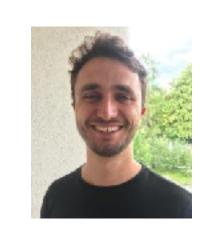
ANOMALOUS TRANSPORT WITHOUT TRIANGLE DIAGRAMS

NICK POOVUTTIKUL

A majestically cute pygmy hippo called "Moo Deng" from Thailand (has nothing to do with this talk)

Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

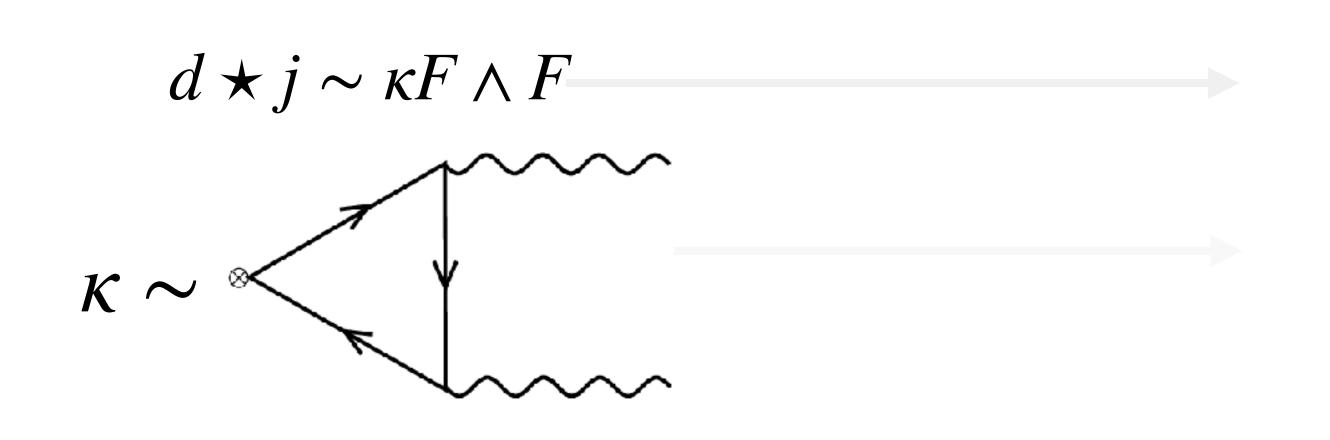


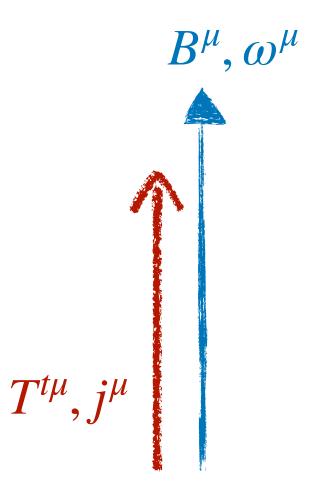
Based on a 2311.8023 and $\mathbf{2412.17650}$ with Joe Davighi and Nakarin Lohitsiri

SYMMETRY AND HYDRODYNAMICS

Conservation law is broken by anomaly

Anomalous transport





OBVIOUSLY...

If triangle diagram vanishes

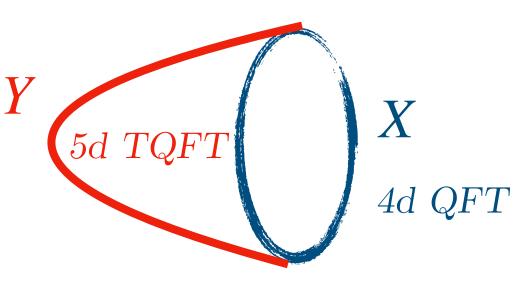
No anomalous transport?

Goal of this talk: The obvious is not true

ANOMALY # TRIANGLE DIAGRAM

If we define 't Hooft anomaly as an inability to gauge the global symmetry or the ambiguity of a partition function when coupled to a background gauge field Y

$$Z[X;A] \longrightarrow Z[X;A^g] = Z[X;A] \exp(i\omega(g,A))$$



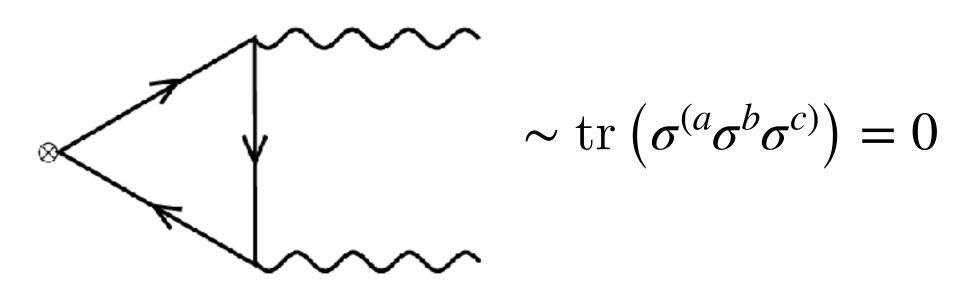
where one can "cancel" the non-invariance by attaching it to **invertible TQFT** on Y with $\partial Y = X$

- Numerous examples in dim(QFT)=2+1 where the above are true without triangle diagrams (basically a whole literature on Symmetry Protected Topological (SPT) phase)
- Focusing on 3+1d, the oldest of this anomaly is Witten's SU(2) anomaly Witten's 2; Wang, Wen & Witten '18

$$T(j) = \frac{2}{3}j(j+1)(2j+1)$$

+

SU(2) preserving interactions

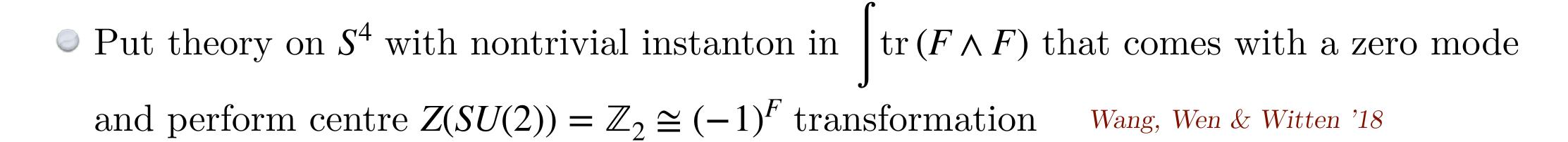


No way to build nontrivial 6d anomaly polynomial

WHY IS IT AN ANOMALY

In free theory, the partition Z[A] " = " $\det(i\not\!D)^{1/2}$

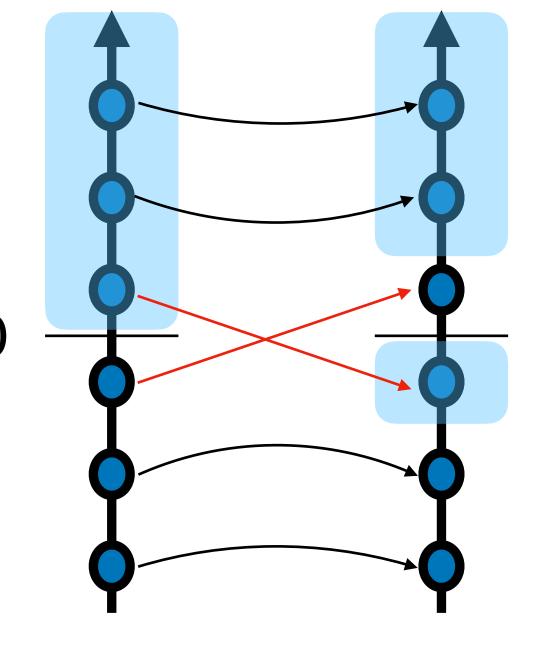
If we transformed $A \to A^g$ such that a pair of eigenvalues cross $\lambda = 0$, then $Z[A] \to Z[A]^g = -Z[A]$. This can happen when



Put theory on
$$S^1 \times S^3$$
 with $\operatorname{tr} \left(\exp \ i \oint_{S^1} A \right) = -1$ and take $[g(x)] \in \pi_3(SU(2))$ Davighi, Lohitsiri & NP '24

*** Partition function remains invariant under infinitesimal SU(2) transformation

 $\lambda := eigenvalue of i D$



ANOMALY INFLOW

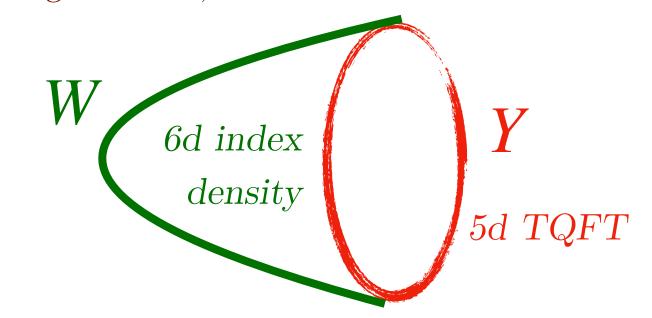
Carefully looking Z[A], not just $\delta_g Z[A]$, one finds that ambiguity of Weyl fermion can be cancelled by

$$Z_{\mathrm{I}}[Y] = \exp\left(-2\pi i\eta[Y]\right)$$
 Dai & Freed '94; See also Yonekura '16 for "physicsist" proof

not just Chern-Simons but APS η -invariant $\eta = \lim_{\epsilon \to 0^+} \sum_k e^{-\epsilon |\lambda_k|} \operatorname{sign}(\lambda_k)/2 \sim \operatorname{arg} \det(i \not \!\!D_A)$ Atiyah, Patodi & Singer '75-76;

But it has a neat property (APS index theorem) IF $Y = \partial W$,

$$-2\pi i\eta[Y] = \text{Index density}[W] = \int_W \hat{A}(R) \exp\left(\frac{F}{2\pi}\right)$$



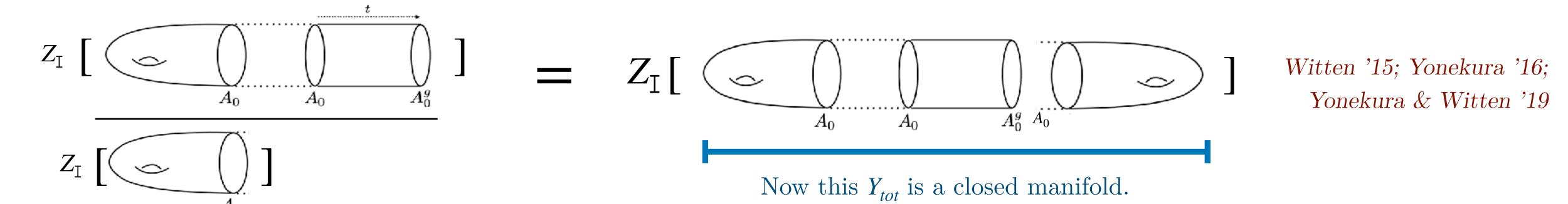
But η -invariant can still be nontrivial when Index density = 0

IF there is no extension of Y (with its G-bundle and spin structure) to W such that $\partial W = Y$.

Obstruction to the extension is measured by **Bordism group** $\Omega_5^{\mathrm{Spin}}(BG)$

AMBIGUITY AS TQFT

Now we can compute the phase ambiguity of $Z[A^g]/Z[A]$ on $X = \partial Y$ from $Z_I[Y]$ by "cutting & gluing"

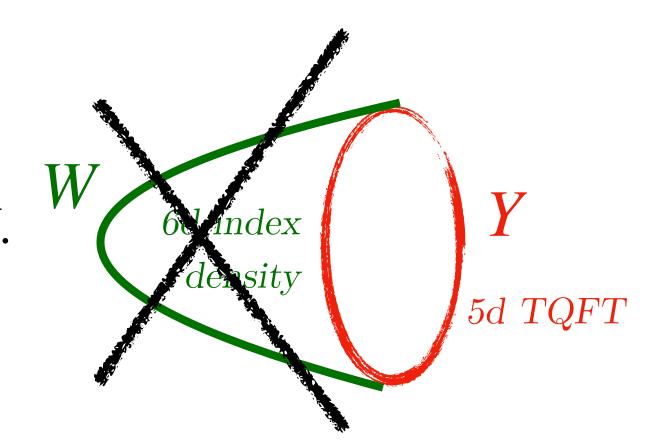


We can hope to use APS index theorem!

• For G = U(1) in and $Z_{\mathbb{I}}[Y] = e^{-2\pi i\eta} \sim \exp\left(\frac{i}{4\pi} \int_{Y} AdA\right)$, this configuration yields the usual

$$\log Z_I[Y_{tot}] = \frac{i}{2\pi} \int_{X=\partial Y} \lambda dA \quad \text{for any } A^g = A + d\lambda$$

But, in SU(2) case, for Y_{tot} s.t. $Z_{\mathbb{I}}[Y_{tot}] = -1$, there is no W with $Y_{tot} = \partial W$. Then $\int_W \operatorname{tr}_{su(2)}(F \wedge F \wedge F) = 0$ doesn't not implies absence of anomaly



ANOMALY IN THERMAL EQUILIBRIUM

Let's put the anomalous theory in thermal equilibrium and by thermal equilibrium, I mean put theory on $X = S_{\beta}^1 \times M$, or $S_{\beta}^1 \to X \to M$ with G-holonomy and field strength

BBJMS '12 JKKMY '12

 $g_{\mu\nu}dx^{\mu}dx^{\nu} = e^{2\sigma(x)}(d\tau + \alpha_i dx^i)^2 + \gamma_{ij}dx^i dx^j$, and $A = -\mu u + A$, of gauge field Size of thermal circle KK gauge field ~ fluid velocity

"Spatial component"

And the object of interest is the thermal partition function with symmetry operator inserted

$$Z[X;A] = \operatorname{tr}\left[U e^{-\beta H}\right]$$

$$U \sim \exp(i \int \star j \wedge A) \in G$$

Build Y_{tot} out of $(X,A) \to (X',A^g)$ with X,X' has the same temperature

The partition must transform according to anomaly

** Such thermal equilibrium-compatible Y_{tot} may not exist for every nontrivial $[M] \in \Omega^{\mathrm{Spin}}_{d+1}(BG)$

PROCEDURE STREAMLINE

Want to find hydro for this type of anomaly? Suppose you know a theory in d+1 dimensions and a symmetry group G

- * Know your invertible theory $Z_{\rm I}[Y]$. If you don't, or $Z_{\rm I}=\exp(-2\pi i\eta)$, find bordism group look it up in e.g. If $\Omega_5^{\rm Spin}(BG)=0$, then $\eta[Y]\sim CS_5[Y]$ and no global anomaly Kapustin, Thorngren, Turzillo & Wang '14; Garcia-Etxebarria & Montero '18;
- * Find 'mapping torus' Y_{tot} that is build from $X = S_{\beta}^1 \times M$ such that $Z_{\mathbb{I}} \neq 1$ and, if possible, generates bordism group.

A neat trick to compute η-invariant in by embedding inside G' with only perturbative anomaly in e.g. Elitzur & Nair '84; Davighi & Lohitsiri '20

* Build (thermally compactified) EFT for $\log Z[g,A]$ out of KK variables and find appropriate non-invariant terms that capture $Z_{\rm I}[Y_{tot}]$

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = e^{2\sigma(x)}(d\tau + \alpha_i dx^i)^2 + \gamma_{ij}dx^i dx^j , \quad \text{and} \quad A = -\mu u + \mathcal{A}, \quad \text{Glorioso, Liu & Rajagopal '17}$$

For this type of applications

Golkar & Sethi '15

Chowdhury & David '16

Claricae Lin & Paisconel '17

Zheyan Wan & Juven Wang '19

Davighi & Lohitsiri '20-'24

* Vary $\log Z[g,A]$ w.r.t. g,A to get stress-energy tensor and conserved currents

PROCEDURE STREAMLINE

Want to find hydro for this type of anomaly? Suppose you know a theory in d + 1 dimensions and a symmetry group G

* Build (thermally compactified) EFT for $\log Z[g,A]$ out of KK variables and find appropriate non-invariant terms that capture $Z_{\text{I}}[Y_{tot}]$

For this type of applications Golkar & Sethi '15 Chowdhury & David '16 Glorioso, Liu & Rajagopal '17

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = e^{2\sigma(x)}(d\tau + \alpha_i dx^i)^2 + \gamma_{ij}dx^i dx^j, \quad \text{and} \quad A = -\mu u + A,$$

For G=U(1) with triangle anomaly, the most general expansions is known

BBJMS '12 Jensen, Loganayagam & Yarom '12

$$\log Z_{QFT} = \beta \int d^3x \sqrt{\gamma} p(T, \mu) + W_{inv} + W_{anom}$$

$$W_{inv} = \frac{C_1}{4\pi} \int \mathcal{A} \wedge d\mathcal{A} + \frac{C_2}{2\pi\beta} \int \alpha \wedge d\mathcal{A} + \frac{C_3}{4\pi\beta^2} \int \alpha \wedge d\alpha \qquad W_{anom} = \frac{C}{2} \int \left(\frac{\beta\mu}{3} \mathcal{A} \wedge d\mathcal{A} + \frac{\beta\mu^2}{6} \mathcal{A} \wedge d\alpha\right)$$

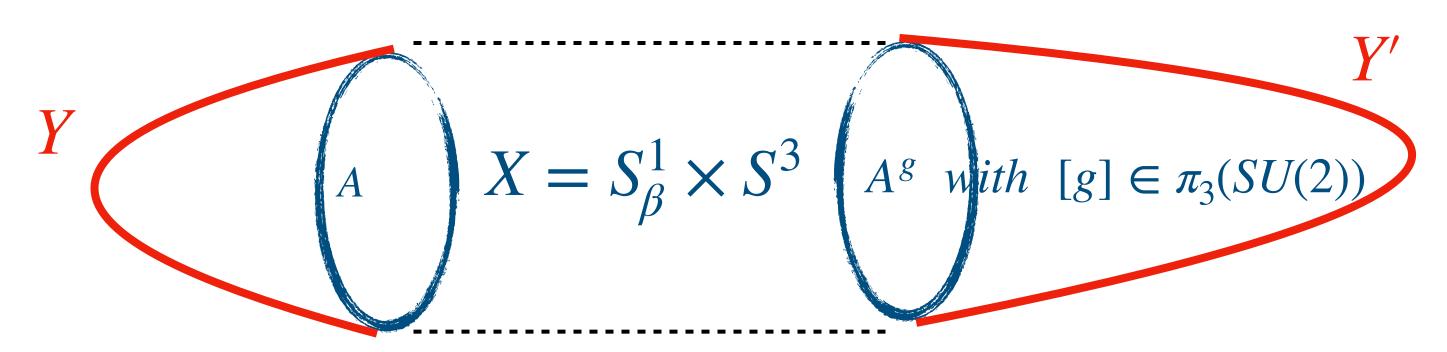
$$W_{anom} = \frac{C}{2} \int \left(\frac{\beta \mu}{3} \mathcal{A} \wedge d\mathcal{A} + \frac{\beta \mu^2}{6} \mathcal{A} \wedge d\alpha \right)$$

Invariant under small gauge transformation If C_1, C_2, C_3 are integer, invariant under all gauge transf.

CS term with spatially dependent coupling ⇒ Produce the non-invariance under small gauge transformation

Most will be killed by 3+1d CPT

Hydrodynamics of G = SU(2) in 4d,



Davighi, Lohitsiri & **NP** '24

- * Build EFT for $\log Z[g,A]$ out of KK variables such that
 - When place on $S^3 \times S^1_\beta$ with $\mathbb{Z}_2 \subset SU(2)$ holonomy around thermal cycle

$$-\frac{i}{2\pi}\log Z[g,A] \to -\frac{i}{2\pi}\log Z[g,A] + \frac{1}{2} \mod 1 \qquad \text{under } A \to A^g \text{ with odd degree of } [g] \in \pi_3(SU(2))$$

* A term responsible for this is (for theory with fermion in isospin j = 1/2)

$$-i \log Z[g,A] \supset \frac{1}{4\pi} (\mathbb{Z} + j) \int_{M} \operatorname{tr} \left[\mathcal{A} \wedge d\mathcal{A} + \frac{3}{2} \mathcal{A}^{3} \right] \xrightarrow{\text{Variations}} \begin{pmatrix} J_{a}^{i} \\ T_{t}^{i} \end{pmatrix} = \frac{1}{4\pi} (\mathbb{Z} + j) \begin{pmatrix} T \delta_{ab} & \mu_{a} T \\ \mu_{b} T & (\mu_{a} \mu^{a}) T \end{pmatrix} \begin{pmatrix} B_{b}^{i} \\ \omega^{i} \end{pmatrix}$$

SUMMARY OF THE RESULT

* There is a recipe on how to extract transport coefficients for a large class of theories with global anomalies. In fact, among SU(n), SO(n), USp(2n), $E_{6,7,8}$, F_4 , G_2 non-abelian fluids, only USp(2n) family has half-integer transport coefficient when holonomy of the \mathbb{Z}_2 centre is inserted on the thermal cycle

$$Z_{\mathbf{thermal}} = \mathbf{tr}\left[(-1)^F e^{-\beta H} \right] \qquad (-1)^F \sim \mathcal{Z}(SU(2)) \cong \mathbb{Z}_2$$

* There are anomaly induced transports like CME, CVE etc. with conductivities fixed by thermodynamic variables and **fractional number**, even without triangle diagram.

$$\begin{pmatrix} J_a^i \\ T_t^i \end{pmatrix} = \frac{1}{4\pi} (\mathbb{Z} + j) \begin{pmatrix} T\delta_{ab} & \mu_a T \\ \mu_b T & (\mu_a \mu^a) T \end{pmatrix} \begin{pmatrix} B_b^i \\ \omega^i \end{pmatrix}$$

For a generic isospin j reps, replace j by Dynkin label mod 2

$$\begin{pmatrix} J_a^i \\ T_t^i \end{pmatrix} = \frac{1}{4\pi} (\mathbb{Z} + j) \begin{pmatrix} T\delta_{ab} & \mu_a T \\ \mu_b T & (\mu_a \mu^a) T \end{pmatrix} \begin{pmatrix} B_b^i \\ \omega^i \end{pmatrix} \qquad \begin{pmatrix} T^i_{\ t} = -\left(\frac{1}{3}C_{bcd}\mu^b\mu^c\mu^d + 2\beta_b\mu^bT^2\right)\omega^i + \left(\frac{1}{2}C_{abc}\mu^b\mu^c + \beta_a T\right)B^{ai}, \\ J_a^i = \left(\frac{1}{2}C_{abc}\mu^b\mu^c + \beta_a T^2\right)\omega^i + C_{abc}\mu^bB^{ci}$$

Here is Neiman & Oz '10 result for comparison

* Question for the audience: How to deal with this eta-invariant in holography?

Remarks and (anomalous) dreams

- * Any idea how to prepare this? $Z_{\mathbf{thermal}} = \mathbf{tr} \left[(-1)^F e^{-\beta H} \right]$ $(-1)^F \sim \mathcal{Z}(SU(2)) \cong \mathbb{Z}_2$
- * Can there be anything more than $Z[A^g] = -Z[A]$? Depending on $\Omega_5^{\text{Spin}}(BG)$: no for SU(2) but yes for other G See literature on "cobordism classification" of anomaly
- * Finding Y_{tot} is really painful and luck-dependent, can we have a general procedure like WZW term?

 Lee, Ohmori & Tachikawa '20 & Yonekura '20
- * Signature of global anomaly in other EFT?

Preskill '90; See also e.g. Shimizu & Yonekura '18; Furusawa, Tanizaki & Itou '20 for QCD context

* Gauging non-anomalous subgroup \Rightarrow New symmetry structure that remembers its anomalous parents

"Categorical symmetry" literature see e.g.

Iqbal & NP '20; Brauner '20; Davighi & Lohitsiri '24

Das, Iqbal & NP '21-'22; Hsin, Kobayashi & Zhang '24; Hsin & Gomis '24

* Entire 'universe' for anomaly in 2+1 dimensions at finite temperature?

Spare slides

MY UNIVERSITY

A POSSIBLE WAY TO GET CATEGORICAL SYMMETRY

No triangle diagram/ violation of Ward identity for discrete group or odd d+1

How will this EFT knows about anomalous symmetry involving discrete group?

Categorical Theory with gauging mixed anomaly symmetry How to turn Coarse-grain Coarse-grain gauging Anomalous Hydrodynamics of hydrodynamics categorical symmetry?

Most examples involves discrete groups

categorical data into hydrodynamics?

WHAT IS ANOMALOUS TRANSF?

 $Z[X;A] \longrightarrow Z[X;A^g] = Z[X;A] \exp(i\omega(g,A))$ Now we can compute the phase ambiguity

$$Z_{\mathrm{I}} \left[\begin{array}{c} & & & \\ & &$$

Say, for
$$X = S^2$$
, $Z_{\mathbb{I}}[Y] = \exp\left[\frac{i}{4\pi}\int_Y AdA\right]$, and $A^g = A + d\lambda$ Notice: when $F = 0$, then $Z_{\mathbb{I}}[MP] = 1$

this produce the familiar phase ambiguity $\omega(\lambda, A) \sim \lambda F$

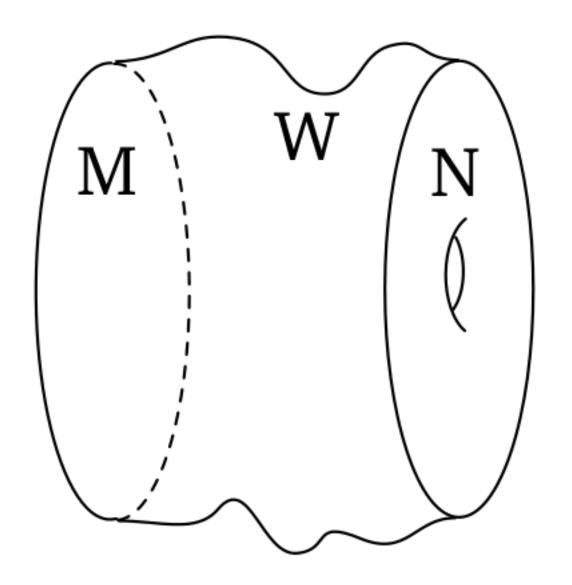
In general, one need to activate "F" on X and particular $A \to A^g$ for Z_{T} to be activated

Bordism Group & Cobordism Classification

* What is this bordism group represent? Suppose you have d-dimensional manifold M and N equipped with, say, **spin structure** and principal G-bundle

If they can be "connected" via some (d+1)-dim space W then, we say $M \sim N$ or **bordant**

The bordism group count a class of M that are not bordant to one another



$$\Omega_d^{\mathrm{Spin}}(BG) \cong \frac{\text{All } M \text{ with spin structure with G-bundle}}{\text{Equivalent relation}}$$

Kapustin, Thorngren, Turzillo & Wang '14 Freed & Hopkins '16

CLASSES OF MAPPING TORI

E.g. if $\Omega(BG) = \mathbb{Z}_2$, then there are two classes $[M_0]$ and $[M_1]$ that are not bordant and only M_0 can be extended to W with $\partial W = M_0$. Then if Index density = 0, we have

$$\eta[M_0] = 0 \mod 1 \quad \& \qquad 2\eta_{M_1} = \eta[M_0] \mod 1 \quad \Rightarrow \quad \eta[M_1] = \frac{1}{2} \mod 1$$