Exclusive Processes at JLab

Mechanical properties of hadrons: Structure, dynamics, visualization

Kyungseon Joo and Stefan Diehl

University of Connecticut

April 3, 2025

UCONN | UNIVERSITY OF CONNECTICUT

4/3/2025

3-Dimensional Imaging of Quarks and Gluons

Generalized Parton Distributions (GPDs)

Study GPDs: Deeply Exclusive Processes

- + Access to transversity degrees of freedom described by chiral-odd GPDs
- Distribution Amplitude (DA) is involved as additional soft non pert. quantity

Deeply Virtual Meson Production in the GPD regime

- DVMP enables Flavour decomposition of GPDs.
- The small-size regime: the production of q-qbar pair with sizes << hadronic size dominates.
 - QCD factorization and GPD extraction assume that this regime is attained.

Thomas Jefferson National Accelerator Facility (Jefferson Lab)

- CEBAF Upgrade completed in September 2017
 - ightarrow electron beam

$$\rightarrow E_{max} = 12 \text{ GeV}$$

$$\rightarrow$$
 I_{max} = 90 µA

$$\rightarrow \mathrm{Pol}_\mathrm{max} \sim 90\%$$

ECT* Workshop Trento

CLAS12 run groups

Run Group A (Unpolarized LH₂ target)

- ★ unpolarized cross section off proton
- ★ A_{LU} in Beam Spin Asymmetries

Run Goup B (Unpolarized LD₂ target)

★ Complementary to RG-A → allow for u/d quark flavor separation

Run Group C (longitudinally polarized NH₃

★ F_{UL} and F_{LL}

and ND₃)

Run Group K (Unpolarized LH₂ target)

- ★ 6.5, 7.5, 8.4 GeV e- beam
- ★ F_{UU,L}, F_{UU,T} Separation

Run Group H (transversely polarized NH₃)

★ F_{UT} structure function

→ scheduled for FY 2029

Program covers measurements of beam helicity, longitudinal and transverse polarized target asymmetries using detectors in Halls A, B, and C.

and lepton charge asymmetries when positron beams will be available.

CLAS DVCS – BSA and Cross Sections

The first dedicated DVCS experiment with CLAS, 2005, uses a small angle calorimeter.

ECT* Workshop Trento

(deg)

F.X. Girod et al., Phys. Rev. Lett 100, 162002 (2008)

(deg)

 $Q^2 = 3.3$ $X_p = 0.46$

 $Q^2 = 2.8$ $x_0 = 0.45$

a(t)

First Measurements of TCS with CLAS12

DVMP (π^0) Differential Cross Section with CLAS

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon (\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

4/3/2025

ECT* Workshop Trento

DVMP (π^0) L/T Separation

σ_τ (red circles) and σ₁ (blue triangle) for Q²=1.5 GeV² x_n=0.36

 σ_{τ} (red circles) and σ_{L} (blue triangle) for Q²=1.75 GeV² x_B=0.36

M. Defurne Phys. Rev. Lett. 117 (2016) 26, 262001

Pseudoscalar meson electroproduction with CLAS12

Transverse densities for u and d quarks in the proton (after global fit)

• \bar{E}_T is related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon

V. Kubarovsky et al.

The fit results agree with the large-N_c limit analysis by P. Schweitzer and C. Weiss *Phys.Rev.C* 94 (2016) 4, 0452 02

GPD parameterization used in GK model can be improved through global fit using exisiting Hall A and Hall B data

L/T Separated π⁺/K⁺ Cross Sections in Hall C with **12 GeV**

Light pseudoscalar mesons (π^+ , K^+ , π^0)

One of the most stringent tests of the reaction mechanism is the Q² dependence of cross section

 $-\sigma_1$ scales to leading order as Q⁻⁶

- $-\sigma_T$ does not
- Need to validate the reaction mechanism for reliable interpretation of the GPD program – key are precision longitudinal-transverse (L/T) separated data over a range of Q² at fixed x/t
 - If σ_T is confirmed to be large, it could allow for detailed investigations of transversity GPDs. If, on the other hand, σ_L is measured to be large, this would allow for probing the usual GPDs

Q⁻ⁿ scaling test range doubles with 18+ GeV beam and HMS+SHMS

L/T Separated π^+/K^+ Cross Sections in Hall C with **18+ GeV** JLab

Light pseudoscalar mesons (π^+ , K⁺, π^0)

The Hall C Future Light Pseudoscalar Meson Team Leads Dave Gaskell, JLab Tanja Horn, CUA Stephen Kay, U. Regina Wenliang (Bill) Li, Stony Brook U. Pete Markowitz, FIU, Garth Huber, U. Regina

We welcome interested groups of collaborators for Hall C Future Studies

PHASE 1 SCENARIO

Q⁻ⁿ scaling test range nearly doubles with 18 GeV beam and HMS+SHMS

Opportunities with the Neutral Particle Spectrometer (NPS) in Hall C

Light pseudoscalar mesons (π^+ , K^+ , π^0)

The NPS is a facility in Hall C, utilizing the well-understood HMS and the SHMS infrastructure, to allow for precision (coincidence) cross section measurements of neutral particles (γ and π^0).

Experiment	Exp #	Beam	Target	PAC Days	Rating
π ⁰ SIDIS	<u>E12-13-007</u>	ē⁻	LH ₂	(26)	A-
DVCS and Exclusive π^{0}	<u>E12-13-010</u>	ē⁻	LH ₂	53	А
Wide Angle Compton Scattering (WACS)	<u>E12-14-003</u>	e ⁻ ,γ	LH ₂	18	A-
Wide Angle Exclusive π^0 photoproduction	<u>E12-14-005</u>	e ⁻ ,γ	LH ₂	(18)	В
DVCS – days moved from Hall A	<u>E12-06-114</u>	ē⁻	LH ₂	35	А
$A_{LL} \& A_{LS}$ Polarization Observables in WACS at large s, t, and u	E12-17-008	CPS: $ec{\gamma}$	$N\vec{H}_3$	46	A-
Timelike Compton Scattering (TCS) off a Transversely Polarized Proton	<u>C12-18-005</u>	CPS: $\vec{\gamma}$	$[N\vec{H}_3]_{T}$	35	C2

E12-13-010 will provide relative σ_L and σ_T contributions to the π^0 cross section up Q²~6 GeV² to verify reaction mechanism **E12-14-005** data will help confirm scaling in exclusive photoproduction of π^0 mesons and tests of the handbag mechanism

Exclusive ρ/ω production with CLAS12

 $\sigma_{LT'} \sim r_{00}^8 \sim \operatorname{Im}\left[\langle H_T \rangle^* \langle E \rangle + \langle \bar{E}_T \rangle^* \langle H \rangle\right]$

Invariant Mass: $\pi^+ + \pi^-$

Exclusive $\boldsymbol{\phi}$ production with CLAS12

Exclusive Φ production

- Exclusive Φ production probes gluon GPDs
- Transverse spatial distribution of gluons
 - x < 0.01 measured at HERA, FNAL
 - x > 0.1 practically unknown

$$A_{LU}^{\sin(\phi_t)} \thicksim \operatorname{Im}[\left\langle \bar{E}_T \right\rangle_{LT}^* \left\langle H \right\rangle_{LL} + \frac{1}{2} \left\langle H_T \right\rangle_{LT}^* \left\langle E \right\rangle_{LL}]$$

B. Clary (UConn)

ECT* Workshop Trento

Exclusive $\rho/\omega/\phi$ production with 20+ GeV in Hall B

- Below Q² = 10 GeV²: decrease of the slope with Q² (related to meson production in large-size configurations which slowly dies out.
- Above Q² = 10 GeV²: universal t-slope that can be attributed to the gluon GPD.

- At present 12 GeV kinematics, the small size regime is very questionable.
- At 20+ GeV one could go to higher Q2 (assuming sufficient luminosity) at moderate x and be much closer to the small size regime.

From GPDs to Transition Distribution Amplitudes (TDAs) with CLAS

window to the 3D nucleon structure!

Phys. Rev. Lett. 125, 182001 (2020)

16

Exploring Transition GPDs with CLAS12

Transition GPDs

Factorization of hard exclusive processes

GPDs for resonance final states

Theoretical methods: Chiral dynamics, $1/N_c$ expansion of QCD

Processes

 $N \rightarrow \Delta$ in DVCS

 $N \rightarrow \Delta, N^*$ in π, η production

 $N \rightarrow \Lambda, \Sigma$ in K, K^* production

- → Provides access to p- Δ transition GPDs
- → 3D structure of the ∆ resonance and of the excitation process

- Extended Q² range → Advantage for factorisation
- Similar for non-diagonal DVCS

$N \rightarrow \Lambda, \Sigma, \Sigma^*$ GPDs in K production with CLAS12

Production mechanism

Same twist-3 mechanism with chiral-odd structures as π , η production

Symmetry relations for strange chiral-odd GPDs

 $N \rightarrow \Lambda, \Sigma$ related to $N \rightarrow N$ by conventional SU(3) flavor symmetry

 $N \rightarrow \Sigma^*$ related to $N \rightarrow N, \Lambda, \Sigma$ by SU(6) spin-flavor symmetry in large- N_c limit

Predictive power; quantitative predictions possible

Invariant mass distribution of pK^-

after $ep \to e'p'K^+K^-$ events are selected.

22 GeV kinematic coverage will be similar to exlcusive vecgtor meson production

From CLAS to JLAB to COMPASS to EIC

→ DVMP is also pursed at COMPASS and EIC
→ JLab (12+22 GeV) would be complementary to EIC

Conclusion and Outlook

- Exclusive meson production processes are important in accessing GPDs which provide a unifying framework to study the 3D structure of hadrons.
- One essential point concerns the approach to the small-size regime, where the production of q-qbar pair with sizes << hadronic size dominates. QCD factorization and GPD extraction assume that this regime is attained (!).
- 3. At present 12 GeV kinematics, whether we attain this regime is under investigation.
- At 20+ GeV energy and luminosity upgrade, one could go to higher Q² (assuming sufficient luminosity) at moderate x and be much closer to this regime.

UCONN | UNIVERSITY OF CONNECTICUT