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Effective action of chiral EFT in curved spacetime

Effective Lagrangian for pions and nucleons in Minkowski metric:
J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

N. Fettes, U.-G. MeiBBner, M. Mojzi§, and S. Steininger, Ann. Phys. (N.Y.) 283, 273 (2000); 288, 249 (2001).

For the purpose of obtaining the EMT one needs to consider the
coupling to the gravitational field.

J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343 (1991).

The LO action of pseudoscalar mesons in curved spacetime:
F2 F2
S, = /d“x\/—g {4g“” Tr(D,U(D, U)") + TTT(XUT + UXT)} ,
X = 2By(s + ip), DU =0,U —ir,U + iUl,, U = u? represents the pion

fields, B is related to the vacuum condensate of quark fields and s,
p. |, and r, are external sources.



H. Alharazin, D. Djukanovic, J. G. and M. V. Polyakov, Phys. Rev. D 102, no.7, 076023 (2020).
LO + NLO action of nucleons interacting with pions in curved
spacetime:
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where g*v and e} are the metric and vielbein gravitational fields.

NLO action contains two new LECs, ¢z and cs.



Building blocks:
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Energy-momentum-tensor

Using the definition of the EMT for bosonic matter fields
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we obtain in flat spacetime
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where 1, is the Minkowski metric tensor.



For the fermion fields we use

1 0S 0S
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where e is the determinant of e7, and obtain:
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Gravitational form factors of the nucleon

At chiral order four there are tree and one-loop contributions to the
nucleon matrix element of the EMT.
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Figure: Diagrams contributing to GFFs of the nucleon. Solid and dashed
lines correspond to nucleons and pions, respectively. Crosses stand for
EMT insertions.



Standard power counting rules apply to these diagrams:

>

>
>
>

The pion lines ~ p~2;
The nucleon lines ~ p~';
Interaction vertices from the Lagrangian of order N ~ p";

Vertices generated by EMT have orders corresponding to the
number of quark mass factors and derivatives acting on the
pion fields;

Derivatives acting on the nucleon fields ~ p°;

The momentum transfer between initial and final nucleons ~ p;

Integration over loop momenta ~ p*.

Power counting is realized in the results only after renormalization!



M. V. Polyakov, P. Schweitzer, Int. J. Mod. Phys. A 33, 26, 1830025 (2018).

The one-nucleon matrix element of the EMT is parameterised as
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(pi, si) and (py, s¢) correspond to incoming and outgoing nucleons,
and P = (pi+ps)/2, A=pr—pi, t = N2,

The tree-order diagrams up to chiral order four lead to
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y; and x; parameterize tree-order contributions of the third and
fourth chiral orders.



We renormalize loop diagrams by applying the EOMS scheme

J. G. and G. Japaridze, Phys. Rev. D 60, 114038 (1999),

T. Fuchs, J. G., G. Japaridze and S. Scherer, Phys. Rev. D 68, 056005 (2003).
Power counting violating contribution to A(t) is absorbed into c,.

cs cancels the divergent and power counting violating parts of D(t).
D(0) expanded in powers of the pion mass:
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Next we define the slopes of GFFs by writing the form factors as:

Alt) = 1+ sat+0(?),
J(t) = %+th+0(1‘2),

D(t) = D(0)+ spt+O(t?).



Chiral expansion of the loop contributions to the slopes:
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These expressions can be used for the analysis of lattice data.



M. V. Polyakov, Phys. Lett. B 555, 57 (2003),

M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, no. 26, 1830025 (2018),

A(t), J(t) and D(t) can be related to the energy and spin densities via
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The distribution of the pressure p(r) and shear forces s(r):
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Behavior of these quantities in the region 1/Ayene < r < 1/M, can
be obtained from GFFs for small t in chiral limit.



Expansion at t = 0 of GFFs in the chiral limit:
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F. T. gives the large distance behavior for 1/Agene < r < 1/M;:
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The above expressions satisfy the general stability conditions -
pe(r) >0 and 2s(r) + p(r) > 0.



Gravitational form factors of the deuteron

Matrix elements of conserved EMT operator for spin-1 systems:
M. V. Polyakov and B.-D. Sun, Phys. Rev. D 100 (2019) no.3, 036003
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q=p —p. P=(p+p)/2 and ¢’ = (p,0'), ¥ = (p,0) are
polarization vectors.

The one-particle states |p, o) satisfy the normalization condition

(p's0'lp, o) =2p° (27)° 6°(P — P')door-



J. Y. Panteleeva, E. Epelbaum, J. G. and U.-G. MeiBner, JHEP 07, 237 (2023)

In static approximation for the kinematics with P’ = 0, we obtain:
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The combinations of the form factors are given by

eol-qf) = MET)

J(-4%) = J(-9%).

Dot = PCI by (qr) - ECD)
Do(—q%) = E(—2q2),

Dy(-qt) = 2L




We extract the GFFs from the three-point function of the EMT
operator and two interpolating fields of the deuteron:

6L, (p/.p) = [ d*xd'y e 7P (O[T [DL,() T(0) Do (y)] 0]
USing the LSZ redUCtion (D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Rev. C 59, 617 (1999) ):

Fuv 1 v
(0| T |p,0) = =5 [(p* = Mg) (P"* = MG) GLI (P P)] 2. e -
My = 2my — Ep is the deuteron mass, E, - its binding energy, and Z -
the residue of the propagator.
The deuteron interpolating field:
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where «, 8 and a, b are the spin and isospin indices, respectively.
The two-point function of the deuteron interpolating fields:
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Vertex function G (p’, p) represented diagrammatically:

Figure: D-s represent the amplitudes of the deuteron interpolating field
interacting with two nucleon fields, T stands for the two-nucleon-irreducible
part of the vertex function. Solid and wavy lines denote the nucleons and
the EMT insertion, respectively.



The deuteron equation

The amplitude of the deuteron field interacting with a pair of nucleon
fields in the rest frame of the deuteron:

#k P T(p.K)
‘71‘(""):7’/+’"N/(27r)3 TE K1 Tc

where the NN scattering amplitude T satisfies:

T=V+VGT.

We consider the regulated LO NN potential of chiral EFT given by

/\4
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where Cs and Cr are LECs of the LO contact interactions.



We introduced smooth cutoff A to regularize UV divergences.

Our regularization violates EMT conservation, however such effects
appear to be rather small.

We set the cutoff parameter A ~ A, ~ 400 — 600 MeV.

A more systematic approach can be developed by applying a
symmetry-preserving regularization:
D. Djukanovic, M. R. Schindler, J. G. and S. Scherer, Phys. Rev. D 72, 045002 (2005),

H. Krebs and E. Epelbaum, Phys. Rev. C 110, no.4, 044004 (2024).



Calculation of the form factors

Matrix element of the EMT in the Breit frame for the initial and final
deuteron states with quantum numbers (—q/2,0) and (q/2, ")

R ki Pk
2.0 | Tl — q/2,0) = m? 1= e
<q/ o' HVl q/ 7U> mN/ (27() (27T)3 Da Cd(k )
Teddiabad (9 4Ky, 9 — ko ke — 9, —ky — 9) D 3f (ky)

’

(K2 + p3) (K3 + p3)

ps = vVmnEp and the arguments of the amplitude in the integrand
correspond to individual momenta of both nucleons.

We apply the standard Weinberg power counting for the few-body
sector of chiral EFT.



In our calculation, for EMT we include diagrams:

SN DU S S
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Figure: Diagrams where the graviton couples to the second nucleon are
not shown. Solid, dashed and wavy lines correspond to nucleons, pions
and gravitons, respectively.

One-loop corrections to the single-nucleon EMT merely renormalize
the nucleon mass, nucleon field and ¢z and cg.

OPE two-nucleon irreducible diagrams where the EMT couples to a
single nucleon are canceled by 1/my corrections to OPE potential.



LO contribution to GFFs is given by diagram a). It has the form:

s A3k
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where, up to the accuracy of our calculation
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k —q/2 and k + q/2 are the momenta of the incoming and outgoing
nucleons, respectively.



The regularized contributions of diagrams b) and c):
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The regularized contributions of diagrams d) and e) have the form:
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k=ki —k, —q/2and k =k; — ko +q/2.

Result of diagram with EMT of the LO NN contact interaction:

T,u,ll,f = _2(CS + CT)QIW .



We obtained the GFFs of the deuteron by calculating the matrix
elements of EMT numerically.

We fixed the coupling constant of the S-wave NN contact interaction
by reproducing the binding energy of the deuteron.

We show results for A = 500 MeV together with the results of (HZ)
F. He and I. Zahed, Phys. Rev. C 110, no.1, 014312 (2024)
for the deuteron GFFs in our parameterization.
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Figure: GFFs £ and 7 of the deuteron for A = 500 MeV. We compare our
results with the GFFs by HZ. Our two curves for 7 coincide due to
vanishing NLO contribution to this GFF.



Figure: GFFs D; for A = 500 MeV.

by HZ.
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We compare our results with the GFFs



While for comparison we plot the figures up to 800 MeV, our results
cannot be trusted at such large values.

Our calculated &, & and J show similar behavior to those of HZ.

Deviation of & from 1 at g = 0 is tiny, indicating that the effect of the
non-invariant regularization is rather small.

We fixed cg = —2.77 GeV~" such that our Dy(0) coincides with HZ.
The resulting g-dependence of our Dy is very similar to that of HZ.

Our D, has a different shape and D3 shows qualitatively different
behavior.

Our numerical results show a very mild cutoff dependence for A
between ~ 400 and 600 MeV.

Obtained GFFs demonstrate a reasonable convergence rate of the
chiral expansion for the deuteron GFFs.



Definition of spatial densities

E.Epelbaum, J.Gegelia, N.Lange., U.-G.MeiBner., M.V.Polyakov,
Phys. Rev. Lett. 129, 012001 (2022), [arXiv:2201.02565 [hep-ph]].

J.Y.Panteleeva, E.Epelbaum, J.Gegelia, U.-G.MeiBner,
Phys. Rev. D 106, no.5, 056019 (2022), [arXiv:2205.15061 [hep-ph]].

J.Y.Panteleeva, E.Epelbaum, J.Gegelia, U.-G.MeiBner,
[arXiv:2211.09596 [hep-ph]].

We revisited the definition of the charge density and other spatial
densities ...

Disclaimer:

What | know about internal structure of hadrons N

I
What | do not know 0!




Definition of spatial distributions has attracted much attention.
To give examples ...

The light-front approach allows one to define purely intrinsic spatial
densities, which have probabilistic interpretation

M. Burkardt, Phys. Rev. D 62 (2000), 071503(R).

G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).

G. A. Miller, Phys. Rev. C 79, 055204 (2009).

G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010), 1-25.

Y. Guo, X. Ji and K. Shiells, Nucl. Phys. B 969, 115440 (2021).

These densities are obtained as two-dimensional distributions.

Alternatively, the phase-space approach allows one to define fully
relativistic and unambiguous three-dimensional spatial densities.

C. Lorcé, Phys. Rev. Lett. 125, no.23, 232002 (2020).
C. Lorcé, P. Schweitzer, K. Tezgin, Phys. Rev. D 106, no.1, 1 (2022).

C. Lorcé, H. Moutarde, A. P. Trawinski, Eur. Phys. J. C 79, no.1, 89 (2019).

These densities depend on both coordinates and momenta.



| present definition of spatial densities via sharply localized states.

We use spherically symmetric wave packets, corresponding to
ZAMF.

Thanks Cedric Lorcé for pointing out that similar results for spin-0
systems have been published long ago in

G. N. Fleming, Charge Distributions from Relativistic Form Factors. Physical Reality & Math. Descrip., 357 (1974).



Localized states
Localized states:

[®.X,s) =

/ Jin s,p)e *X|p, s),

where X is the position of the system, and |p, s) are normalized as
(0, 8'Ip,s) = 2E(27)%0¢s 6@ (p' —p),  p=(E,p).
Profile function ¢(s, p) = #(|p|) corresponds to ZAMF and
| &plots.p)? -
It is convenient to define:

¢(p) = R%2 §(Rp),

Sharp localizations correspond to small R.



The charge density of a spin-0 system in ZAMF

Matrix elements of 5(r,0) for momentum eigenstates (Q = 1):
(P'|5(r,0)|p) = &P PI(E + E")F(qP),

F(qg?) is the electric FF and g = p’ — p.

The charge density distribution:

ABpdp'(E +E)
(2m)3V4EE’

(. X|p(r, 0)|, X) = / F (%) & (p')é(p) €/ X+

Without loss of generality we choose X = 0.

Introducing the total and relative momenta viap =P — q/2 and
p’ = P+ q/2, the charge density is written as

3 3
©.0r.0)0,0= [ EEET
(2n)3V4EE’

q * q iq-r
o(p-3)(p3) e

po(r) (E+E)F[(E-E)—q’]

X



Traditional interpretation of the charge density emerges by first
taking the static limit E = E’ = min the integrand:

d*Pas N o
P, naive (F)= / (27T)3q ¢<P — g)(b (P + g) F (—q2) glar,

and then taking the limit R — 0.

This can be done without specifying F (g%) and ¢(p) using the
method of

J.G., G.Japaridze, K.Turashvili, Theor. Math. Phys. 101, 1313 (1994).

The only non-vanishing contribution for R — 0 is obtained from the
region of large P:

F(~a?) [3(P)? "

PP
pnaive(r) - /7q

(2m)®
d® ;
g

This expression corresponds to ZAMF in states with R > 15




New definition in ZAMF

Taking the R — 0 limit without the static approximation results in

3P ~3 P . )2 _ ,
R R | LG [T

Using ¢(P) = ¢(|P|) and switching to spherical coordinates we get

1 "
o) = 4 [ FAdr)on(rs).
where )
d=q. o\ g, -
R — F(— 1qL-r
Pn(’l) /(27‘(‘)2 ( qL)e )
A isaunitvector,a, =h x (axh), g =a-h,a =la.|

The ZAMF expression p(r) is given by a continuous (isotropic)
superposition of the two-dimensional "images" of the system.



The full image of a three-dimensional object can be reconstructed
by putting together all possible two-dimensional projections.

Figure: 3D image as a composition of 2D pictures



Pnaive(r) is valid only for A > 1/m, because we have to take
A>R>1/m.

The validity of ZAMF definition does not depend on the relation
between A and 1/m.

pnaive(r) does not emerge from p(r) by taking the static limit:

pnaive(r)?é lim p(r)'

m—o0

Reason: the R — 0 and m — oo limits of p4(r) do not commute.



The dependence of p(r) on F(—q?) rather than on F(—q?) affects
the radial profile of the charge density.

We compare p(r) and pnaive(r) for a charged and a neutral particles.
We employ form factors

F(q%) = Go(q®) = (1 — ¢°/N?)~2

with A2 = 0.71 GeV?,

and

Fu(g?) = Ar/(1 + Br) Go(q?),

where 7 = —g?/(4m3), A= 1.70, B = 3.30.



charged particle

osf [ 7 N

4zr? p(r)

4zr? p(r)

0 0.5 1.0 15 2.0
r [fm]

Figure: Radial charge density distributions 47r2?p(r) (solid lines) and
4712 praive (1) (dashed lines) for a charged and a neutral particles.



EMT spatial densities for spin-0 particles
Matrix element of EMT in a localized state:

;" (r) = (¢,0]7(r,0)|®,0)

3p/d®p N
= [ e ¥ ) oR)E T Ol

a°Pd’q v v v
@nVaEE [ F9" — a"0") 01 () + 2P P76 ()

><¢(P q) & (P + g) g i)

g=p —-pand P=(p+p)/2.



Static approximation

Local densities in terms of FFs in the Breit frame emerge by
expanding the integrand in 1/m and localizing the wave packet:

a? _ig.
B = [ G mee (—at) e
tO/

nalve( ) = O )

b0 = A [aprpper [ 2

(2m)3
1 a3 i o
< anl G @ dD e e

92( q )efiq-r

19  and the second term of £/ _coincide with the spatial densities

defined via the gravitational FFs in the Breit frame.

M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26, 1830025.

Both of these terms do not depend on the packet.



Spatial densities in sharply localized states (R — 0)

2D A3~ A A
t*+(r)= N¢R/deunPV@2[ 92 } —iq-r

—Ns.p2 /w (q”é”+qig“”) ©1 [—qﬂ e—far
E).P=IB|

where g = (P q,q), P = (P,P), P = (1
qL=Px (qxﬁ),qi;_zﬁ and

Ny =

Ny g2
The dependence on the profile function remains in N, g and Ny g o



Interpretation

Separate interpretation of different contributions:
A. Freese and G. A. Miller, Phys. Rev. D 105, no.1, 014003 (2022), [arXiv:2108.03301 [hep-ph]].
There are two types of contributions:

1. Depending on the velocity - characterizing the system as a whole.
2. Contributions which are related to internal properties.

In ZAMF the term

i d2nd3 _ia.
(r) = NW/ (~qq + @ o) O [-3] ea"

is interpreted as characterizing the distribution of internal forces.



While normalization depends on the profile function spatial
distribution is uniquely determined by the EMT form factor.

We identify the traceless and the trace parts via
ion (71 i
)= ("7~ 39") s(r) + ap(r). @

Quantities s(r) and p(r) have been interpreted as the shear force
and the pressure, respectively.
M. V. Polyakov, Phys. Lett. B 555, 57 (2003).

M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26, 1830025.

This interpretation has been questioned in
X.Jiand Y. Liu, Phys. Rev. D 106, no.3, 034028 (2022).



Breit-frame expressions correspond to systems in ZAMF in states
with characteristic scales of packets much larger than 1/m.

Such packet is dominated by eigenstates of the energy with E ~ m.

t%(r) can be interpreted in this case as the spatial distribution of the
mass.



Sharp localization of the system requires huge amount of energy,
therefore the normalization factor for the energy and the momentum
distributions N r explodes. Again, the functional form of these
densities is uniquely determined by the corresponding form factors.



Summary

» Presented the effective chiral Lagrangian of pions and nucleons
up to the second chiral order in curved spacetime.

» Derived the corresponding EMT of pions and nucleons in flat
spacetime.

» Presented the one-loop contributions to GFFs of the nucleon.

» Discussed the calculation of the deuteron GFFs in chiral EFT,
the formalism and numerical results.

» Very briefly discussed spatial densities.



