµ
= (0,~�/2)

L(2)
⇡ � @µ⇡

� @µ⇡+ �B (mu+md) ⇡
+⇡� �B (mu+ms)K

+K�
+...

h�1

jµaR =
iF 2

2
Tr

�
T a U@µU

†�

jµaL =
iF 2

2
Tr

�
T a U †@µU

�

jµaA = jµaR � jµaL = �F @µ ⇡a
+ ...

A(2)
⇡⇡ ⇠ p2ext

F 2
A(4)

⇡⇡ ⇠ p2ext
F 2

p2ext
⇤2

A(loop)
⇡⇡ ⇠ p4ext

16⇡2 F 4
log

p2ext
µ2

17

U ! LU R†

L(2)
⇡ =

F 2

4
Tr

h
@µU @µU †

+ 2Bmq

�
U + U †�

i

L(e2)
⇡ = e2ZF 4

Tr

h
Qem

L UQem
R U †

i
� �2e2ZF 2 ⇡+⇡�

+ ...

L(1)
⇡N = N̄v iv ·rNv + gAN̄v S · uNv

vµ = (1,~0) Sµ
= (0,~�/2)

L(2)
⇡ � @µ⇡

� @µ⇡+ �B (mu+md) ⇡
+⇡� �B (mu+ms)K

+K�
+...

h�1

jµaR =
iF 2

2
Tr

�
T a U@µU

†�

jµaL =
iF 2

2
Tr

�
T a U †@µU

�

jµaA = jµaR � jµaL = �F @µ ⇡a
+ ...

A(2)
⇡⇡ ⇠ p2ext

F 2
A(4)

⇡⇡ ⇠ p2ext
F 2

p2ext
⇤2

A(loop)
⇡⇡ ⇠ p4ext

16⇡2 F 4
log

p2ext
µ2

17

• In general                 .    Naive Dimensional Analysis assumes:                

• Correspondence of loops and LECs allows one to assign the following scaling 
to any operator

Test

Test

Test

Test

Test

Test

⇤  ⇤loop

⇤ ' ⇤loop

O(1)⇥ F 2
⇤

2

✓
@

⇤

◆nD ⇣ ⇡

F

⌘n⇡
✓

N

F
p
⇤

◆nN

⇤ = 4⇡F

L(p4)
� = `1

⇣
Tr

⇣
@µU

†@µU
⌘⌘2

+ `2 Tr

⇣
@µU

†@⌫U
⌘
Tr

⇣
@µU †@⌫U

⌘
,

Tr

⇣
@µU

†@µU (m†
qU + U †mq)

⌘

Tr

⇣
mqU

†mqU
†
⌘

u(x) = ei(⇡
a(x)/F )Ta

h(L,R, ⇡) 2 SU(2)V

U = ei✏aQa |�ai

O(2) ⇠ U(1) ! 1

V ('1,'2) = �(~' · ~'� v2)2

1

Test

Test

Test

Test

Test

Test

⇤  ⇤loop

⇤ ' ⇤loop

O(1)⇥ F 2
⇤

2

✓
@

⇤

◆nD ⇣ ⇡

F

⌘n⇡
✓

N

F
p
⇤

◆nN

⇤ = 4⇡F

L(p4)
� = `1

⇣
Tr

⇣
@µU

†@µU
⌘⌘2

+ `2 Tr

⇣
@µU

†@⌫U
⌘
Tr

⇣
@µU †@⌫U

⌘
,

Tr

⇣
@µU

†@µU (m†
qU + U †mq)

⌘

Tr

⇣
mqU

†mqU
†
⌘

u(x) = ei(⇡
a(x)/F )Ta

h(L,R, ⇡) 2 SU(2)V

U = ei✏aQa |�ai

O(2) ⇠ U(1) ! 1

V ('1,'2) = �(~' · ~'� v2)2

1

Test

Test

Test

Test

Test

Test

⇤  ⇤loop

⇤ ' ⇤loop

O(1)⇥ F 2
⇤

2

✓
@

⇤

◆nD ⇣ ⇡

F

⌘n⇡
✓

N

F
p
⇤

◆nN

⇤ = 4⇡F

L(p4)
� = `1

⇣
Tr

⇣
@µU

†@µU
⌘⌘2

+ `2 Tr

⇣
@µU

†@⌫U
⌘
Tr

⇣
@µU †@⌫U

⌘
,

Tr

⇣
@µU

†@µU (m†
qU + U †mq)

⌘

Tr

⇣
mqU

†mqU
†
⌘

u(x) = ei(⇡
a(x)/F )Ta

h(L,R, ⇡) 2 SU(2)V

U = ei✏aQa |�ai

O(2) ⇠ U(1) ! 1

V ('1,'2) = �(~' · ~'� v2)2

1

Test

Test

Test

Test

Test

Test

⇤  ⇤loop

⇤ ' ⇤loop

O(1)⇥ F 2
⇤

2

✓
@

⇤

◆nD ⇣ ⇡

F

⌘n⇡
✓

N

F
p
⇤

◆nN

⇤ = 4⇡F

L(p4)
� = `1

⇣
Tr

⇣
@µU

†@µU
⌘⌘2

+ `2 Tr

⇣
@µU

†@⌫U
⌘
Tr

⇣
@µU †@⌫U

⌘
,

Tr

⇣
@µU

†@µU (m†
qU + U †mq)

⌘

Tr

⇣
mqU

†mqU
†
⌘

u(x) = ei(⇡
a(x)/F )Ta

h(L,R, ⇡) 2 SU(2)V

U = ei✏aQa |�ai

O(2) ⇠ U(1) ! 1

V ('1,'2) = �(~' · ~'� v2)2

1

Manohar-Georgi ‘84



Power counting (2)
• Weinberg’s general argument Chiral dimension: 

#derivatives + 2 #mq

#vertices of 
type  i

di -2 > 0  due to chiral symmetry 
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Power counting (2)
• Weinberg’s general argument

• Loop expansion = low-energy expansion with even powers of ν
• Loop divergences can be reabsorbed by higher order Leff

• EFT is renormalizable (and predictive) to a given order in p/Λ

Chiral dimension: 
#derivatives + 2 #mq

#vertices of 
type  i

di -2 > 0  due to chiral symmetry 

26

Weinberg ‘79
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Power counting (summary) 

27

  - Loops: leading IR singularities, perturbative unitarity.    
    Higher loops imply higher suppression (this changes in NN EFT)

- “Contact” terms, LECs:  UV div.+ finite part, encoding
  short distance (QCD) physics,  to be determined from expt.
  or via non-perturbative techniques (LQCD, dispersion relations, …).  
  As couplings in any QFT,  the LECs satisfy appropriate RGEs. 

• To a given order in the expansion of amplitudes in p/Λ: 



ChPT with baryons (1)
• Presence of mN~Λ spoils manifest power counting as  i𝜕0N ~ mNN

• But nucleons interacting with `soft’ pions are nearly on shell

• Propagator takes the form (up to relative corrections ~ k/mN): 

Projects on to ‘large’ particle 
components of Dirac spinor Scales as 1/psoft

28



ChPT with baryons (1)
• Presence of mN~Λ spoils manifest power counting as  i𝜕0N ~ mNN

• But nucleons interacting with `soft’ pions are nearly on shell

• Propagator takes the form (up to relative corrections ~ k/mN): 

Projects on to ‘large’ particle 
components of Dirac spinor

• What Lagrangian generates this? 

Scales as 1/psoft

28



ChPT with baryons (2)
• To get manifest power counting,  write Lagrangian in terms of v-dependent 

fields Nv so that  i𝜕0Nv ~ k0Nv << Λ Nv

• Baryon bilinears expressed in terms of 

29

Georgi ’90,  Jenkins-Manohar ‘91



Effective Lagrangian (π,N)
• Use building blocks N, 𝝯N, u, … and organize according to standard counting 

rules 𝜕 ~ p,  mq ~ p2   

30



Effective Lagrangian (π,N)
• Use building blocks N, 𝝯N, u, … and organize according to standard counting 

rules 𝜕 ~ p,  mq ~ p2   

πa (q)πa (q1) πb (q2)
+ 2N4π, … + 2N3π, …

30



Effective Lagrangian (π,N)
• Use building blocks N, 𝝯N, u, … and organize according to standard counting 

rules 𝜕 ~ p,  mq ~ p2   

• In higher orders both p/Λχ and p/mN terms appear 

Non-relativistic 
expansion of  
kinetic energy

30



Power counting with nucleons
• Weinberg’s general argument for connected amplitudes

• Loop expansion: low-energy expansion that contains all powers of ν
• Convergence pattern not too natural in certain cases: impact of the Δ? 

31

ni = # of nucleon fields in the vertex



• Unnaturally large values of some LECs can be understood in terms of 
large contributions from the low-lying  Δ-baryon: 

The role of the Δ(1232)

• Can include Δ in the EFT with power counting: 

NN Δ

π π

LEC~1/δ instead of ~1/Λ

• Improved convergence,  LECs have more natural size 

Δ-ful Δ-less

instead of

32
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• Start from QCD with external sources  

Electroweak interactions

33

External sources describe Standard Model or BSM 
fields coupled to quark bilinears

Gasser-Leutwyler ’84, ‘85



• Start from QCD with external sources  

Electroweak interactions

33

• In the Standard Model (at low E): 

Gasser-Leutwyler ’84, ‘85



Electroweak interactions
• Start from QCD with external sources  

• “Spurion” transformation of the sources (so that L is invariant)

34

Invariance under local 
[L(x), R(x)] chiral 
transformation

Gasser-Leutwyler ’84, ‘85



Electroweak interactions

• Modified EFT building blocks and their transformations (covariant derivatives):

• Start from QCD with external sources  

35

Gasser-Leutwyler ’84, ‘85



• Weak charged-current interaction vertices (mesons, baryons)

Examples

Vμ -  AμVμ

π± π0Aμπ±. (q) 
n p

36



• Weak charged-current interaction vertices (mesons, baryons)

Examples

• Effects of virtual photons:  pion mass splitting 

LEC determined in terms of the pion 
electromagnetic mass splitting

γ 

Vμ -  AμVμ

π± π0Aμπ±. (q) 
n p

36



• “V-A” current relevant for single and double beta decay

Nucleon weak currents

• N2LO

Aμ Vμ Aμ

π• Leading order

q

37
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• “V-A” current relevant for single and double beta decay

Nucleon weak currents

Aμ Vμ Aμ

π• Leading order

q

• Including recoil (1/mN) and N2LO effects (form factors): 

37
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• Can apply similar techniques to obtain the chiral realization of any quark & 
gluon operator in the LEFT at ~ GeV scale (coming from SM or BSM)

• Identify chiral transformation properties of operator and write down its 
low-energy realization in terms of GBs and nucleons 

• Examples:

• Non-leptonic weak interactions (four-quark operators,  penguins, …) 

• CP-violating operators (EDMs)

• Lepton-number violation 

• …

Beyond quark bilinears

38



• Discussed ChPT as an intermediate step between LEFT  and nuclear EFT:                        
from quarks+gluons to pions and nucleons 

• Essential step in analysis of EW and BSM interactions of light hadrons and nuclei 

• In the following talk I will describe an application to μ→e conversion

Conclusions

39

Connecting scales
To connect UV physics to nuclei, use multiple EFTs

Hadronic 
matrix 

elements 

Nuclear   
matrix 

elements 

Non-perturbative strong interactions

Matching      
to BSM 

scenarios  

Perturbative 
matching 
within SM

BSM dynamics

SMEFT

LEFT

ChPT (π, N)

Chiral EFT (NN, ..)
ΔEnuclear



Backup

40
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SSB systematics
• SSB G → H :  action invariant under G, vacuum under subgroup H

4 Effective Field Theory with Nambu–Goldstone Modes

• The massless Nambu–Goldstone bosons φ⃗, parametrized through the matrix U(φ⃗ ),
have purely derivative couplings. Therefore, their scattering amplitudes vanish at
zero momenta. This was not so obvious in eqn (3), and implies that this former ex-
pression of Lσ gives rise to exact (and not very transparent) cancellations among
different momentum-independent contributions. The two functional forms of the
Lagrangian should of course give the same physical predictions.

• The potential only depends on the radial variable S(x), which describes a massive
field with M2 = 2λv2. In the limit λ ≫ 1, the scalar field S becomes very heavy
and can be integrated out from the Lagrangian. The linear sigma model then
reduces to

L2 =
v2

4
⟨∂µU †∂µU⟩ , (11)

which contains an infinite number of interactions among the φ⃗ fields, owing to
the non-linear functional form of U(φ⃗ ). As we will see later, L2 is a direct conse-
quence of the pattern of SSB in (7). It represents a universal (model-independent)
interaction of the Nambu–Goldstone modes at very low energies.

• In order to be sensitive to the particular dynamical structure of the potential, and
not just to its symmetry properties, one needs to test the model-dependent part
involving the scalar field S. At low momenta (p << M), the dominant tree-level
corrections originate from S exchange, which generates the four-derivative term

L4 =
v2

8M2
⟨∂µU †∂µU⟩2. (12)

The corresponding contributions to the low-energy scattering amplitudes are sup-
pressed by a factor p2/M2 with respect to the leading contributions from (11).

One can easily identify Lσ with the (non-gauged) scalar Lagrangian of the elec-
troweak SM. However, the non-linear sigma model was originally suggested to describe
the low-energy dynamics of the QCD pions [96, 193]. Both theories have the pattern
of symmetry breaking displayed in eqn (7).

2 Symmetry realizations

Noether’s theorem guarantees the existence of conserved quantities associated with any
continuous symmetry of the action. If a group G of field transformations leaves the
Lagrangian invariant, for each generator of the group T a, there is a conserved current
jµa (x) such that ∂µjµa = 0 when the fields satisfy the Euler–Lagrangian equations of
motion. The space integrals of the time-components j0a(x) are then conserved charges,
independent of the time coordinate:

Qa =

∫
d3x j0a(x) ,

d

dt
Qa = 0 . (13)

In the quantum theory, the conserved charges become symmetry generators that im-
plement the group of transformations through the unitary operators U = exp {iθaQa},
being θa the continuous parameters characterizing the transformation. These unitary
operators commute with the Hamiltonian, i.e., UHU † = H.
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Unbroken generators:
Wigner-Weyl 

Symmetry realizations 5

In the usual Wigner–Weyl realization of the symmetry, the charges annihilate the
vacuum, Qa|0⟩ = 0, so that it remains invariant under the group of transformations:
U |0⟩ = |0⟩. This implies the existence of degenerate multiplets in the spectrum. Given
a state |A⟩ = φ†A|0⟩, the symmetry transformation UφAU

† = φB generates another

state |B⟩ = φ†B |0⟩ = U |A⟩ with the same energy:

EB = ⟨B|H|B⟩ = ⟨A|U †HU |A⟩ = ⟨A|H|A⟩ = EA . (14)

The previous derivation is no-longer valid when the vacuum is not invariant under
some group transformations. Actually, if a charge does not annihilate the vacuum,
Qa|0⟩ is not even well defined because

⟨0|QaQb|0⟩ =

∫
d3x ⟨0|j0a(x)Qb|0⟩ = ⟨0|j0a(0)Qb|0⟩

∫
d3x = ∞ , (15)

where we have made use of the invariance under translations of the space-time coor-
dinates, which implies

jµa (x) = eiPµx
µ

jµa (0) e
−iPµx

µ

, (16)

with Pµ the four-momentum operator that satisfies [Pµ,Qb] = 0 and Pµ|0⟩ = 0.
Thus, one needs to be careful and state the vacuum properties of Qa in terms of
commutation relations that are mathematically well defined. One can easily proof the
following important result [100, 101, 150, 151, 152, 153].

Nambu–Goldstone theorem: Given a conserved current jµa (x) and its correspond-
ing conserved chargeQa, if there exists some operatorO such that va ≡ ⟨0|[Qa,O]|0⟩ ̸=
0, then the spectrum of the theory contains a massless state |φa⟩ that couples both to
O and j0a, i.e., ⟨0|O|φa⟩ ⟨φa|j0a(0)|0⟩ ̸= 0.

Proof Using (13), (16) and the completeness relation
∑

n |n⟩⟨n| = 1, where the sum
is over the full spectrum of the theory, the non-zero vacuum expectation value can be
written as

va =
∑

n

∫
d3x

{
⟨0|j0a(x)|n⟩⟨n|O|0⟩ − ⟨0|O|n⟩⟨n|j0a(x)|0⟩

}

=
∑

n

∫
d3x

{
e−ipn·x ⟨0|j0a(0)|n⟩⟨n|O|0⟩ − eipn·x ⟨0|O|n⟩⟨n|j0a(0)|0⟩

}

= (2π)3
∑

n

δ(3)(p⃗n)
{
e−iEnt ⟨0|j0a(0)|n⟩⟨n|O|0⟩ − eiEnt ⟨0|O|n⟩⟨n|j0a(0)|0⟩

}
̸= 0 .

Since Qa is conserved, va should be time independent. Therefore, taking a derivative
with respect to t,

0 = −i(2π)3
∑

n

δ(3)(p⃗n)En

{
e−iEnt ⟨0|j0a(0)|n⟩⟨n|O|0⟩+ eiEnt ⟨0|O|n⟩⟨n|j0a(0)|0⟩

}
.

The two equations can only be simultaneously true if there exist a state |n⟩ ≡ |φa⟩
such that δ(3)(p⃗n)En = 0 (i.e., a massless state) and ⟨0|O|n⟩ ⟨n|j0a(0)|0⟩ ̸= 0. ✷

Broken generators:
Nambu-Goldstone
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Degenerate multiplets in 
the spectrum

Massless spin-0 particles 
in the spectrum (GBs)
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Fields and their transformations (1)

• Example: O(N) linear sigma model

Vacuum manifold

42

• SSB pattern G→H:  GB fields ~ coordinates of the vacuum manifold G/H

Figure from A. Manohar 
hep-ph/9606222

φ0 = (0,0,v) 
Reference vacuum

N=3:   G=O(3),   H=O(2),    G/H = S2

N=3  

broken generatorsGoldstone fields

Callan, Coleman, Wess, Zumino ‘69



Fields and their transformations (2)

• GBs & massive fields (ψ) transformation

Non-linear representation of the group G,  linear when restricted to H

Representation of unbroken subgroup H under which ψ transforms
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• SSB pattern G→H:  GB fields ~ coordinates of the vacuum manifold G/H

Callan, Coleman, Wess, Zumino ‘69



Back to SU(n)L x SU(n)R    n = 2,3

Unbroken

Broken  

SU(n) generators

GeneratorsTransformation

h-1, element of SU(n)V 
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