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NESS and Cattaneo
How to get a steady state using relaxation

• Driven steady states are hard…


• Interested in NESS that are a balance of driving and loss.


• Classic example: thermal gradients and steady flow - Cattaneo-Christov 
phenomenological model (thermal gradients propagate at finite speed, see Navid’s 
talk) 
 

                           .


• Decay of currents resolve a lot of physical problems e.g. finite DC conductivity.


• What about an analogue with electric fields and conduction?

[1 + τ (∂t + ⃗vdrift ⋅ ⃗∇ )] ⃗𝒬 = − κ ⃗∇ T



Perturbations without a background electric field
• Modulate expectations: the (suggested) effective linearised hydrodynamic equations: 
 
                                                        

                                                


• Lowest order constitutive relation:  .


• One finds near the origin in complex frequency (realised in holographic models at large charge density) 
 
                             .


• An aside: in the ultra-high density limit we get “holographic zero sound” [Chen & Lucas - 1709.01520] 
 

                                               .

∂tδρ + ⃗∇ ⋅ δ ⃗J = 0 ,
∂tδJi + ∂j𝒯ij +

1
τ

δJi = χδEi .

𝒯ij = ρδij

ω = − iDk2 + 𝒪(k4) , ω = −
i
τ

+ iDk2 + 𝒪(k4)

ω = ± 1

d
k − iΓk2 + 𝒪(k4)



Perturbations with a background electric field
• The (suggested) effective hydrodynamic equations: 
 
                                                          

                                           


• The constitutive relations are bloody complicated! Take  small in amplitude but not 
derivatives, and again large charge density.


• Now three types of mode due to broken spatial rotation invariance: 
 
                                         

                                    

                                         

∂tδρ + ⃗∇ ⋅ δ ⃗J = 0 ,
∂tδJi + ∂j𝒯ij − αEiδρ +

1
τ

δJi = χδEi .

Ei

ωgapless = α τ ⃗k ⋅ ⃗E + 𝒪( ⃗k2, ⃗E 2) ,

ωgapped = −
i
τ

+ (η1 + η2 − α τ) ⃗k ⋅ ⃗E + 𝒪( ⃗k2, ⃗E 2) ,

ω⊥ = −
i
τ

+ η3
⃗k ⋅ ⃗E + 𝒪( ⃗k2, ⃗E 2) .



Correlation functions
and the driven steady state

• Perturbing the electric field allows us to show 
                                                               .


• Now, consider time independent equations: 
 
                                              


• What do the time independent correlation functions look like? 
 

                                        .


• There is a quasinormal mode at complex momentum.

σDC = τχ

∂iδJi = 0 , χ∂iδρ = αEiδρ .

⟨ρρ⟩R(0, ⃗k) =
| ⃗k |χ

v2 | ⃗k | + iα | ⃗E |cos φ



An old story 
Probe branes with a constant electric field

• D3-D7 probe brane action: 
 
                            .


• Now you do the standard things:


• Place the D7 brane in the black brane background (finite T),


• We take a trivial embedding (quark mass is zero),


• Set  at the AdS boundary (non-zero charge density).


• And one “non-standard” thing:  at the boundary.

SD7 = − TD7 ∫ d8ξ − det (gab + 2πα′￼Fab)

At = μ

Ax = Ext



The background solution
Standard Karch-O’Bannon

• There exists an exact solution to our BCS [Karch & O’Bannon 0705.3870]. Asymptotically 
 
                                        


• Plug back into the action to determine the free energy - square root becomes imaginary unless  has a 
specific form i.e. 
 

                                           .


• Related to appearance of a pseudo-horizon for gauge perturbations: 
 

                                                  .

At = μ + ρ/r2 + … , Ax = − Ext + Jx /r2 + … .

Jx

σDC

πT
=

J̃
Ẽ

= ( ρ̃2

1 + Ẽ2
+ 1 + Ẽ2)

1/2

z* ∼ zH ( 1 + Ẽ2 − Ẽ)
1
2



Gauge field perturbations
Does the (static) effective theory match the model? (Yes.)

Static, relaxed hydrodynamic theory vs. microscopic model. Charge-charge static response for different 
values of the angle with  and . All lines are the predictions of RHT while points are 
holographic data from the microscopic model. The inset shows the renormalized screening length.
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Gauge field perturbations
Does the dynamic effective theory match the model? (Yes.)

Collective excitations around a non-equilibrium steady state. The dispersion of the lowest excitations in 
the NESS in the collinear limit. (A) The real part and (B) imaginary part of the frequency are shown. Different 

colors correspond to different strengths of the dimensionless electric field.
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Gauge field perturbations
Hydrodynamics is not just the modes.

 Time dependent dynamics and retarded correlators. The retarded correlators at finite frequency as a 
function of wavevector. (A) The charge-charge correlator and (B) perpendicular current-current correlator. The 
insets show the imaginary part of the corresponding correlator. The points are the data from the microscopic 

model and the dashed lines denote our predictions.
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Future work
• I want to understand structure of low energy theory: SL(2,Z), higher 

corrections in charge density and derivatives, non-linear solutions etc.


• Make your master’s student cry (a guide):


• We don’t really know what the stationarity conditions are: 
 
               


• Make gullible student try to compute derivative corrections to the 
stationarity condition.


• Cackle evilly like a Disney villain!!!

δJi = σDCδEi → Ji = σDCEi + O(∂E)?



Thanks!


