ECT workshop: Trento, Italy March 31 - April 4, 2025

D(t) form factor of the neutron in the classical model and the comparison to the proton.

Andrea Mejía, PhD Student University of Connecticut In Collaboration with Peter Schweitzer

Partially supported by:

• ECT, NSF, QGT, DOE

Motivation

- Calculate hadronic D-term using classical model
- D(t) divergent for t \rightarrow 0 in Proton (QED effect for charged particles)
- D(t) of Proton comparable to Neutron in the experimentally measurable t-range
- Comparing results for EMT of Proton and Neutron
- Summary

Definition of EMT form factor for a nucleon

$$< p' \left| \hat{T}^{a}_{\mu\nu} \right| p > = \bar{u} \left[\frac{\gamma_{\mu} P_{\nu} + \gamma_{\nu} P_{\mu}}{2} A^{a}(t) + \frac{i(\sigma_{\mu\rho} P_{\nu} + \sigma_{\nu\rho} P_{\mu}) \Delta^{\rho}}{2m} B^{a}(t) + \frac{\Delta_{\mu} \Delta_{\nu} + g_{\mu\nu} \Delta^{2}}{4m} D^{a}(t) + m \bar{c}^{a}(t) g_{\mu\nu} \right] u e^{iqx}$$

$$t = q^2 = \Delta^2$$
, $P = \frac{1}{2}(p'+p)$, $\Delta = (p'-p)$, $\partial^{\mu}\hat{T}_{\mu\nu} = 0$, $\hat{T}_{\mu\nu} = \sum_{q}\hat{T}^{q}_{\mu\nu} + \hat{T}^{g}_{\mu\nu}$

- $\sum_{a} A^{a}(t), \sum_{a} B^{a}(t), \sum_{a} D^{a}(t), \sum_{a} \bar{c}^{a}(t) \rightarrow renormalization \ scale \ independent$
- $\sum_{a}^{a} \bar{A}^{a}(0) = 1$, $\sum_{a} B^{a}(0) = 0$, $\sum_{a} \bar{c}^{a}(t) = 0$ $A^{a}(t) + B^{a}(t) = 2 J^{a}(t)$, (X. Ji, PRL 78 (1997) 610)
- Constraints:

mass $\leftrightarrow A(\mathbf{0}) = 1$ (*i.e.* quarks and gluons carry 100% of nucleon momentum) spin $\leftrightarrow B(\mathbf{0}) = 0 \leftrightarrow J(0) = \frac{1}{2}$ (*i.e.* quarks and gluons carry 100% of nucleon spin) D-term $\leftrightarrow D(\mathbf{0}) \equiv D \leftrightarrow$ not fixed by spacetime symmetries (Polyakov, Weiss PRD 60:114017,1999)

Interpretation of EMT

• In Breit frame where $\Delta^{\mu} = (0, \vec{\Delta})$ defines the static EMT

$$T^{\mu\nu}(\vec{r}) = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}2E} < p' \left| \hat{T}^{\mu\nu} \right| p > e^{-i\vec{\Delta}\cdot\vec{r}}$$

- Components of the static EMT (same as in classical theory):
 - $T^{00} \rightarrow energy \ density$
 - $T^{0i} \rightarrow momentum \ density$
 - $T^{i0} \rightarrow energy flux$
 - $T^{ij} \rightarrow stress tensor$

(M.V. Polyakov, PLB 555 (2003) 57-62)

Interpretation of EMT (cont'd)

- $\int T^{00}(\vec{r})d^3(r) = M$ (mass of particle)
- $\hat{T}^{ij}(\vec{r}) = s(r)\left(\frac{r^i r^j}{r^2} \frac{1}{3}\delta_{ij}\right) + p(r)\delta_{ij}$ (stress tensor) $s(r) \rightarrow shear distribution$ $p(r) \rightarrow pressure\ distribution$
- $D = D_p = D_s \rightarrow$ related to stress tensor
- $D_p = m \int d^3r r^2 p(r)$ $D_s = -\frac{4}{15} m \int d^3r r^2 s(r)$

← Important!! Will come back to this

Illustration: Pressure and Shear Forces

 $p(r) = p_0 \theta(r - R) - \frac{p_0 R}{3} \delta(r - R), \qquad s(r) = \gamma \delta(r - R)$

 $p_0 = \frac{2\gamma}{R} \rightarrow$ Kelvin relation

Figure 3. The pressure and shear forces of nuclei (in units of p_0) as functions of r (in units of nuclear radius R_A) in the liquid drop model.

(Polyakov, PLB 555 (2003) 57-62)

Why a classical model?

- Since the discovery of electron in 1897 people have tried to develop classical models of a charged particle.
- First consistent relativistic model of an extended charged particle (Bialynicki-Birula PLA 182:346-352,1993).
- All previous model studies of hadronic D-terms included only short-range forces (em forces are "negligible" in hardons).
- Only one model was studied using hadronic short-range forces and the Coulomb long-range force (Varma, Schweitzer PRD 102, 014047 (2020)).
- Classical model reproduces QED for D(t), $t \rightarrow 0$ (Metz et al PLB 820 (2021)).

New study

• Construct classical model of neutron and calculate D-term.

Classical Model of the Proton

- Used to study EMT form factors of proton with long range EM forces.
- D-term becomes positive and divergent due to the long-range force for t→0 (Varma, Schweitzer PRD 102, 014047 (2020)).
- Divergence of D(t) visible at very small t and agrees with QED.
- Divergence due to QED effects for charged particles already known in literature (Kubis, Meissner NPA 671, 332 (2000); Donoghue et al PLB 529, 132 (2002)).

Classical Model

- Dust: non-interacting pressure-less distribution
- Dust particles described by density normalized as $\int_0^\infty d^3r \rho(r) = 1$
- Dust bound by interplay of classical fields: ϕ , V^{μ} , A^{μ}
- Field equations in static case where $V^{\mu} = (V^0, \vec{0}), A^{\mu} = (A^0, \vec{0}):$ $(-\Delta + m_V^2)V_0 = g_V \rho$ $(-\Delta + m_s^2)\phi = g_S \rho$ $-\Delta A_0 = e\rho$ $\rho F \equiv -\rho \nabla (eA_0 - g_S \phi + g_V V_0) = 0$ (equilibrium condition) $\frac{g_S^2}{\hbar c} = 91.64$ $\frac{g_V^2}{\hbar c} = 136.2$ $\alpha = \frac{e^2}{4\pi\hbar c} = \frac{1}{137}$ $m_S c^2 = 550 \, MeV, m_V c^2 = 783 \, MeV$

parameters from nuclear models (see Bialynicki-Birula (1993) for details)

Proton Model: Static solution to the classical equations

 $r \leq R$ region:

- $\rho(r) = f_{+}(r) f_{-}(r)$ • $eA_{0}(r) = e^{2} \left(\frac{f_{+}(r)}{k_{+}^{2}} - \frac{f_{-}(r)}{k_{-}^{2}} \right) + 2E_{B}$
- $g_s \phi(r) = g_s^2 \left(\frac{f_+(r)}{k_+^2 + m_s^2} \frac{f_-(r)}{k_-^2 + m_s^2} \right)$
- $g_{\nu}V_0(r) = g_{\nu}^2 \left(\frac{f_+(r)}{k_+^2 + m_{\nu}^2} \frac{f_-(r)}{k_-^2 + m_{\nu}^2}\right)$
- $f_{\pm}(r) = \frac{d_{\pm}}{4\pi} \frac{\sin(k_{\pm}r)}{r}$, $k_{\pm} = \frac{B \pm \sqrt{D}}{2Q^2}$
- $B = (g_s^2 e^2) m_v^2 (g_v^2 + e^2) m_s^2$
- $D = B^2 4e^2Q^2 m_s^2 m_v^2$, $Q^2 = e^2 g_s^2 + g_v^2$

With b_{ν} , b_s , d_+ , d_- , $2E_B$, R_p fixed from boundary conditions (No free parameters)

(Bialynicki-Birula PLA 182:346-352,1993)

• $\rho(r) = 0$ • $eA_0(r) = \frac{e^2}{4\pi r}$ • $g_s \phi(r) = \frac{b_s}{4\pi r} e^{-m_s(r-R)}$ • $g_v V_0(r) = \frac{b_v}{4\pi r} e^{-m_v(r-R)}$

r > R region:

Neutron Model: Static solution to the classical equations

 $r \leq R$ region:

r > R region:

•
$$\rho(r) = f_+(r) - f_-(r)$$

• $eA_{0(r)} = e^2 \left(\frac{f_+(r)}{k_+^2} - \frac{f_-(r)}{k_-^2} \right) + 2E_B = \mathbf{0}, \ \mathbf{e} \to \mathbf{0}$

•
$$g_s \Phi(r) = g_s^2 \left(\frac{f_+(r)}{k_+^2 + m_s^2} - \frac{f_-(r)}{k_-^2 + m_s^2} \right)$$

•
$$g_{\nu}V_0(r) = g_{\nu}^2 \left(\frac{f_+(r)}{k_+^2 + m_{\nu}^2} - \frac{f_-(r)}{k_-^2 + m_{\nu}^2}\right)$$

•
$$f_{\pm}(r) = \frac{d_{\pm}}{4\pi} \frac{\sin(k_{\pm}r)}{r}$$
, $k_{\pm} = \frac{B \pm \sqrt{D}}{2Q^2} \rightarrow (\mathbf{k}_- \rightarrow \mathbf{0}, \mathbf{neutron})$

•
$$B = (g_s^2 - e^2) m_v^2 - (g_v^2 + e^2) m_s^2$$

•
$$D = B^2 - 4e^2Q^2 m_s^2 m_v^2$$
, $Q^2 = e^2 - g_s^2 + g_v^2$

With b_{ν} , b_s , d_+ , d_- , $2E_B$, R_p fixed from boundary conditions (No free parameters)

(Bialynicki-Birula PLA 182:346-352,1993)

•
$$\rho(r) = 0$$

• $eA_0(r) = \frac{e^2}{4\pi r} = 0, e \to 0$
• $g_s \Phi(r) = \frac{b_s}{4\pi r} e^{-m_s(r-R)}$
• $g_v V_0(r) = \frac{b_v}{4\pi r} e^{-m_v(r-R)}$

Proton vs. Neutron: A Comparison

Energy Density and Mass

$$M = \int T^{00}(\vec{r})d^{3}(r) = m + E_{b}$$

= 940MeV - 15.7MeV

Correct value for EM contribution to mass difference between proton and neutron:

$$((M_P c^2 - M_N c^2)_{EM} = 0.95 MeV$$

Lattice QCD + QED: 1.00(07)(14)MeV

(Borsanyi et al, Science 347 (2015) 1452)

 $(M_N c^2 - M_P c^2)_{nature} = 1.29333236(46) MeV$ $\downarrow due \ to \ m_d > m_u \ isospin \ violation$ (Navas et al. (Particle Data Group), PRD 110, 030001 (2024))

No isospin violation in Bialynicki-Birula model

(Mejía et al, 2025 (in prep))

Shear Force

$$s(r) = -\frac{1}{4\pi} \frac{\alpha}{r^4} \text{ at large } r, \qquad D_s = -\frac{16\pi}{15} M \int dr \, r^4 s(r) \to +\infty$$

- Proton: $D_p \to \infty$, $D_s \to \infty$ (due to em)
- If Integrals convergent: D_p = D_s = D → always finite and equal
 i.e. D(ς) = ςD_p + (1 − ς)D_s = always the same for all ς
- For proton, exists one value: $\zeta = \frac{8}{3}$ such that

$$D_{reg,prot} = D(\varsigma_{reg}) = M \int d^3r \, r^2 \, \frac{4}{9} [6p(r) + s(r)] = -0.317 (\hbar c)^2$$

Dterm

 $D_{neutron} = -0.312(\hbar c)^2$ $D_{reg,proton} = -0.317(\hbar c)^2$

Regularization = unique way of removing EM tails in p(r) proposed in Varma, Schweitzer 2020

Is this a reasonable regularization? Yes, because for proton and neutron we get almost same result (meets expectations) for $|t| > 0.05 \ GeV^2$

(Mejía et al., 2025 (in prep))

Summary

- Constructed a classical model of the neutron (Mejia et al., 2025 (in prep)).
- Strong forces simulated by classical fields + classical EM field (Bialynicki-Birula, 1993)
- Classical models for both proton and neutron capture particle size and EMmass difference.
- Proton D-term divergent at (probably) unmeasurably small |t|.
- Neutron D-term finite, agrees numerically; confirms "reg. method" for |t|> 0.05 GeV²
- In DVCS and other experiments, proton and neutron will appear with nearly the same D(t) form factor
- Could EIC measure the QED effect at small |t| for proton?

Thank You!

Support Slides

 $M_p c^2 + E_B = 940 MeV - 15 MeV (mass of bound dust)$

$$D_{s} = -\frac{2(n-1)}{n(n+2)}M\int d^{n}r r^{2}s(r), \qquad (36) \qquad \begin{array}{l} \text{Diverge due to} \\ \text{asymptotic behavior:} \qquad s(r) = -\frac{\alpha}{4\pi}\frac{\hbar c}{r^{4}} + \dots \\ D_{p} = M\int d^{n}r r^{2}p(r), \qquad (37) \qquad p(r) = \frac{1}{6}\frac{\alpha}{4\pi}\frac{\hbar c}{r^{4}} + \dots \end{array}$$

 $D = D_p = D_s$

regularization method removes the divergences from Dp and Ds

Varma, Schweitzer 2020

Proton Model: Static solution to the classical equations

•
$$eA_{0(r)} = e^{2} \left(\frac{f_{+}(r)}{k_{+}^{2}} - \frac{f_{-}(r)}{k_{-}^{2}}\right) + 2E_{B}(= 0, \ e \to 0 \ neutron)$$

• $f_{\pm}(r) = \frac{d_{\pm}}{4\pi} \frac{\sin(k_{\pm}r)}{r}, \ k_{\pm} = \frac{B \pm \sqrt{D}}{2Q^{2}} \to (k_{-} = 0, neutron)$
• $B = (g_{s}^{2} - e^{2}) \ m_{v}^{2} - (g_{v}^{2} + e^{2}) \ m_{s}^{2}$
• $D = B^{2} - 4e^{2}Q^{2} \ m_{s}^{2} \ m_{v}^{2}, \ Q^{2} = e^{2} - g_{s}^{2} + g_{v}^{2}$ Type equation here.
 $\lim_{e \to 0} eA_{0(r)} = \left[e^{2} \left(\frac{f_{+}(r)}{k_{+}^{2}} - \frac{f_{-}(r)}{k_{-}^{2}}\right)\right] + 2E_{B}$
 $0 = \lim_{e \to 0} \left[-e^{2} \frac{f_{-}(r)}{k_{-}^{2}}\right] + 2E_{B}$
 $g = \frac{e^{2} \left(\frac{f_{+}(r)}{k_{+}^{2}} - \frac{f_{-}(r)}{k_{-}^{2}}\right)\right] + 2E_{B}$
 $f_{-}(r) = \frac{d_{-}}{4\pi} \frac{\sin(k_{-}r)}{r}$
(Bialynicki-Birula 1993)
 $c = f_{-}(r) = constant$
(Bialynicki-Birula 1993)
 $c = he^{2} \left(\frac{f_{+}(r)}{k_{+}^{2}} - \frac{f_{-}(r)}{k_{-}^{2}}\right) = \frac{f_{-}(r)}{r}$

QED study on GFF D(t) of electron

Metz et al PLB 820 (2021)