

C Cârloganu LPC/IN2P3/CNRS

COMET@JParc Facility (KEK/JAEA)

43 institutes,18 countries

v Exp Facility T2K→ SK

yramatsudai Shrine

LINAC 330m, 400 MeV

States - ----

Rapid Cycling Sync 350m, 25 Hz, 1 MW 400 MeV → 3 GeV

J-PARC - 物質 生品社学実験施設

Material & Life Science Facility muon & pulsed neutron sources

Main Ring 1.6km Sync, 0.75 MW

Hadron Exp Facility

cLFV in muon channels

 $BR(\mu \rightarrow e$

 $\Sigma E = m; \Sigma \vec{P}$ vertex; coincide

E(Al, Pb, Ti) ≈1 single elect well defined e well defined

SM with $m_v > 0$

$$(\boldsymbol{\gamma}) \propto \left| \sum U_{\mu i}^* U_{ei} \frac{m_{\nu_i}^2}{M_W^2} \right|^2 \sim 10^{-54}$$

,	BR(μ → eγ) 90% C.L.				
MeV)	PSI/MEG	2016	4.2×10^{-13}		
	PSI MEG II		4 × 10 ⁻¹⁴		

\circ	BR(μ → eee) 90% C.L.				
=0	PSI/SINDRUM	1988	1.0 × 10 ^{−12}		
nce	JINR	1991	3.6 × 10 ^{−11}		
	PSI/PSI/Mu3e		10 ⁻¹⁵ -		

	00	MeV
--	----	-----

ron;	$CR(\mu \rightarrow e, N), bound$			
energy	4.3 x 10 ⁻¹²	Ti	1993	
time	4.6 x 10 ⁻¹¹	Pb	1996	
	7 x 10 ⁻¹³	Au	2006	

Improve by a factor 10⁴ the present limit $R_{\mu e} < 7 \ 10^{-13}$

This requires.	10¹⁸ stop
This requires: -	high bacl

$$\frac{\left(\mu^{-}+N(A,Z)\rightarrow e^{-}+N(A,Z)\right)}{\mu^{-}+N(A,Z)\rightarrow \nu_{\mu}+N(A,Z-1)\right)}$$

pped muons

kground suppression (N_{bckg} << 0.5)

µ – e conversion in muonic atoms :: experimental concept

© Lobashev and Djilkibaev, MELC experiment [Sov.J.Nucl.Phys. 49, 384 (1989)]

- Soft pions confined with solenoidal B field

Proof of Principle : MUSIC @ RCNP, OSAKA University

3.5T and graphite proton target MuSIC muon yields

Science

μ⁺ : 3x10⁸/s with 400W µ⁻ : 1x10⁸/s with 400W

10¹¹/s with 50 kW, possible!

PHYSICAL REVIEW ACCELERATORS AND BEAMS

Delivering the world's most intense muon beam

S. Cook, R. D'Arcy, A. Edmonds, M. Fukuda, K. Hatanaka, Y. Hino, Y. Kuno, M. Lancaster, Y. Mori, T. Ogitsu, H. Sakamoto, A. Sato, N. H. Tran, N. M. Truong, M. Wing, A. Yamamoto, and M. Yoshida Phys. Rev. Accel. Beams 20, 030101 - Published 15 March 2017

> 素粒子の一つであるミューオンを世 界最高の効率で生成する装置 「MuSIC」。宇宙の始まりに何が起 こったのか、宇宙はどのような法則で 成り立っているのかを、大量のミュー オンと最新技術を駆使して研究する

- © Lobashev and Djilkibaev, MELC experiment [Sov.J.Nucl.Phys. 49, 384 (1989)]
 - Soft pions confined with solenoidal B field
 - Strong gradient to increase the yield through magnetic reflection

Delayed DAQ gate to suppress prompt backgrounds Narrow proton pulses O(10¹⁰) out-of-time protons suppression

Material target	Atomic number (Z)	Muonium lifetime (ns)
Aluminum	13	864
Titanium	22	330
Lead	82	74

- © Lobashev and Djilkibaev, MELC experiment [Sov.J.Nucl.Phys. 49, 384 (1989)]
 - Soft pions confined with solenoidal B field
 - Strong gradient to increase the yield through magnetic reflection

Delayed DAQ gate to suppress prompt backgrounds Narrow proton pulses O(10¹⁰) out-of-time protons suppression

> Atmospheric muons can fake signal events \Rightarrow proportional to the running time

 \Rightarrow higher beam intensity is preferable

OMET

 $cLFV :: \mu - e conversion in muonic atoms$

Muonic atoms

μ^- stopped in a target \rightarrow 1s bound state

+

muonic X-Rays

COMET design

COMET design

105 MeV e-

Detector solenoid (1T)

Theorem and a second and a seco

No photons and (high p) neutrons from the target getting to the detector! No low momentum charged particles either ...

A símulated COMET event

COMET design :: detection section

read out by APDs (operates @ 1 T)

- $2 \times 2 \times 12 \text{ cm}^3$ (10.5 X₀)

OMET

COMET, a 2 -stage experiment (lately 2-> 2,5->3)

Phase α

2022

• Low intensity run (260 W) without Pion Capture Solenoid

Pion/Muon Transport

thick graphite

• Thin graphite p-target

No capture solenoid magnet

- Proton beam diagnostic detectors
- Secondary particle detectors

Total background: 0.01 events Running time: 0.4 yrs (1.2 107 s)

Phase II

COMET Phase 1

COMET Phase-I :: Electron Detectors (CyDet)

Cylindrical drift chamber (CDC)

1 Tesla magnetic

Muon stopping target

Four-hold

coincidence provides trigger and PID

70

4-rings of ultra fast scintillators read by optical fibres and SiPMs

Cylindrical trigger hodoscope (CTH)

Return yoke

- Solenoid
- xy distribution)
- distribution

Píon Capture Solenoid at J-PARC since Nov 2024

©Y Fukao, J-PARC PAC Jan 25

Connected to Muon Transport Solenoid in December

Guide Rail

Guide block and rail were utilized based on the preliminary test.

OMET

All magnets available - (almost) ready to use!

- DS was delivered at KEK Tsukuba in Sep. 2024.
- BS was delivered at J-PARC in Mar. 2022.

©Y Fukao, J-PARC PAC Jan 25

Cylindrical Drift Chamber

Oct. 2024

©Y Fukao, J-PARC PAC Jan 25

Timeline

©Y Fukao. J-PARC PAC Jan 25						
	2024			20		
	Q1	Q2	Q3	Q4	Q1	Q2
Open Shield						
CS Inner Shield Manufacturing						
CS Inner Shield Installation						
Target Manufacturing		_				
Target Installation		Fa	Cilit	.y		
Collimator Shield Manufacturing						
Collimator Shield Installation						
Beamline Apparatus Installation						
Radiation Shield Installation						
CS Delivery Preparation						
CS Installation						
CS Commissioning	R /					
DS+BS Installation	IV	lag	net	S		
DS+BS Commissioning						
All Magnets Commissioning						
Detector Assembly + Test						
Detector Installation		oto	octo	re		
Detector Commissioning	D			л <mark>5</mark>		
Phase-I LI Physics						
Phase-I LI Beam Measurement						
Phase-I						

Each challenge is an opportunity

Physics Sensitivity for COMET phase-I $BR(\mu^- + Al \rightarrow e^- + Al) = 3.1 \times 10^{-15}$

$$BR(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_{\mu} \cdot f_{cap}} A_e$$

Tyj Ph

8 GeV, 3.2 KW proton beam

 N_{μ} : # of stopping muons in the muon stopping target f_{cap} : fraction of muon capture

0.6 for Al A_e : detector acceptance = 0.04

 $N_{\mu} = 1.5 \times 10^{16}$ number of stopped muons Del

Running time ~ 150 days

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	20
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Antiproton-induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032

Summary of the estimated background events for a single-event sensitivity of 3×10^{-15}

Non analog simulation using Importance Sampling and Backward Monte Carlo

C. Cârloganu, COMET Review for Phase-I, 19.07.19

Rare muons and muon-induced electrons w/o CRV signals, undergoing high angle scattering before penetrating in the detection volume

Very expensive to simulate with high accuracy with direct MC (G4), much better with a backward MC

Atmospheric Background Topology

108 MeV sneaking e+ generated by the interaction of an atmospheric muon with

A tracker module: 5 modules

Characterisation of the Atmospheric Background

COMET Phase 1

- Radiation levels for COMET and Geant
- In the detector regions for 150

very significant pileup::simulation under development

CM42, 29.02.2024

OMET

Upstream CRV

Fluence over full operation \rightarrow integrity of the detectors

Instantaneous flux during operation \rightarrow Rate of hits \rightarrow significant loss of efficiency above 1.5 kHz/cm² \rightarrow fake vetoes \rightarrow dead time for COMET

3 chambers in coincidence out of 5

eff chamber	93	95	98
ineff CRV	3.1 10 ⁻³	1.2 10 ⁻³	10-4

NUC & PA UShieldAllHitsProjHits (Hz/cm2)

$Acc = Acc_{Geo} \bullet \varepsilon_{Trigger} \bullet \varepsilon_{DAQ} \bullet \varepsilon_{Finding} \bullet \varepsilon_{Tracking} \bullet \varepsilon_{quality} \bullet \varepsilon_{MomentumWindow} \bullet \varepsilon_{TimeWindow}$ ~20% 99% 90%

99%

COMET Phase-I :: CDC :: Track Finder

Blue hits correspond to the **Red** points are hits caused from signal electron. background processes

270°

blue: signals Hit selection using red : backgrounds **Gradient Boosted** Decision Trees (GBDT) and Hough Transform 180° 114

95% background rejection for 99% hit efficiency

Proton Target and Muon Transport

PCS 4.4T, 700 mm graphite target

Proton interaction point (upper view of target) ×10⁶ 0.6 LocalX [mr Third Cylinde Second Cylinder First Cylinder 20 --0.5 22 2 1 2 2 2 10 -0.40 -0.3 -10 -0.2 <u>Falanlaalaadaadaa baabaalaada</u> 200 100 -500-200 10 15 20 LocalX [mm] -20 -15 -10 -5 0 5 LocalZ [mm] TS exit TS mid 0.03 Entries 0.025 0.02 0.015 0.0 0.00 50 100 150 20 Vertical Distance to Beam Axis [mm] -100 50 100 150 200 Vertical Distance to Beam Axis [mm] -50200 0

Proton entry point on first target cylinder

Red : *p*, *e*+, π +, μ +, Magenta: μ -, p > 70 MeV/c, Black : π -, Blue: *e*-, p> 100 MeV/c , Green : Stopped μ

