BChPT x 1/Nc masses, currents and πN scattering

Jose L. Goity

Hampton University and Jefferson Lab

31 March 2025 - 04 April 2025

Outline

- 1/Nc expansion and baryons
- Baryons and the spin-flavor symmetry
- ▶ 1/Nc expansion in effective theory
- BChPT x 1/Nc
- Baryon masses and σ terms
- SU(3) Vector currents
- Axial currents
- $\blacktriangleright \pi N$ scattering
- Comments

Collaborators

Alvaro Calle-Cordon, Ishara Fernando, Rubén Flores-Mendieta, Jose Alarcón, Dulitha Jayakodige

$1/N_c$ expansion and baryons

Large N_c limit - 'tHooft framework: $SU(N_c)$, quarks in fundamental irrep, N_f fixed Setting scales: M_ρ , M_π , $M_{K's}$

Hadronic level N_c scalings: $F_{\pi} \sim \sqrt{N_c}$; $m_{\text{baryon}} \sim N_c$; $g_A \sim N_c$; $g_{\pi NN} \sim N_c^{3/2}$ $p_{k a} = \frac{g_A k^i G^{ia}}{F_c} = \mathcal{O}(\sqrt{N_c})$

@ large N_c : meson sector weakly coupled, meson-baryon coupling increasingly strong emergent dynamical constraints in baryon sector dictated by unitarity

Baryons and spin-flavor dynamical symmetry

[Gervais & Sakita (1984); Dashen & Manohar (1993)]

$$\sim \frac{k^{i}k'^{j}}{k^{0}} \frac{g_{A}N_{c}^{2}}{F_{\pi}^{2}} \langle B' | [X^{ia}, X^{jb}] | B \rangle = \mathcal{O}(N_{c}^{0})$$

$$\Rightarrow [X^{ia}, X^{jb}] = \mathcal{O}(1/N_{c}) \text{ key requirement for large } N_{c} \text{ consistency}$$

 S^{i} , T^{a} , X^{ia} generate contracted spin-flavor group $SU(2N_{f})$ $SU(2N_{f})$: organizing tool for $1/N_{c}$ expansion in baryons

 $N_{f} = 3$

ground state baryons: tower with $S = \frac{1}{2} \cdots \frac{N_c}{2}$

states in $SU(2) \times SU(3)$: $[S, R] = [S, (2S, \frac{1}{2}(N - 2S))]$

Spin-flavor Symmetry

- \bullet symmetry of spectrum at large N_c
- dynamical symmetry: not a Noether symmetry!
- imposes constraints in effective Lagrangians: relations between LECs
- mass splitting for $S = \mathcal{O}(N_c^0)$ are $\mathcal{O}(1/N_c)$ e.g. $m_\Delta m_N$
- $m_B = O(N_c) \Rightarrow @$ low energy NR expansion $\sim 1/N_c$ expansion

1/Nc in effective theory

Low energy light hadron sector:

ChPT consistent with requirements of $1/N_c$ expansion

Goldstone Boson sector: fully implemented long ago - includes η' for consistency: $M_{\eta'}^2 \sim \mathcal{O}(1/N_c)$ if $m_q = 0$.

Baryon sector: more recently implemented must include full baryon SF multiplet as degrees of freedom ($N_c = 3$ must include Δ)

BChPT x 1/Nc [Jenkins; Flores-Mendieta; Calle-Cordon & JLG]

• $m_B = O(N_c) \Rightarrow HB$ expansion is a $1/N_c$ expansion

• Lagrangians built with chiral and spin-flavor tensor operators:

$$\mathcal{L} = \mathbf{B}^{\dagger} T_{\chi} \otimes T_{SF} \quad \mathbf{B} \qquad \mathbf{B} = \begin{pmatrix} B_{S=1/2} \\ B_{S=3/2} \\ \vdots \end{pmatrix} \quad \text{GS baryons}$$

- \mathcal{T}_{χ} chiral tensor, \mathcal{T}_{SF} spin-flavor tensor \otimes of $\mathrm{SU}(2N_f)$ generators
- $1/N_c$ power counting: factor $1/N_c^{n-1}$ for n-body SF tensor
- Systematic construction using bases of SF tensors
- LECs: $\mathcal{O}(N_c^0)$, have a $1/N_c$ expansion themselves
- Lagrangian terms have well defined leading chiral and $1/N_c$ power

• Small mass scale: $\Delta_{HF} = m_{3/2} - m_{1/2}$ - need to link chiral and $1/N_c$ expansions: ξ expansion: $\xi = \mathcal{O}(1/N_c) = \mathcal{O}(p)$

Baryon chiral Lagrangians to $\mathcal{O}(\xi^3)$

$$\begin{split} \mathcal{L}_{B}^{(1)} &= \mathbf{B}^{\dagger} \left(iD_{0} - \overset{\circ}{\mathcal{B}}_{A} \ u^{ia}G^{ia} - \frac{C_{\mathrm{HF}}}{N_{c}} \hat{S}^{2} + \frac{c_{1}}{2\Lambda} \hat{\chi}_{+} \right) \mathbf{B} \qquad \overset{\circ}{\mathcal{B}}_{A} &= \frac{6}{5} g_{A}^{N} \\ \mathcal{L}_{\mathbf{B}}^{(2)} &= \mathbf{B}^{\dagger} \left(\frac{c_{2}}{\Lambda} \chi_{+}^{0} + \frac{C_{1}^{4}}{N_{c}} u^{ia}S^{i}T^{a} + \frac{\tau_{1}}{N_{c}} \left(u_{0}^{2}G^{ia}D_{i} + \overleftarrow{D}_{i}u_{0}^{3}G^{ia} \right) \\ &+ \frac{1}{m} \left(\vec{B}_{+}^{0} + \vec{B}_{+}^{a}T^{a} \right) \cdot \vec{S} + \frac{1}{2m} \left(2 \left(\kappa_{0}\vec{B}_{+}^{0} + \kappa_{1}\vec{B}_{+}^{a}T^{a} \right) \cdot \vec{S} + \frac{6}{5} \kappa_{2}B_{+}^{ia}G^{ia} \right) + \cdots \right) \mathbf{B} \\ \mathcal{L}_{\mathbf{B}}^{(3)} &= \mathbf{B}^{\dagger} \left(\frac{1}{2m} D^{\mu}D_{\mu} + \frac{c_{3}}{N_{c}\Lambda^{3}} \hat{\chi}_{+}^{2} + \frac{h_{1}}{N^{3}} \hat{S}^{4} + \frac{h_{2}}{N_{c}^{2}\Lambda} \hat{\chi} + \hat{S}^{2} + \frac{h_{3}}{N_{c}\Lambda} \chi_{+}^{0} \hat{S}^{2} + \frac{h_{4}}{N_{c}\Lambda} \chi_{+}^{a} \left\{ S^{i}, G^{ia} \right\} \\ &+ \frac{C_{4}^{A}}{N_{c}^{2}} u^{ia} \left\{ \hat{S}^{2}, G^{ia} \right\} + \frac{C_{4}^{A}}{N^{2}} u^{ia} S^{i}S^{j}G^{ja} + \frac{D_{1}^{A}}{\Lambda^{2}} \chi_{+}^{0}u^{ia}G^{ia} + \frac{D_{2}^{A}}{\Lambda^{2}} \chi_{+}^{a}u^{ia}S^{i} \\ &+ \frac{D_{3}^{A}(d)}{\Lambda^{2}} d^{abc} \chi_{+}^{a}u^{ib}G^{ic} + \frac{D_{3}^{A}(f)}{\Lambda^{2}} f^{abc} \chi_{+}^{a}u^{ib}G^{ic} \\ &+ \left(\frac{1}{8m^{2}} + \frac{g_{0}}{\Lambda^{2}} \right) \partial_{i}\mathcal{E}_{+i}^{0} + \left(\frac{1}{8m^{2}} + \frac{g_{1}}{\Lambda^{2}} \right) (D_{i}\mathcal{E}_{+i})^{a}T^{a} + \cdots \right) \mathbf{B} \end{split}$$

[Jenkins; Flores-Mendieta et al; Calle-Cordon & JLG; Fernando & JLG]

Combined chiral and 1/Nc expansions

$$= \int \frac{d^d k}{(2\pi)^d} \frac{i}{k^2 - M_\pi^2} \frac{i}{p^0 + k^0 - \underbrace{(m_{B'} - m_B)}_{\mathcal{O}(1/N_c)}} \times \text{vertex factors}$$

contains non-analytic terms:

$$(M_{\pi}^2 - (m_{\Delta} - m_N)^2)^{\frac{3}{2}}, \ tanh^{-1}\left(\frac{(m_{\Delta} - m_N)}{\sqrt{1/(-M_{\pi}^2 + (m_{\Delta} - m_N)^2}}\right)$$

link $1/N_c$ and chiral expansions:

 ξ - expansion : $\mathcal{O}(p) = \mathcal{O}(1/N_c) = \mathcal{O}(\xi)$

equivalent to not expanding non-analytic terms

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Baryon masses and σ terms [Calle-Cordon & JLG, Fernando, Alarcon & JLG]

- WF renormalization factor is $O(N_c)$ plays key role in N_c power counting consistency in loops
- \bullet mass corrections are $\mathcal{O}\left(N_{c}\right)$ (terms proportional to M_{GB}^{3})
- SU(3) mass splitting remain $\mathcal{O}\left(N_{c}^{0}\right)$
- M_{π} dependency from LQCD

$$\begin{aligned} \text{GMO} \quad & \Delta_{GMO} = \text{Th} : \left(\frac{g_A^N(LO)}{g_A^N}\right)^2 44 \pm 5 \text{MeV vs Exp: } 25.6 \pm 1.5 \text{MeV} \\ & \Delta_{GMO} = -\left(\frac{g_A}{4\pi F_\pi}\right)^2 \left(\frac{2\pi}{3} \left(M_K^3 - \frac{1}{4}M_\pi^3 - \frac{2}{\sqrt{3}} \left(M_K^2 - \frac{1}{4}M_\pi^2\right)^{\frac{3}{2}}\right) \\ & + \frac{2C_{HF}}{N_c} \left(-M_K^2 \log M_K^2 + \frac{1}{4}M_\pi^2 \log M_\pi^2 + \left(M_K^2 - \frac{1}{4}M_\pi^2\right) \log \left(\frac{4}{3}M_K^2 - \frac{1}{3}M_\pi^2\right)\right)\right) \\ & = 37 \text{MeV} + \mathcal{O}\left(1/N_c^3\right) \end{aligned}$$

$$\begin{aligned} \text{ES} \quad & \Delta_{ES} = m_{\Xi^*} - 2m_{\Sigma^*} + m_{\Delta} = \\ & \text{Th} : -\left(\frac{g_A^N(LO)}{g_A^N}\right)^2 6.5 \text{MeV vs Exp: } -4 \pm 7 \text{MeV} = \mathcal{O}\left(1/N_c\right) \end{aligned}$$

$$\begin{aligned} \text{GR} \quad & \Delta_{GR} = m_{\Xi^*} - m_{\Sigma^*} - (m_{\Xi} - m_{\Sigma}) = 0, \qquad \text{Exp: } 21 \pm 7 \text{MeV} \\ & \Delta_{GR} = \frac{h_2}{N_c} \frac{12}{N_c} \left(M_K^2 - M_\pi^2\right) + \underbrace{O\left(1/N_c\right) \text{UV finite no-analytic terms}}_{\sim 68 \text{MeV} \times \left(\frac{g_A^N(LO)}{g_A^N}\right)^2} \end{aligned}$$

all deviations from LO mass relations are $O(1/N_c)$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

 σ -terms: quark mass contributions to baryon masses: Feynman-Hellmann theorem

$$\begin{aligned} \sigma_{\pi N} &= \langle N \mid \hat{m}(\bar{u}u + \bar{d}d) \mid N \rangle = \hat{m} \frac{\partial m_N}{\partial \hat{m}} \quad \hat{m} = \frac{1}{2}(m_u + m_d) \\ \sigma_s &= \langle N \mid m_s \bar{s}s \rangle \mid N \rangle \\ \hat{\sigma} &= \hat{m} \langle N \mid \hat{m}(\bar{u}u + \bar{d}d - 2\bar{s}s) \mid N \rangle = \frac{\hat{m}}{m_8} \sigma_8 \quad m_8 = \frac{1}{\sqrt{3}}(\hat{m} - m_s) \\ \sigma_{\pi N} &= \hat{\sigma} + 2\frac{\hat{m}}{m_s} \sigma_s \end{aligned}$$

The σ puzzle: i) expect $\sigma_{\pi N} \sim \hat{\sigma}$ ii) LO ChPT: $\sigma_8 = \frac{1}{3} (\frac{5N_c - 3}{2}m_N - (2N_c - 3)m_{\Sigma} - \frac{N_c + 3}{2}m_{\Xi})$ gives $\hat{\sigma} \sim 23$ MeV - need for very large σ_s to agree with $\sigma_{\pi N}|_{\exp} > 50$ MeV iii) further puzzle: $\sigma_{\pi N} = \mathcal{O}(N_c)$ vs $\Delta_{GMO} = \mathcal{O}(1/N_c)$!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

BChPT × 1/Nc: 8 masses to NNLO - combine results for Δ_{GMO} and σ_8 giving parameter free relation. Use value of Δ_{GMO} to determine correction to $\hat{\sigma}$

 $\sigma = \sqrt{3} \frac{\hat{m}}{m_8} \sigma_8 + \Delta \hat{\sigma}$ $\Delta \hat{\sigma} \sim 40 \text{ MeV}$ key role of **10**: $\Delta \hat{\sigma}$: 40% from baryon **8** and 60% from **10** [Fernando, Alarcon & JLG]

Fit	Δ_{GMO}^{phys} MeV	σ_8 MeV	$\Delta \sigma_8$ MeV		$\sigma_{\pi N}$ MeV	σ _s MeV	σ ₃ MeV	$\sigma_{u+d}(p-n)$ MeV
1	25.6(1.1)	-583(24)	-382(13)	70(3)(6)	-	-	-1.0(3)	-1.6(6)
2	25.5(1.5)	-582(55)	-381(20)	70(7)(6)	69(8)(6)	-3(32)	-1.0(4)	-1.6(8)
3	25.8*	-615(80)	-384(2)	74(1)(6)	65(15)(6)	-121(15)	-	-

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Vector currents

• Diagrams A: different spin baryons in loop give $\mathcal{O}(N_c)$ terms - key cancellations give N_c consistency.

• Magnetic moments: Isovector is $\mathcal{O}(N_c)$, Isoscalar is $\mathcal{O}(N_c^0)$.

$$\mu_0 = \frac{1}{2}(\mu_p + \mu_n) = 0.44\mu_N$$
 $\mu_3 = \frac{1}{2}(\mu_p - \mu_n) = 2.35\mu_N$

- Charge radii: $\mathcal{O}(N_c^0)$
- SU(3) breaking in charges: Ademollo-Gatto theorem $\mathcal{O}(\xi^2)$ by non-analytic calculable loop terms $\mathcal{O}(N_c^0)$.

SU(3) breaking in vector charges of baryon octet

Calculable correction - finite loop contributions only: Ademollo-Gatto

	$\frac{\delta j}{f}$	$\frac{f_1}{1}$
	One-loop	LQCD
Λp	-0.067(15)	-0.05(2)
$\Sigma^{-}n$	-0.025(10)	-0.02(3)
$\Xi^-\Lambda$	-0.053(10)	-0.06(4)
$\Xi^-\Sigma^0$	-0.068(17)	-0.05(2)

LQCD [Shanahan et al (2015)]

		$\mathbf{BChPT} \times 1/N_c$	HBChPT; 8+10	HBChPT: 8 only	RBChPT: 8+10
Λp	0.952	-0.048	-0.080	-0.097	-0.031
$\Sigma^- n$	0.966	-0.034	-0.024	0.008	-0.022
$\Xi^-\Lambda$	0.953	-0.047	-0.063	-0.063	-0.029
$\Xi^-\Sigma^0$	0.962	-0.038	-0.076	-0.094	-0.030

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Charge radii of baryon octet

Magnetic moments

		$\langle r^2 \rangle [\text{fm}^2]$				Ļ	μ_{LO}	μ_{NNLO}	μ_{Exp}				
	Full	CT	Exp		р	2	2.691	Input	2.792847356(23)		μ_{LO}	μ_{NNLO}	μ_{Exp}
					n	-	1.794	Input	-1.9130427(5)	Δ^{++}	5.381	5.962	3.7 - 7.5
р	0.707	0.596	0.7071(7)		Σ	+ 2	2.691	2.367	2.458(10)	Δ^+	2.691	3.049	2.7(3.6)
n -	-0.116	-0.049	-0.116(2)		Σ^{0}) 0	.897	0.869		Δ^0	0	0.136	
Λ -	-0.029	-0.024		I	Σ	(0.897	-0.629	-1.160(25)	Δ^{-}	-2.691	-2.777	
D +	0 = 10	0 500			Λ	-1	0.897	-0.611	-0.613(4)	Σ^{*+}	2.691	3.151	
Σ^+	0.742	0.596			Ξ^0		1.794	-1.275	-1.250(14)	Σ^{*0}	0	0.343	
Σ^0	0.029	0.024			Ξ	(0.897	-0.652	-0.6507(25)	Σ^{*-}	-2.691	-2.465	
Σ^{-}	0.683	0.548	0.608(156)		Δ	⁺ p 2	2.537	3.65	3.58(10)	Ξ^{*0}	0	0.490	
Ξ^0 -	-0.016	-0.049			Σ^0	Δ 1	.553	1.57	1.61(8)	Ξ^{*-}	-2.691	-2.208	
					Σ^*	$^{*0}\Lambda = 2$	2.197	2.68	$2.73(25)^{a}$	Ω	-2.691	-2.005	-2.02(5)
Ξ-	0.633	0.548			Σ^*	$^{*+}\Sigma^{+} - 2$	2.537	-2.35	$-3.17(36)^{b}$				

2 LECs fitted

7 LECs fitted

Predicts charge radii and magnetic moments of all SU(3) vector currents relevant for precision semileptonic weak decays

Axial currents

[A. Calle-Cordon & JLG, I. Fernando & JLG]

Cancellation of N_c counting violating terms between N and Δ in loop contributions general feature for all loop contributions in BChPT $\times 1/Nc$

NNLO $g_A^{3,8}$ for **8** and **10** & LQCD

LQCD [Alexandrou et al (2016)]

- NNLO SU(3) g'_As: 7 LECs
- Fit LQCD varying M_{π}

(日)

• Very small M_{π} dependence

э.

$$T^{ba} = \frac{E_N + m_N}{2m_N} (\delta^{ab}(g^+(s,t) - i(\vec{k}_1 \wedge \vec{k}_2) \cdot \vec{\sigma} h^+(s,t)) \\ + i\epsilon^{bac} \tau^c (g^-(s,t) - i(\vec{k}_1 \wedge \vec{k}_2) \cdot \vec{\sigma} h^-(s,t)))$$

$${\it Re} \; f_\ell = rac{1}{2k} \sin(2\delta_\ell) ~~ {\it Im} \; f_\ell = rac{1}{k} \sin^2 \delta_\ell$$

NNLO contributions

 (D_{15})

 g_A^4

▲□▶ ▲□▶ ★ □▶ ★ □▶ = 三 の <

- NNLO calculation for general N_c in ξ -expansion describes general $\pi B \to \pi B'$
- renormalization implemented check consistency with large N_c
- Fits to the SAID data base for elastic πN scattering
- Fit Re parts of partial wave amplitudes up to D-waves, and also include Im part of the P_{33} amplitude.

- Obtain phase shifts and determine Im parts via unitarity
- Use the S-wave scattering lengths as constraints

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ | □ ● ○ ○ ○ ○

Comments

- EFTs of QCD MUST be consistent with a $1/N_c$ expansion.
- ln mesons it allows to include η' in ChPT.
- Huge impact in baryons: SF symmetry and Δ as active degree of freedom.
- Well defined tools to implement the expansion at hadronic level
- @ low energy the chiral and 1/N_c expansion must be linkedmost obvious way is the ξ-expansion
- BChPT x 1/Nc improves range of convergence of low energy expansion - tames the loop contributions
- More applications: SSA in electron-nucleon scattering [Weiss, Willemyns & JLG], Compton scattering, EMT,