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Motivation

. describe effect of externally applied electric field on a charged fluid — stationary
configurations

- motivation: standard hydrodynamic description predicts that a stationary state is achievead

when
[Kovtun "16]

= ou =0

- removes the electric field from the dynamics

. velocity of fluid is unconstrained in magnitude

— can take on arbitrary values independent of the driving electric fiela

. NOt what we observe in nature



Motivation

« Instead consider Drude’s model
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e Ny Charge acceleration through applied electric force Relaxation term prevents indefinite acceleration of
charge carriers
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- Relaxation term accounts for the dissipation of momentum and energy

. electron fluid relaxes to a steady state which is described by a constant drift velocity

qgE
(V) = —
conductivity b L
T DC conductivity op¢
o Lack In hydrodynamics: manifests as an infinite DC conductivity
ng
J=ng(v)=-"E
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Motivation

- proprosal: incorporate relaxation terms for energy and momentum into the definition of stationarity

. presence of introduced sinks breaks boost invariance

+ N0 Momentum relaxation no sources: stationary states: u = const, 1'= const, v = const and
arbitrary,

— solutions with different velocities are equally good equilibria (related by boosts)

. momentum relaxation: leads to vanishing of equilibrium velocity of the system
— this solution cannot be related to others via boosts

- including external sources:

- momentum relaxation and source constraint velocity to take a specific stationary value
— boost symmetry broken



Boost agnostic hydrodynamics

. This approach necessitates that the fluid velocity becomes itselt a thermodynamic variable

P(T,u,v, E)

. velocity: thermodynamic variable - introduced as a chemical potential conjugate to
momentum

[Boer, Hartong, Obers, Vandoren, Sybesma, Armas, Sonner,...]

oP oP
Can define: =2 —], ke=2
Fm (632) . ((3__)2)

- Important: different inertial frames represent distinct hydrodynamic states




Boost agnostic hydrodynamics

- For a boost agnostic fluid the natural curved background it couples to is an Aristotelean geometry

. Aristotelian spacetime: manifold equipped with two metrics (incorporating space and time on
different grounds) "

. one-form 7, spatial metric h/w (signature (0,1,...,1))

- No longer insist on local Lorentzian symmetry (no tangent space transformations rule)

- We can rewrite the spatial metic in terms of vielbeins

— a,b _ a
h, =oue,e,, e=del(z,e,)

. In these geometries energy-momentum tensor can be decomposed as T, = — TVt + T"h,



otationarity

As | anticipated we are interested in the stationarity configurations (reason for introducing relaxations)

For this introduce a notion of dynamical evolution:
time-direction: time-like Killing vector S

stationary once it satisfies the stationary condition given by

in FSCC using thermodynamic variables we can reformulate the hydrostatic constraints




Relaxations

- Diffeomorphism and gauge invariance of generating functional lead to conservation equations

. To move away from conservation add non-conservative forces while remaining U(1) charge conservation

- INFSCC

(recall Drude (%) = qgE-1'(p))

. Can parametrize relaxation as I'y, = I'pP;



Relaxation at order zero

- At order zero in derivatives ((non-)conservation equations)

nv' (E; — o) =T, + O(0)
n (E; — ou) = I'pP; + O(0)

- Assuming that neither of the sites is zero on their own we treat these expressions as

conditions for hydrostaticity — modity our hydrostaticity condition by

= —O0u=0->FE—-0u—1pP;=0

- energy and momentum relaxations related through

A\

', =1pv; Athigherorder?




Relaxation at order one

- simplification: assume hydrostaticity condition and constitutive relation for momentum
relaxation term to be exact

« j.e.true at all orders in derivatives

. FSCC. rp

A\

. Still: I, receives derivative correction as it was derived as a consequence of the equations of

motion on hydrostatic solutions — constitutive relation cannot be freely specified



Relaxation at order one

. To obtain first order corrections: require fluid to locally obey second law of thermodynamics

[Boer, Hartong, Have, Obers, Sybesma, Armas, Jain,...]

e, (eS") > 0

. The entropy current can be splitinto S¥ = S¥ ~+ S

. SF  from covariantising Euler relation
QH __Tﬂﬁv+pﬁﬂ_ﬁjﬂ_ UE B
can ~— % T KE %

. GH

r o, together with relaxation scalar and non-canonical entropy current cancel hydrostatic
contributions to entropy production




Relaxation at order one

. Using (non-)conservation equation of energy-momentum tensor and charge current,
divergence of canonical entropy current in terms of altered stationarity condition is

T

. u'A,—u
5ggAlu .— gﬂAﬂ — a’uA — gﬂAﬂ — a’u

where

- Rewriting divergence in this way allows us to isolate non-hydrostatic contributions to the
constitutive relations of T#, T#, J#




Relaxation at orader one

decompose each constitutive relations into: hydrostatic, non-hydrostatic non-dissipative and
dissipative corrections

™—-TH =T +T¢ .+ Tg

(0) HS NHS
Uy __ UU __ U Uy Uy
I T(O) - THS T TNHS T TD

J = f{(’» = Jhs t aus T 0

Similarly: assume that we can separate relaxation contributions into two types: those that
can be expressed in terms of stationary tensor structures and those that vanish at

stationarity

MH.NHS ~ 1).D

What we find: | |
(nvj + J + J ) + O(3°)




Conaductivities

- To compute the AC conductivity's (needed to compare to Drude) we employ linear response theory

. study how each of the charge currents 8J°, Q' = 8J. — udJ' = 5Té — udJ', P! responds to perturbations of the

— Ta VOj

. captured in the response matrix

1

oJ i Gij Taij ] 5E}
_ |75 2
3 4 &5

oP; G ij ij (:ij 5V0j

- To obtain the matrix we linearise and solve the hydrodynamic equations in the presence of the sources

- Consider small fluctuations of our fluid away from a stationary configuration with
T = const, u = const, Voj = 0



Conaductivities

- The AC conductivities given by the k — 0 [imit are

(0. 0) nin—1p,0)
o(w,V) = o, 4 i i
0 > (T — io) (no Onsager reciprocity yet)

. Noticing that o(w — 0) = op = nzlme

« CAON Write

(sum of incoherent term and Drude term)



mposing time-reversal iInvariance

want system to respect microscopic time reversal symmetry in effective correlates at @ %
for a state at zero velocity

IN this case the conductivity becomes

Opc
. . .
| — i1 (Drude with DC conductivity)
n2
Opnr = ——
DC T

Incoherent conductivity disappeared — can only appear if the system does not form a
steady state or it we violate Onsager reciprocity

Main result: thermo-electric conductivities of our model assume Drude form when imposing
NOSitivity of entropy production and Onsager reciprocity




Conclusion

- Considered hydrodynamic model of a charged fluid in an external electric field in the presence of
impurities that relax momentum and energy.

- Looked for steady states

— find that stationarity constraints need to be modified to incorporate relaxations
. included dissipative corrections
. allows us to consider conductivity of fluids that reach a stationary state in a driving electric field

. positivity of entropy production and Onsager reciprocity constrained transport in the fluid

— No incoherent conductivity to make a contribution to the DC

. Further: stability of the model? hydrodynamical realisation of steady states in prope brane models?







‘hermodynamics

- temperature, chemical potential and the fluid velocity

T=—. ,uzT(AWB”+A), ut = TP

In FSCC: u# = (1,1Y)

. Electricfield ¥, =20,,A,, =k 7, — k7,
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laxation

: 1 1
r =-Trf, ( (ﬁ — (s + 95 ) ok ) 6~ —h ﬂhﬂp>
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r,=r (ClTMTV + czh/w) + 0 (0°)



Generating runctional

. generating functional W]z, h, A]: correlation functions

(leading term) Wolz, h,Al = Jdd+1xeP (T,//t,

. define one-point functions

T

2 6W 1 6W

e Shy,’ e 51,




yarostatic part

Hydrostatic part has to satisty following non-conservation equation

0,Tys", — F,Jt . — T} =0,

VI HS
0,J! =0

At order O(0) in constitutive relations: F(l) = Pl (Vz, Vi)

At order @(()1) in constitutive relations: find that using only hydrostatic conditions that do not involve relaxation term F{gy =0

Now considering entropy production in presence of relaxation terms

Have freedom to define §¥ , T satisfying

nomn '’

1
e_ld (eS” )+Fn0n= —T” fZﬂT +ET ”ffﬂh +J’“‘ 5%A

non

1
[ = — — T h™T,

In this way we eliminate all stationary configurations consistent with positivity of entropy production (by defining a relaxation scalar and non-
canonical entropy current that cancels hydrostatic contributions to entropy production)

QH — QH QH

can non




Non-nhydrostatic, non-dissipative part

- Part that makes no contribution to entropy production but is not hydrostatic

/72% 1 /
RusZ s Tﬂ_TNHSEg My = Jaus®%4, = 0

| - ,
. At order one: must be linear combinations of Sfﬁf , Eﬂhﬂy, %Aﬂ

- Correspondingly equation above is quadratic form in hydrostatic constraints

- guadratic form: to fail to contribute to entropy production must be antisymmetric (in this way no entropy production)

[Armas]
17}  NHS 0 NyPo) Nt 247,
1
Tisms [ =|=N2" 0 NI —=Zph,,
JiyNms -Np* —N§PO 0 —0g4,

- We obtained most general tensor structures consistent with our symmetries and defined 24 non-hydrostatic, non-
dissipative transport coefficients



D1ssipative part

- Dissipative terms lead production of entropy

- Analogously dissipative contributions can be written in guadratic form in terms of symmetric
coefficient matrix, allowing for entropy production

T(ﬂl),D D {w D 5 e Dﬁl ’ Z Alp

1
T{tII;,D _ sz(ﬂw D Z(L/u/)(pa) DSP(//”/) - gﬂ hpa
Jﬁ),D D¥ Dg(pa) D —5A,

- Obtained most general structures consistent with our symmetries and defined 42 dissipative
transport coefficient terms




