

## Introduction to $\mu \rightarrow e$ Conversion

Yoshitaka KUNO RCNP, Osaka University

April 14th, 2025 Workshop on "Lepton Flavour Change in Nuclei" ECT\*, Trento, Italy

Thanks for the organizers, my last visit to ECT\* was 1998.

#### Outline



1: CLFV Physics 2: Muon CLFV 3: What is  $\mu^- \rightarrow e^-$  Conversion ? 4:  $\mu^- \rightarrow e^-$  Conversion Experiment 5:  $\mu^- \rightarrow e^-$  Conversion Phenomenology 6:  $\mu^- \rightarrow e^+$  Conversion 7: Future : PRISM/PRIME 8: Summary



#### **CLFV** Physics

Charged Lepton Flavour Violation (CLFV)

老

#### **CLFV** in the Standard Model



S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340 W.J. Marciano et al.. Phys. Lett. B 67 (1977) 303 B.W. Lee et al., Phys. Rev. Lett. 38 (1977) 937 B.W. Lee et al., Phys. Rev. D 16 (1977) 1444.



#### **BSM Physics Scale Reach**



from European particle Physics Strategy Update (2019)

light colour: present dark colour: future prospect

5

#### Various CLFV Theoretical Models



The MECO Experiment to Search for Coherent Conversion of Muons to Electrons September 27, 2002 6

#### Model Dependent CLFV Predictions CLFV Predictions (for $\mu \rightarrow e\gamma$ and $\mu$ -e conversion),



### Muon CLFV



#### Present Upper Limits for CLFV Searches

| process                                           | present limit           | future                   |
|---------------------------------------------------|-------------------------|--------------------------|
| $\overline{	au 	o \mu \eta}$                      | $< 6.5 \times 10^{-8}$  | $10^{-9} - 10^{-10}$     |
| $	au 	o \mu \gamma$                               | $< 6.8 \times 10^{-8}$  |                          |
| $	au 	o \mu \mu \mu$                              | $< 3.2 \times 10^{-8}$  |                          |
| $\tau \rightarrow eee$                            | $< 3.6 \times 10^{-8}$  |                          |
| $\overline{K_L \to e\mu}$                         | $< 4.7 \times 10^{-12}$ |                          |
| $K^+ \to \pi^+ e^- \mu^+$                         | $< 1.3 \times 10^{-11}$ |                          |
| $B^0 \to e\mu$                                    | $< 7.8 \times 10^{-8}$  |                          |
| $B^+ \to K^+ e \mu$                               | $< 9.1 \times 10^{-8}$  |                          |
| $\overline{Z^0 \to e\mu}$                         | $< 7.5 \times 10^{-7}$  |                          |
| $Z^0 \to e \tau$                                  | $< 1.2 \times 10^{-5}$  |                          |
| $Z^0 	o \mu \tau$                                 | $< 9.8 \times 10^{-6}$  |                          |
| $H^0 \to e\mu$                                    | $< 3.5 \times 10^{-4}$  |                          |
| $H^0 \to e \tau$                                  | $< 3.7 \times 10^{-3}$  |                          |
| $H^0 \to \mu \tau$                                | $< 2.5 \times 10^{-3}$  |                          |
| $\mu^+ \to e^+ \gamma$                            | $< 4.2 \times 10^{-13}$ | $10^{-14}$ (MEG II)      |
| $\mu^+ \to e^+ e^+ e^-$                           | $< 1.0 \times 10^{-12}$ | $10^{-16}$ (Mu3e)        |
| $\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$ | $< 7.0 \times 10^{-13}$ | $10^{-17}$ (COMET, Mu2e) |
| $\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}$ | $< 3.6 \times 10^{-11}$ | $10^{-17}$ (COMET, Mu2e) |
| $\mu^+e^- \rightarrow \mu^-e^+$                   | $< 8.3 \times 10^{-11}$ |                          |

<mark>x10<sup>-4</sup></mark>



#### 7.1 History - how it all began

In the fall of 1976 rumors spread about an experiment performed at SIN for the search of the decay  $\mu \rightarrow e\gamma$ . A debate was going on, whether or not the decay had been observed. The rumors traveled from SIN via email to R. Eichler at Stanford and from him to a graduate student in the lecture-class of James Bjorken. The next week, J. Bjorken in turn gave the students an exercise to compute the decay rate and also confronted his colleague Steven Weinberg with the rumor. It took a few weeks after Weinberg's talk at the APS meeting to reach the New York Times. There it read on February 8<sup>th</sup> 1977: *Experimenters in Switzerland have reportedly observed an "impossible" transmutation of atomic particles. This has thrown the world community of theoretical physicists into a frenzy of speculations, calculations and publications (S. Weinberg).* This inspired R. Hofstadter of Stanford to initiate an experiment at LAMPF for  $\mu^+ \rightarrow e^+\gamma$  to try to resolve the dispute around the SIN experiment.

**Permanent link:** 

by R. Eichler

https://doi.org/10.3929/ethz-b-000526612

## $\mu^+ \rightarrow e^+ \gamma$ : History

| Year | 90% CL on $\mathcal{B}(\mu \to e\gamma)$ Collaboration/Lab |                       | Reference                         |
|------|------------------------------------------------------------|-----------------------|-----------------------------------|
| 1947 | $1.0 	imes 10^{-1}$                                        | Chalk River           | Hincks and Pontecorvo [1948]      |
| 1948 | .04                                                        | Washington University | Sard and Althaus [1948]           |
| 1955 | $2.0 \times 10^{-5}$                                       | Nevis                 | Steinberger and Lokanathan [1955  |
| 1959 | $7.5 	imes 10^{-6}$                                        | Liverpool             | O'Keefe et al. [1959]             |
| 1959 | $2.0 \times 10^{-6}$                                       | Nevis                 | Berley <i>et al.</i> [1959]       |
| 1959 | $1.0 \times 10^{-5}$                                       | Rochester             | Davis <i>et al.</i> [1959]        |
| 1959 | $1.2 \times 10^{-6}$                                       | CERN                  | Ashkin <i>et al.</i> [1959]       |
| 1960 | $1.2 \times 10^{-6}$                                       | LBL                   | Frankel <i>et al.</i> [1960]      |
| 1961 | $2.5\times10^{-5}$                                         | Carnegie              | Crittenden et al. [1961]          |
| 1962 | $1.9 	imes 10^{-7}$                                        | LBL                   | Frankel <i>et al.</i> [1962]      |
| 1962 | $6.0 	imes 10^{-8}$                                        | Nevis                 | Bartlett et al. [1962]            |
| 1963 | $4.3 	imes 10^{-8}$                                        | LBL                   | Frankel <i>et al.</i> [1963]      |
| 1964 | $2.2\times10^{-8}$                                         | Chicago               | Parker <i>et al.</i> [1964]       |
| 1971 | $2.9 \times 10^{-8}$                                       | Dubna                 | Korenchenko et al. [1971]         |
| 1977 | $3.6 	imes 10^{-9}$                                        | TRIUMF                | Depommier et al. [1977]           |
| 1977 | $1.1 \times 10^{-9}$                                       | SIN                   | Povel <i>et al.</i> [1977]        |
| 1979 | $1.9 \times 10^{-10}$                                      | LAMPF                 | Bowman <i>et al.</i> [1979]       |
| 1982 | $1.7 \times 10^{-10}$                                      | LAMPF                 | Kinnison $et al.$ [1982]          |
| 1986 | $4.9 \times 10^{-11}$                                      | LAMPF/Crystal Box     | Bolton <i>et al.</i> [1986, 1988] |
| 1999 | $1.2 \times 10^{-11}$                                      | LAMPF/MEGA            | Brooks <i>et al.</i> [1999]       |
| 2010 | $2.8 \times 10^{-11}$                                      | PSI/MEG               | Adam <i>et al.</i> [2010]         |
| 2011 | $2.4 \times 10^{-12}$                                      | PSI/MEG               | Adam <i>et al.</i> [2011]         |

# What is $\mu^- \rightarrow e^-$ Conversion



#### **Muonic Atom**

- µ<sup>-</sup> is stopped in material and it forms a muonic atom.
- •µ<sup>-</sup> cascades down from excited states to the ground (1s) state by emitting Auger electrons and muonic X rays.
- In the ground state, μ<sup>-</sup>
   either decays in orbit or
   is captured by a
   nucleus.

Bound Muon Decay in Orbit (DIO)  $\mu^- + N \rightarrow e^- \nu \overline{\nu} + N$ Nuclear Muon Capture (NMC)  $\mu^- N(A, Z) \rightarrow \nu_\mu N(A, Z - 1)$ 



#### Lifetime of Muonic Atoms

 $\frac{1}{\tau_{\mu a tom}} = \Lambda_{\text{Cap}} + Q\Lambda_{\text{free}}$  $\Lambda_{\text{CAP}} \propto Z_{\text{eff}}^4$ Q: Huff factor $Q = 0.975 \quad \text{for Iron (Z=26)}$  $Q = 0.844 \quad \text{for lead (Z=82)}$ 

| nucleus | Z  | lifetime (ns) |
|---------|----|---------------|
| С       | 6  | 2027          |
| Al      | 13 | 864           |
| Ti      | 22 | 330           |
| Cu      | 29 | 164           |
| Pb      | 82 | 74            |



#### $\mu^- \rightarrow e^-$ Conversion : Signal

Neutrinoless Muon to Electron Conversion

$$\mu^{-}N(A,Z) \to e^{-}N(A,Z)$$

$$\Delta L_{\mu} = -\Delta L_e = -1$$



Event Signature for the transition to the ground state :

a single mono-energetic electron

$$E_{\mu e} = \frac{(m_N + m_\mu - B_\mu)^2 - m_N^2 + m_e^2}{2(m_N + m_\mu - B_\mu)} \\ \sim m_\mu - B_\mu - E_{recoil}$$

| nucleus | Z  | $E_{\mu e}$ (MeV) |
|---------|----|-------------------|
| AI      | 13 | 104.97            |
| S       | 16 | 104.70            |
| Ti      | 22 | 104.30            |
| Cu      | 82 | 103.50            |
| Au      | 79 | 95.56             |
| Pb      | 82 | 94.02             |

#### Coherency

#### Coherency

When the initial and final states are the same (ground state), all the nucleons can contribute to the process, and the rate of conversion is enhanced by  $A^2$  (or  $Z^2$ ).

Transitions to excited states are suppressed.

**Definition of Conversion Rate** 

$$\operatorname{CR}(\mu^{-}\mathrm{N} \to e^{-}\mathrm{N}) \equiv \frac{\Gamma(\mu^{-}\mathrm{N} \to e^{-}\mathrm{N})}{\Gamma(\mu^{-}\mathrm{N} \to \nu_{\mu}X)}$$

### Experimental Advantages of $\mu^- \rightarrow e^-$ Conversion (1)

#### (1) Separation of Signals and Normal Muon Decay



### Experimental Advantages of $\mu^- \rightarrow e^-$ Conversion (2)

#### (2) Ability to Use High Intensity Beams

|                | Measurements                      | Major<br>background               | intensity $(R_{\mu})$       |
|----------------|-----------------------------------|-----------------------------------|-----------------------------|
| μ→eγ           | coincidence<br>of decay particles | accidentals $(\propto R_{\mu}^2)$ | <10 <sup>8</sup> /sec       |
| µ→eee          | coincidence<br>of decay particles | accidentals $(\propto R_{\mu}^2)$ | <10 <sup>(8-9)</sup> /sec ? |
| µ-e conversion | no coincidence                    | beam related                      | 10 <sup>11</sup> /sec       |

accidental background = more than one muon decays at the same time to mimic the event signature

#### Disadvantages of $\mu^- \rightarrow e^-$ Conversion

 $(R_{\mu})$ 

#### The cost of muon beam lines is high!

20

#### Backgrounds for $\mu^- \rightarrow e^-$ Conversion

Muon-induced backgrounds

Beam-related backgrounds

Other backgrounds

Bound muon decay in orbit (DIO)  $(\mu^- + N \to e^- \nu_\mu \bar{\nu}_e + N)$ Radiative nuclear muon capture (RMC)  $(\mu^- N \to \nu_{\mu} N' \gamma, \gamma \to e^+ e^-)$ Particles from muon nuclear capture Radiative nuclear pion capture (RPC)  $(\pi^- N \to N' \gamma, \gamma \to e^+ e^-)$ Beam electrons Muon decay in flights Neutron induced background Antiproton induced background

Cosmic-ray induced background False tracking others

#### Bound Muon Decay in Orbit (DIO)

$$\mu^- + N(A, Z) \rightarrow e^- + \nu_\mu + \overline{\nu}_e + N(A, Z - 1)$$



#### Bound Muon Decay in Orbit (DIO)

DIO spectra for AI DIO endpoint spectrum for AI



A. Czarnecki and X. i Tormo and W. Marciano, Physical Review D 84, 013006 (2011)

# Bound Maon Decay in Orbit (DIO)

000 1000000

880

#### DIO endpoint spectrum for AI B coefficient



A. Czarnecki and X. i Tormo and W. Marciano, Physical Review D 84, 013006 (2011)

#### Bound Muon Decay in Orbit (DIO)



from COMET Phase-I TDR



Good momentum resolution is needed.

25

#### Radiative Muon Capture (RMC)

$$\mu^- + N(A, Z) \to N(A, Z - 1) + \nu + \gamma; \quad \gamma \to e^+ e^-$$

Using an appropriate target

Maximum photon energy (endpoint) :

$$E_{\gamma}^{\max} = m_{\mu} - B_{\mu} - E_{\text{rec}} + M(A, Z) - M(A, Z - 1)$$

Mass Requirement of Muon target N(A, Z):

$$E_{\mu e} > E_{\gamma}^{\max} \implies M(A, Z) < M(A, Z-1)$$

|    | $E_{\mu e}$ | $E_{\gamma}^{\max}$ | k <sub>max</sub> |
|----|-------------|---------------------|------------------|
| AI | 104.9       | 101.8               | 90               |
| Au | 95.56       | 93.81               | 88               |
| Ti | 104.3       | 102.5               | 93               |

 $k_{max}$  is the empirical endpoint of the spectrum determined by the data that is fitted to the Primakoff (closure approximation) model?

#### Radiative Pion Capture (RPC)

$$\pi^- + N \to N' + \gamma; \quad \gamma \to e^- e^+ \quad (m_\pi > m_\mu)$$

Using a pulsed beam, a delayed time window is employed for measurement.

10<sup>-8</sup>

**10**<sup>-10</sup>

10<sup>-12</sup>

**10**<sup>-14</sup>

**10**<sup>-16</sup>

**10<sup>-18</sup>** 

10<sup>-20</sup>

10<sup>-22</sup>

10<sup>-24</sup>

10<sup>-26</sup>

10<sup>-28</sup>

10<sup>-30</sup>

10<sup>-32</sup>

stopped pions/ proton

Total proton on target (POT):  $10^{21}$  $10^{21} \times 10^{-2} \times 10^{-3} \times 10^{-18} = 0.01$ 

The measurement window starts at 700 ns after the beam arrival makes total 10<sup>-18</sup> suppression

High Z targets cannot be used due to their short lifetimes.



Unconvoluted

### $\mu^- \rightarrow e^-$ Conversion Experiments



### $\mu^- \rightarrow e^-$ Conversion : History

|      |                       |                   | -                                |          |
|------|-----------------------|-------------------|----------------------------------|----------|
| Year | 90% Limit             | Lab/Collaboration | Reference                        | Material |
| 1952 | $1.0 \times 10^{-1}$  | Cosmic Ray        | Lagarrigue and Peyrou [1952]     | Sn, Sb   |
| 1955 | $5.0 \times 10^{-4}$  | Nevis             | Steinberger and Wolfe [1955]     | Cu       |
| 1961 | $4.0 \times 10^{-6}$  | LBL               | Sard <i>et al.</i> [1961]        | Cu       |
| 1961 | $5.9 \times 10^{-6}$  | CERN              | Conversi et al. [1961]           | Cu       |
| 1962 | $2.2 \times 10^{-7}$  | CERN              | Conforto et al. [1962]           | Cu       |
| 1964 | $2.2 \times 10^{-7}$  | Liverpool         | Bartley et al. [1964]            | Cu       |
| 1972 | $1.6 \times 10^{-8}$  | SREL              | Bryman <i>et al.</i> [1972]      | Cu       |
| 1977 | $4.0 \times 10^{-10}$ | SIN               | Badertscher <i>et al.</i> [1977] | S        |
| 1982 | $7.0\times10^{-11}$   | SIN               | Badertscher <i>et al.</i> [1982] | S        |
| 1988 | $4.6 \times 10^{-12}$ | TRIUMF            | Ahmad <i>et al.</i> [1988]       | Ti       |
| 1993 | $4.3 \times 10^{-12}$ | SINDRUM II        | Dohmen $et al.$ [1993]           | Ti       |
| 1996 | $4.6 \times 10^{-11}$ | SINDRUM II        | Honecker et al. [1996]           | Pb       |
| 2006 | $7.0 \times 10^{-13}$ | SINDRUM II        | Bertl <i>et al.</i> [2006]       | Au       |

#### Summery of Current Limits on $\mu^- \rightarrow e^-$ Conversion

|          | Z  | spin        | CR upper limit          |
|----------|----|-------------|-------------------------|
| sulfur   | 16 | 0           | 7 x 10 <sup>-11</sup>   |
| titanium | 22 | 0, 5/2, 7/2 | 4.3 x 10 <sup>-12</sup> |
| copper   | 29 | 3/2         | 1.6 x 10 <sup>-8</sup>  |
| gold     | 79 | 5/2         | 7 x 10 <sup>-13</sup>   |
| lead     | 82 | 0, 1/2      | 4.6 x 10 <sup>-11</sup> |

# Current Limits on $\mu^- \rightarrow e^-$ Conversion (2004)

#### SINDRUM-II (PSI) 1m A exit beam solenoid F inner drift chamber B gold target G outer drift chamber H superconducting coil C vacuum wall D scintillator hodoscope I helium bath $(\mathsf{J})$ E Cerenkov hodoscope J magnet yoke G $(\mathbf{A})$ configuration 2000 SINDRUM II

$$B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$$

one e<sup>-</sup> and one e<sup>+</sup> background at 98 MeV/c ?
e<sup>+</sup> peak at 90 MeV/c ?



### Improvement of $\mu^- \rightarrow e^-$ Conversion Sensitivity



# $B(\mu N \rightarrow eN) \leq 10^{-16}$

with a factor of 10,000 improvement

#### Improvements for Signal Sensitivity



 $10^{11} \mu$ /s for 50 kW proton beam power or  $10^{18}$  muons in total

### MuSIC at RCNP, Osaka University

#### MuSIC (Muon Science Intense Channel) since 2011



## PCS : 3.5T solenoid field and graphite target

MuSIC: 10<sup>5</sup> muons/sec/W PSI: 3x10<sup>2</sup> muons/sec/W



(RCNP proton cyclotron 400 W) (PSI proton cyclotron 1.2 MW)

S. Cook et al., Phys. Rev. Accel. Beams, vol. 20, no. 3, p. 030101, 2017.

# New Experiments of $\mu^- \rightarrow e^-$ Conversion




## Mu2e at Fermilab



#### 6x10<sup>10</sup> muons/s from 8 kW, 8 GeV proton beam



## From MELC to MECO (1992 - 2005)

# MELC

**MEC** 



Proposal (1992) at Moscow Meson Factory

#### R. M. Dzhilkibaev and V. M. Lobashev, Sov. J. Nucl. Phys. 49, 384 (1989)



BNL E940 (1997) one of the RSVP (rare symmetry violating processes) with KOPIO

terminated in 2005

# $\mu^- \rightarrow e^-$ Conversion Phenomenology



## CLFV in EFT : RGE

#### RGE mixes different operators.



A. Crivellin, S. Davidson, at al., JHEP 117 (2017) 5 S. Davidson, Eur. Phys. J. C76 (2016) 370

## CLFV in EFT : Dipole vs. Contact Interactions



S. Davidson and B. Echenard, Eur. Phys. J. C 82 (2022) 9, 836

43



# Rate of $\mu^- \rightarrow e^-$ Conversion



nucleon form factors overlap integral (leptons and nucleus)

45

"One of the major topics in this workshop"

# Model Discrimination with Different Muon Targets

5% for light targets, 20% for heavy targets



R. Kitano, M. Koike and Y. Okada, Phys.Rev. D66 (2002) 096002; D76 (2007) 059902V. Cirigliano, R. Kitano, Y. Okada, and P. Tuzon, Phys. Rev. D80 (2009) 013002

# Model Discrimination with Different Muon Targets (2)

#### Scalar (n,p)+Vector (n,p)(+Dipole)





choose a target to maximize the constraints on the operators, represented by a large misalignment angle.

S. Davidson, YK, M. Yamanaka, Phys. Lett. B790 (2019) 380-388 J. Heeck, R. Szafron, and Y. Uesaka , Nucl.Phys.B 980 (2022) 115833



## Inelastic $\mu^- \rightarrow e^-$ Conversion

"Inelastic"  $\mu^- \rightarrow e^-$  Conversion  $\mu^- N(A, Z) \rightarrow e^- N(A, Z)^*$ 

Conversion to excited states.incoherent processes

Event Signature for the transition to the excited state : a single mono-energetic electron



$$E_{\mu e}^{\ast} = E_{\mu e}^{\ast}(gs) - E_{es}^{\ast}$$

when the energy levels of excited states are well separated.

## Inelastic $\mu^- \rightarrow e^-$ Conversion

 $\mu^- \rightarrow e^-$  conversion to the excited states

#### aluminum



from COMET Phase-I TDR: (notes, DIO at 10-15)



## Inelastic $\mu^- \rightarrow e^-$ Conversion (Aluminium)



Mu2e spectrum response

default signal region (103.6-105 MeV/c) DIO (green)

The peak of elastic conversion can be either coherent or incoherent?

W. C. Hax

Rule, Physical R

, 025501 (2025)



# Experimental Observation of Inelastic $\mu^- \rightarrow e^-$ Conversion

Experimental considerations for potential observation?

(1) Suppression of low energy tail in the spectrum by GBDT.

(2) Suppression of DIO electrons

Use the light target with low Z for the small "B" coefficient (p.24).





# Polarized $\mu^- \rightarrow e^-$ Conversion

 $\mu^- \rightarrow e^-$  conversion with spin polarized muons could be used to determine the chirality of the outgoing electron.

Creating a highly spin-polarized muonic atom for CLFV measurements could be extremely challenging!

- High-intensity muon sources, such as COMET/Mu2e
- Atomic capture
- Hyperfine interaction, when a nucleus has a spin

Re-polarization of muonic atom

# $\mu^- \rightarrow e^+$ Conversion



# $\mu^- \rightarrow e^+$ Conversion in a Muonic Atom

# $\mu^- + N(A, Z) \rightarrow e^+ + N(A, Z - 2)$

- Lepton number violation (LNV) and charged lepton flavour violation (CLFV)
- Long range interaction
  - Exchange of light Majorana neutrino is small (<10<sup>-40</sup>)

• 
$$< m_{\mu e} > = |\sum U_{\mu i} U_{ei} m_{\nu_i}|$$

- Short range interaction
  - TeV LNV physics

# $\mu^- \rightarrow e^+$ Conversion in a Muonic Atom

# $\mu^- + N(A, Z) \rightarrow e^+ + N(A, Z-2)$

The final state is either ground state or excited states. Event Signature for the transition to the ground state :

$$E_{\mu e^+} = m_{\mu} - B_{\mu} - E_{rec} + M(A, Z) - M(A, Z - 2)$$



#### Incoherent

# Background for $\mu^- \rightarrow e^+$ Conversion : RMC

$$\mu^- + N(A, Z) \to N(A, Z - 1) + \nu + \gamma; \quad \gamma \to e^+ e^-$$

Using an appropriate target

Maximum photon energy (endpoint) :

$$E_{\gamma}^{\max} = m_{\mu} - B_{\mu} - E_{\text{rec}} + M(A, Z) - M(A, Z - 1)$$

Mass Requirement of Muon target N(A, Z):

$$\begin{split} E_{\mu e^+} > E_{\gamma}^{\max} & \Rightarrow \quad M(A, Z-2) < M(A, Z-1) \\ E_{\mu e} > E_{\gamma}^{\max} & \Rightarrow \quad M(A, Z) < M(A, Z-1) \end{split}$$

ex. <sup>32</sup>S, <sup>40</sup>Ca, <sup>48</sup>Ti, <sup>50</sup>Cr, <sup>54</sup>Fe, <sup>58</sup>Ni, <sup>64</sup>Zn, <sup>70</sup>Ge (for light and medium nuclei)



# $\mu^- \rightarrow e^+$ Conversion : Current Limits (1998)



#### Current limits

 $\mu^{-} + \text{Ti} \rightarrow e^{+} + \text{Ca}(\text{gs}) \le 1.7 \times 10^{-12}$  $\mu^{-} + \text{Ti} \rightarrow e^{+} + \text{Ca}(\text{ex}) \le 3.6 \times 10^{-11}$ 

(a) positron spectrum

- (b) prompt and delayed timing
- (c) cosmic-ray background

RMC endpoint is 93 MeV/c, instead of maximum off 99 MeV/c (maybe <sup>48</sup>Sc(0+;6.7MeV) excited ?)

The sensitivity of COMET/Mu2e should be comparable to  $\mu^- \rightarrow e^-$  Conversion.

J. Kaulard et al. (SINDRUM-II), Phys. Lett. B422 (1998) 334.

# $\mu^- \rightarrow e^+$ Conversion in Gold ????

### $e^+$ peak at 90 MeV/c ?

- The signal energy of  $\mu^- + Au \rightarrow e^+ + Ir$  is 91.96 MeV.
- The energy shift (from the material in front) can be 0.6 MeV.
- The expected peak energy is 91.36 MeV.
- It is about 1 MeV higher than the observed peak.
- $k_{\rm max}$  for RMC in the Primakoff model is 88 MeV.

arXiv:2009.00214v1



# $\mu^- \rightarrow e^+$ Conversion : History

•

.

| Process                                                          | 90%-C.L. upper limit  | Place  | Year | Reference                         |  |
|------------------------------------------------------------------|-----------------------|--------|------|-----------------------------------|--|
| $\mu^-$ + Cu $\rightarrow e^+$ + Co                              | $2.6 \times 10^{-8}$  | SREL   | 1972 | Bryman <i>et al.</i> (1972)       |  |
| $\mu^-$ + S $\rightarrow e^+$ + Si                               | $9 \times 10^{-10}$   | SIN    | 1982 | Badertsher <i>et al.</i> $(1982)$ |  |
| $\mu^-$ + Ti $\rightarrow e^+$ + Ca(gs)                          | $9 \times 10^{-12}$   | TRIUMF | 1988 | Ahmad <i>et al.</i> (1988)        |  |
| $\mu^-$ + Ti $\rightarrow e^+$ + Ca(ex)                          | $1.7 \times 10^{-10}$ | TRIUMF | 1988 | Ahmad <i>et al.</i> (1988)        |  |
| $\mu^-$ + Ti $\rightarrow e^+$ + Ca(gs)                          | $4.3 \times 10^{-12}$ | PSI    | 1993 | Dohmen <i>et al.</i> (1993)       |  |
| $\mu^-$ + Ti $\rightarrow e^+$ + Ca(ex)                          | $8.9 \times 10^{-11}$ | PSI    | 1993 | Dohmen et al. (1993)              |  |
| $\mu^-$ + Ti $\rightarrow e^+$ + Ca(gs)                          | $1.7 \times 10^{-12}$ | PSI    | 1998 | Kaulard <i>et al.</i> (1998)      |  |
| $\mu^- + \mathrm{Ti} \rightarrow e^+ + \mathrm{Ca}(\mathrm{ex})$ | $3.6 \times 10^{-11}$ | PSI    | 1998 | Kaulard <i>et al.</i> (1998)      |  |

| $\mu^- \rightarrow e^-$ conversion |                       |            |                                  |    |                                      | $\mu^- \rightarrow e^+$ experiments were   |
|------------------------------------|-----------------------|------------|----------------------------------|----|--------------------------------------|--------------------------------------------|
| 1972                               | $1.6 \times 10^{-8}$  | SREL       | Bryman et al. [1972]             | Cu | $\left(1\right)$                     | made at the same time as                   |
| 1977                               | $4.0 \times 10^{-10}$ | SIN        | Badertscher <i>et al.</i> [1977] | S  | $\bigcirc$                           | $\mu^- \rightarrow e^-$ experiments.       |
| 1982                               | $7.0 \times 10^{-11}$ | SIN        | Badertscher <i>et al.</i> [1982] | S  | $\begin{pmatrix} 2 \\ \end{pmatrix}$ |                                            |
| 1988                               | $4.6 \times 10^{-12}$ | TRIUMF     | Ahmad <i>et al.</i> [1988]       | Ti | (3)                                  |                                            |
| 1993                               | $4.3 \times 10^{-12}$ | SINDRUM II | Dohmen <i>et al.</i> [1993]      | Ti | $\left(4\right)$                     | Where is (5) for $\mu^- \rightarrow e^-$ ? |
| 1996                               | $4.6 \times 10^{-11}$ | SINDRUM II | Honecker et al. [1996]           | Pb |                                      |                                            |
| 2006                               | $7.0 \times 10^{-13}$ | SINDRUM II | Bertl <i>et al.</i> [2006]       | Au |                                      | 61                                         |

# SINDRUM II $\mu^- \rightarrow e^-$ Conversion on Ti (1998)

Wintz, P., 1998, in Proceedings of the First International Symposium on Lepton and Baryon Number Violation, edited by H.V. Klapdor-Kleingrothaus and I.V. Krivosheina (Institute of Physics, Bristol/Philadelphia), p. 534.

$$CR(\mu^{-} + Ti \rightarrow e^{-} + Ti) < 6.1 \times 10^{-13}$$

Lepton-Baryon'98, Trento, ECT\*, Italy, April 20-25,1998

# Future : PRISM/PRIME



# $B(\mu N \rightarrow eN) \leq 10^{-18}$

with a factor of 1,000,000 improvement

# Muon Storage Ring: Merit (1)

Allowing the use of high-Z target material

Flight length of 17 m for COMET/Mu2



Flight length of 200 m

Pion survival rate ~5x10-4

Pion survival rate  $< 10^{-39}$ 

The measurement can start from about the beam arrival time, since no pions remain,





diameter 13 m, 5 turns

# Muon Storage Ring : Merit (2)

2 Allowing the use of thinner targets

Phase rotation (synchrotron oscillation)

By accelerating slow muons and decelerating fast muons, a beam energy spread can be narrowed.





smaller number of RF's

#### Muon Storage Ring

PRISM=Phase Rotated Intense Slow Muon source

# PRISM/PRIME (2003)





PRISM FFA R&D at Osaka University (2003 - 2007)



### Fixed Field Alternating Gradient Synchrotron (FFA)

- FFA is suitable for acceptation low-energy muons
  - large beam acceptance
  - fast beam acceleration
  - synchrotron oscillation



#### FFA R&D at Osaka

• Scaling FFA with DFD triplet magnets  $B(r) \propto \left(\frac{r}{-}\right)^5$ 



# **Advanced Muon Facility** at Fermilab in the US (2022)

# One Concept for $\mu^- N \rightarrow e^- N$

 Spiral Detector Solenoid greatly reduces rate seen by detector, opens up new detector designs (from PRISM)



Future advanced muon facility at Fermilab discussed in Snowmass 2022 workshop by the FNAL people.

Snowmass RPF5

# PRISM FFA Phase Rotation at Osaka University (2003 - 2007)





Demonstration of phase rotation has been made.

# Global Timeline of Muon CLFV



modified from the muon CLFV white paper for the 2020 update of European Strategy of Particle Physics

 $\times 100,000$ 



# Summary


## Summary

The history, experiments, and phenomenology of  $\mu \rightarrow e$ conversion are presented, along with the planned experiments and long-term improvements.

Although the  $\mu \rightarrow e$  conversion is an indirect search for BSM, it would be crucial to develop the necessary tools to understand the structure of BSM if it were discovered.



## Backup

