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Dissipative electrically driven fluids 



• describe effect of externally applied electric field on a charged fluid  stationary 
configurations  

• motivation: standard hydrodynamic description predicts that a stationary state is achieved 
when  

  

• removes the electric field from the dynamics  

• velocity of fluid is unconstrained in magnitude  

 can take on arbitrary values independent of the driving electric field 

• not what we observe in nature

→

→

Motivation

𝔼i − ∂iμ = 0
[Kovtun ’16]



Charge acceleration through applied electric force

Motivation
• Instead consider Drude’s model 

• Relaxation term accounts for the dissipation of momentum and energy  

• electron fluid relaxes to a steady state which is described by a constant drift velocity 

• conductivity by  

E

e−

Relaxation term prevents indefinite acceleration of 
charge carriers

Lack In hydrodynamics: manifests as an infinite DC conductivity

DC conductivity  σDC

J = nq⟨v⟩ =
nq2

Γ
E

⟨v⟩ =
qE
Γ

⟨
dp
dt

⟩ = qE−Γ⟨p⟩



Motivation
• proprosal: incorporate relaxation terms for energy and momentum into the definition of stationarity  

• presence of introduced sinks breaks boost invariance  

• no momentum relaxation no sources:  stationary states:  = const ,  = const,  = const and 
arbitrary,  

 solutions with different velocities are equally good equilibria (related by boosts) 

• momentum relaxation: leads to vanishing of equilibrium velocity of the system 
 this solution cannot be related to others via boosts 

• including external sources:  

• momentum relaxation and source constraint velocity to take a specific stationary value 
  boost symmetry broken

μ T v

→

→

→



Boost agnostic hydrodynamics 
• This approach necessitates that the fluid velocity becomes itself a thermodynamic variable 

• velocity: thermodynamic variable - introduced as a chemical potential conjugate to 
momentum 

• Can define: 

• Important: different inertial frames represent distinct hydrodynamic states

ρm = 2 ( ∂P
∂ ⃗v2 ), κ𝔼 = 2 ( ∂P

∂𝔼2 )

P(T, μ, ⃗v, 𝔼)

[Boer, Hartong, Obers, Vandoren, Sybesma, Armas, Sonner,…]



Boost agnostic hydrodynamics 
• For a boost agnostic fluid the natural curved background it couples to is an Aristotelean geometry  

• Aristotelian spacetime: manifold equipped with two metrics (incorporating space and time on 
different grounds) 

• one-form , spatial metric  (signature )  

• no longer insist on local Lorentzian symmetry (no tangent space transformations rule) 

• We can rewrite the spatial metic in terms of vielbeins             

 ,       

• In these geometries energy-momentum tensor can be decomposed as 

τμ hμν (0,1,...,1)

hμν = δabea
μeb

ν e = det(τ, ea
μ)

Tμ
ν = − Tμτν + Tμρhρν

[Penrose ’68]



• As I anticipated we are interested in the stationarity configurations (reason for introducing relaxations) 

• For this introduce a notion of dynamical evolution: 

time-direction: time-like Killing vector    

• stationary once it satisfies the stationary condition given by 

                                                                  

• in FSCC using thermodynamic variables we can reformulate the hydrostatic constraints 

                                                                              

βμ

ℒβτμ = 0
ℒβhμν = 0

ℒβAμ + ∂μΛ = 0

Stationarity

∂μT = 0, ∂tvi = 0, ∂ivj + ∂jvi = 0, ∂t𝔼i + vj∂j𝔼i + 𝔼j∂ivj = 0

𝔼i − ∂iμ = 0



Relaxations
• Diffeomorphism and gauge invariance of generating functional lead to conservation equations 

• To move away from conservation add non-conservative forces while remaining  charge conservation 

                        

• In FSCC                                            

                                      (recall Drude ) 

                            

• Can parametrize relaxation as  

U(1)

e−1∂μ (eTμ
ρ ) + Tμ∂ρτμ −

1
2

Tμν∂ρhμν − FρμJμ = Γρ

e−1∂μ (eJμ) = 0

∂tε + ∂iJi
ε − 𝔼iJi = −Γ̂ε

∂tPi + ∂jT
j
i − n𝔼i = −Γ̂i

P ⟨
dp
dt

⟩ = qE−Γ⟨p⟩

∂tn + ∂iJi = 0

Γ̂i
P = ΓPPi

[Boer, Hartong, Obers, Vandoren, 
Sybesma, Armas]



Relaxation at order zero

At higher order?

• At order zero in derivatives ((non-)conservation equations) 

                          

• Assuming that neither of the sites is zero on their own we treat these expressions as 
conditions for hydrostaticity  modify our hydrostaticity condition by 

                  

• energy and momentum relaxations related through   

                                          

nvi (𝔼i − ∂iμ) = Γ̂ε + 𝒪(∂)

n (𝔼i − ∂iμ) = ΓPPi + 𝒪(∂)

→

𝔼i − ∂iμ = 0 → 𝔼i − ∂iμ − ΓPPi = 0

Γ̂ε = ΓPvi



• simplification: assume hydrostaticity condition and constitutive relation for momentum 
relaxation term to be exact                             

• i.e. true at all orders in derivatives 

• FSCC: 

                                

• Still:  receives derivative correction as it was derived as a consequence of the equations of 

motion on hydrostatic solutions  constitutive relation cannot be freely specified 

Γ̂ϵ
→

Relaxation at order one

𝔼i − ∂iμ −
ΓPi

n
= 0, Γ̂i

⃗P
= ΓPi



Relaxation at order one 
• To obtain first order corrections: require fluid to locally obey second law of thermodynamics  

                                              

• The entropy current can be split into  

•  from covariantising Euler relation     

                              

•  together with relaxation scalar and non-canonical entropy current cancel hydrostatic 
contributions to entropy production 

e−1∂μ (eSμ) ≥ 0

Sμ = Sμ
can + Sμ

non

Sμ
can

Sμ
can = − Tμ

νβν + Pβμ −
μ
T

Jμ − κ𝔼𝔼ν𝔼νβμ

Sμ
non

[Boer, Hartong, Have, Obers, Sybesma, Armas, Jain,…]



• Using (non-)conservation equation of energy-momentum tensor and charge current, 
divergence of canonical entropy current in terms of altered stationarity condition is  

where                                             

• Rewriting divergence in this way allows us to isolate non-hydrostatic contributions to the 
constitutive relations of Tμ, Tμν, Jμ

δ′ ℬAμ = δℬAμ −
1

nT
hμνhνρΓρ

Relaxation at order one 

e−1∂μ (eSμ
can)+(βρ +

1
nT (Jν − Jν

(0)) hνσhσρ) Γρ

= (Tμ − Tμ
(0)) ℒβτμ −

1
2 (Tμν − Tμν

(0)) ℒβhμν − (Jμ − Jμ
(0)) δ′ ℬAμ

δℬAμ := ℒβAμ − ∂μΛ = ℒβAμ − ∂μ ( uνAν − μ
T )



• decompose each constitutive relations into: hydrostatic, non-hydrostatic non-dissipative and 
dissipative corrections 

                     

• Similarly: assume that we can separate relaxation contributions into two types: those that 
can be expressed in terms of stationary tensor structures and those that vanish at 
stationarity  

• What we find: 

Relaxation at order one 

Tμ − Tμ
(0) = Tμ

HS + Tμ
NHS + Tμ

D

Tμν − Tμν
(0) = Tμν

HS + Tμν
NHS + Tμν

D

Jμ − Jμ
(0) = Jμ

HS + Jμ
NHS + Jμ

D

Γ̂ε = ρmΓvj (nvj + Jj
(1),NHS

+ Jj
(1),D) + 𝒪(∂3)



Conductivities
• To compute the AC conductivity’s (needed to compare to Drude) we employ linear response theory 

• study how each of the charge currents , ,  responds to perturbations of the 

 

• captured in the response matrix 

                       

• To obtain the matrix we linearise and solve the hydrodynamic equations in the presence of the sources 

• Consider small fluctuations of our fluid away from a stationary configuration with 

δJi δQi = δJi
ϵ − μδJi ≡ δTi

0 − μδJi Pi

𝔼, T, v0j

δJi

δQi

δPi

=

σij Tαij ζ1
ij

Tᾱij Tκij ζ2
ij

ζ3
ij ζ4

ij ζ5
ij

δEj

δ(−∂jT/T)

δv0j

T = const, μ = const, v0j = 0



Conductivities
• The AC conductivities given by the  limit are 

           

• Noticing that  

• can write 

      

k → 0

σ(ω → 0) = σDC = n2/ρmΓ

σ(ω, 0) = σ0 +
n(n − Γρmσ0)
ρm(Γ − iω)

(sum of incoherent term and Drude term)σ(ω) = σ0 +
σDC − σ0

1 − iωτ

 (no Onsager reciprocity yet)



• want system to respect microscopic time reversal symmetry in effective correlates at  
for a state at zero velocity 

• In this case the conductivity becomes 

                                  

                  

• Incoherent conductivity disappeared  can only appear if the system does not form a 
steady state or if we violate Onsager reciprocity 

• Main result: thermo-electric conductivities of our model assume Drude form when imposing 
positivity of entropy production and Onsager reciprocity 

ω ≠ 0

→

Imposing time-reversal invariance

σDC =
n2

ρmΓ

σ =
σDC

1 − iωΓ−1 (Drude with DC conductivity)



• Considered hydrodynamic model of a charged fluid in an external electric field in the presence of 
impurities that relax momentum and energy. 

• Looked for steady states 

 find that stationarity constraints need to be modified to incorporate relaxations 

• included dissipative corrections 

• allows us to consider conductivity of fluids that reach a stationary state in a driving electric field 

• positivity of entropy production and Onsager reciprocity constrained transport in the fluid 

 no incoherent conductivity to make a contribution to the DC 

• Further: stability of the model? hydrodynamical realisation of steady states in prope brane models?

→

→

Conclusion





Thermodynamics 
• temperature, chemical potential and the fluid velocity  

                           

    In FSCC:  

• Electric field 

T =
1

τμβμ
, μ = T (Aμβμ + Λ), uμ = Tβμ

uμ = (1,vi)

Fμν = 2∂[μAν] = 𝔼μτν − 𝔼ντμ



Relaxation 

Γρ = −T Γ̂σ ((βσ +
1

nT (Jμ
NHS + Jμ

D) hμνhνσ) τρ −
1
T

hσμhμρ)
−Γρσ (βσ +

1
nT (Jμ

NHS + Jμ
D) hμνhνσ),

Γμν = Γ (c1τμτν + c2hμν) + 𝒪 (∂3)



Generating functional
• generating functional : correlation functions  

(leading term)                

• define one-point functions  

                                      

W[τ, h, A]

W(0)[τ, h, A] = ∫ dd+1x e P (T, μ, 𝔼2, ⃗v2, ⃗v ⋅ 𝔼)

Tμν =
2
e

δW
δhμν

, Tμ = −
1
e

δW
δτμ

, Jμ =
1
e

δW
δAμ



• Hydrostatic part has to satisfy following non-conservation equation 

                                                  

• At order  in constitutive relations:  

• At order  in constitutive relations:  find that using only hydrostatic conditions that do not involve relaxation term  

• Now considering entropy production in presence of relaxation terms 

• Have freedom to define  ,  satisfying 

                                 

• In this way we eliminate all stationary configurations consistent with positivity of entropy production (by defining a relaxation scalar and non-
canonical entropy current that cancels hydrostatic contributions to entropy production)  

                                                 

∂μTHS
μ

ν − FνμJμ
HS − ΓHS

ν = 0,
∂μJμ

HS = 0

𝒪(∂0) ΓHS
(1),ν = ρmΓ (v2, vi)

𝒪(∂1) ΓHS
(2),ν ≡ 0

Sμ
non Γnon

e−1∂μ (eSμ
non) + Γnon = − Tμ

HSℒβτμ +
1
2

Tμν
HSℒβhμν + Jμ

HSδ′ ℬAμ

Γnon = −
1

nT
Jμ

HShμσhσρΓρ

Sμ = Sμ
can + Sμ

non

Hydrostatic part



• Part that makes no contribution to entropy production but is not hydrostatic 

                                         

• At order one: must be linear combinations of  

• Correspondingly equation above is quadratic form in hydrostatic constraints 

• quadratic form: to fail to contribute to entropy production must be antisymmetric (in this way no entropy production) 

                         

• We obtained most general tensor structures consistent with our symmetries and defined 24 non-hydrostatic, non-
dissipative transport coefficients

Tμ
NHSℒβτμ − Tμν

NHS
1
2

ℒβhμν − Jμ
NHSδ′ ℬAμ ≡ 0

ℒβτμ, ℒβhμν, δ′ ℬAμ

Tμ
(1),NHS

Tμν
(1),NHS

Jμ
(1),NHS

=
0 Nμ(ρσ)

2 Nμρ
1

−Nρ(μν)
2 0 Nρ(μν)

3

−Nρμ
1 −Nμ(ρσ)

3 0

ℒβτρ

− 1
2 ℒβhρσ

−δ′ ℬAρ

Non-hydrostatic, non-dissipative part

[Armas]



Dissipative part
• Dissipative terms lead production of entropy  

• Analogously dissipative contributions can be written in quadratic form in terms of symmetric 
coefficient matrix, allowing for entropy production  

     

• Obtained most general structures consistent with our symmetries and defined 42 dissipative 
transport coefficient terms

Tμ
(1),D

Tμν
(1),D

Jμ
(1),D

=
Dμρ

1 Dμ(ρσ)
2 Dμρ

3

Dρ(μν)
2 D(μν)(ρσ)

4 Dρ(μν)
5

Dρμ
3 Dμ(ρσ)

5 Dμρ
6

ℒβτρ

− 1
2 ℒβhρσ

−δ′ ℬAρ


