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The V-QCD model

V-QCD: A holographic bottom-up model for QCD in the Veneziano limit
(large Nf , Nc ; fixed Nf /Nc)

I Bottom-up, but trying to follow principles from string theory as closely as possible

I Many parameters: effective description of QCD

I Comparison with QCD data essential

I Relatively complicated model (because QCD is complicated)

I Inclusion of axial and chiral anomalies worked out

The model is obtained through a fusion of two building blocks:
[MJ, Kiritsis arXiv:1112.1261]

1. IHQCD: model for glue inspired by string theory (dilaton gravity)
[Gürsoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via space filling D4− D4 branes and
tachyon condensation

[Klebanov,Maldacena; Bigazzi,Casero,Cotrone,Iatrakis,Kiritsis,Paredes]

Full backreaction between the two sectors in the Veneziano limit
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Chirally symmetric V-QCD

Dual fields: φ↔ GµνG
µν , a↔ GµνG̃

µν , (A
L/R
µ )ij ↔ ψ̄i (1± γ5)γµψ

j

SV−QCD = Sg + SDBI + Sa + SCS

Sg = M3N2
c

∫
d5x
√
−g
[
R − 4

3
(∂φ)2 + Vg (φ)

]
SDBI = −M3Nc

∫
d5x Vf (φ) Tr

[√
− det(gµν + w(φ)F

(L)
µν ) + (L↔ R)

]
Sa = −M3N2

c

2

∫
d5x
√
−g Z (φ)

[
∂µa− Tr

(
AL
µ − AR

µ

)
/Nc

]2
SCS =

iNc

24π2

∫
Tr
[
− iAL ∧ FL ∧ FL +

1

2
AL ∧ AL ∧ AL ∧ FL +

+
i

10
AL ∧ AL ∧ AL ∧ AL ∧ AL + (L↔ R)

]
I A slight generalization of models discussed e.g. by Sebastian on Tuesday
I Most of the structure fixed by chiral symmetry, parity, and anomalies
I Many potentials Vg , Vf , w , Z – however need to be “simple” functions –

determined by comparing to lattice data
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Anomaly terms in V-QCD

1. Axial anomaly:

Sa = −N2
cM

3

2

∫
d5x
√
−g Z (φ)

[
∂µa− Tr

(
AL
µ − AR

µ

)
/Nc

]2

is invariant under the U(1)A gauge transformation

(AL
µ)ij → (AL

µ)ij + δij∂µε , (AR
µ )ij → (AR

µ )ij − δij∂µε, a→ a + 2
Nf

Nc
ε

I Symmetry implies the axial anomaly in QCD
I Sa includes a bulk mass for the axial gauge field ∂µJ

µ
A =

Nf

16π2
GµνG̃

µν

2. Global chiral anomalies:

The gauge transformation of SCS (with parameters ΛL/R) is a boundary term
matching with field theory anomaly [See Niko’s talk]

δSCS =
iNc

24π2

∫
∂

Tr [ΛLFL ∧ FL − ΛRFR ∧ FR + · · · ]

N.B. chirally broken Sa and SCS also available
[Casero, Paredes, Kiritsis hep-th/0702155; Arean, Iatrakis, MJ, Kiritsis 1309.2286, 1609.08922]

[MJ, Kiritsis, Nitti, Préau 2209.05868; 2212.06747] 5/16



Comparing with lattice data

Potentials Vg , Vf , w (gravity + DBI) determined by fitting to lattice QCD data
[Jokela, MJ, Remes 1809.07770]

Interaction measure ε−3p
T 4 ,

2+1 flavors

[Data: Borsanyi et al. 1309.5258]
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Choice of Z (φ) in Sa less constrained – consider three possibilities

Z (φ) = Z0(1 + c1e
φ + c4e

4φ) , Z (φ) = Z0(eφ + c4e
4φ) , Z (φ) = Z0(e2φ + c4e

4φ)

Fit ci to lattice Yang-Mills data for pseudo-scalar glueballs and Z0 to topological
susceptibility [Gallegos, MJ, Weitz 2406.07617] 6/16
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Spatially modulated instability in V-QCD?

The CS term could drive the Nakamura-Ooguri-Park instability in V-QCD
[Nakamura, Ooguri, Park 0911.0679; Ooguri, Park 1011.4144]

SCS =
iNc

24π2

∫
Tr
[
− iAL ∧ FL ∧ FL + iAR ∧ FR ∧ FR + · · ·

]
I Background: charged black hole in V-QCD
I CS term only affects “helicity-one” gauge

field fluctuations

q

Im
(ω

)

Im(ω)>0

Im(ω)<0

Two cases:

1. Non-Abelian fluctuations: decoupled fields ∼ (δAx
L/R(r)± iδAy

L/R(r))tae−iωt+iqz

where ta is a generator of SU(Nf )
2. Abelian fluctuations (simpler in vector/axial basis due to parity)

δAx ± iδAy ←→
coupled (CS)

δV x ± iδV y ←→
coupled

δgzx ± iδgzy

Check numerically the region where the instability exists
[Cruz Rojas, Demircik, MJ 2405.02399] 8/16



Results for instability

I Extends to surprisingly low µ/T !

I Non-Abelian instability stronger!

I Three variants 5b, 7a, 8b:
uncertainty after lattice fit

I Result actually “universal”!
[Niko’s talk]

[Demircik, Jokela, MJ, Piispa 2405.02392]
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Dispersion relations

Dispersion relations of the unstable modes at
low µ/T (upper plot) and high µ/T (lower plot)

I Details vary over the phase diagram

I Characteristic frequency and momentum
roughly constant, ω ∼ ΛQCD ∼ q

I Apart from minor mixing effects, results
for Abelian and non-Abelian modes similar

0 1 2 3 4

-2

-1

0

1

q/(2 π T)

Im
[ω

]/
(2

π
T
)

Non-Abelian Helicity 1 Fluctuations , μ = 100 MeV & T = 130 MeV

0 2 4 6 8 10 12 14

-2

-1

0

1

q/(2 π T)

Im
[ω

]/
(2

π
T
)

Non-Abelian Helicity 1 Fluctuations , μ = 450 MeV & T = 30 MeV

10/16



Outline

1. The holographic V-QCD model
I Implementation of anomalies
I Fitting to lattice data

2. Spatial instability in V-QCD

3. Chiral separation effect in V-QCD

4. Conclusion

11/16



Anomalous transport in V-QCD

We did the basic computation of anomalous conductivities

[Gallegos, MJ, Weitz 2406.07617]

δ〈J k
V 〉 = σVVB

k + σVAB
k
A + σVΩω

k

I Background: black holes with vectorial and/or axial charge

I Turned on constant infinitesimal magnetic fields and vorticity ωi = εijk∂jδgtk |bdry

I Computed variation of consistent vectorial current by solving the fluctuations

I In V-QCD, the consistent current is UV finite, whereas the covariant current is not

I In this basis, only σVA is nonzero – the chiral separation conductivity

I Result deviates from universal value σVA = Nf Nc

2π2 µ due to dynamical gauge fields,
i.e. the mass of the axial gauge field in the bulk

[Jimenez-Alba, Landsteiner, Melgar 1407.8162; Gallegos, Gürsoy 1806.07138]
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Results at zero density

We show the conductivity normalized to the universal result in the limit of µ→ 0

I Used three different variants of Z (φ) controling the mass of the axial gauge field

I Qualitative agreement with recent lattice analysis
[Brandt, Endrodi, Garnacho-Velasco, Marko 2312.02945]

I Tuning Z (φ) to obtain more precise match with lattice seems possible

Our result Lattice (Nf = 2 + 1)

150 200 250 300 350 400
0.0

0.2

0.4

0.6

0.8

1.0

T MeV

σ
V
A
R Z(λ)~Z0λ

2

Z(λ)~Z0λ
Z(λ)~Z0

0 100 200 300 400

T [MeV]

0.00

0.01

0.02

0.03

0.04

0.05

CCSE

Cdof

C free
CSE(m/T = 0)

p,Σ± gas

Cont. limit

Parameterization

243 × 6

243 × 8

283 × 10

363 × 12

243 × 32

323 × 48

13/16



Results at finite density

Predictions at finite vectorial or axial density

I (Nc = 3) lattice QCD results unavailable (sign problem)

I However can compare to Nc = 2 results
[Buividovich, Smith, von Smekal 2012.05184]

Our result Lattice (Nc = 2)
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Conclusions

I I presented a (chirally symmetric) holographic model

which fits lattice data and includes QCD anomalies

I First application: Nakamura-Ooguri-Park instability at
surprisingly low µ/T
I Turns out to be a universal result (see Niko’s talk)

I Second application: analyzed chiral separation effect –

found qualitative agreement with lattice results
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Thank you!



QCD phase diagram and the critical point

Search for the critical point: ongoing effort at
RHIC

I Beam Energy Scan stage I results
available

I Stage II finished, results being analyzed

Will be extended by future experiments at
FAIR, J-PARC, NICA

Neutron star observations give complementary
information at high density

? ?
?

?

?
?

[Adapted from Aprahamian et al. (2015)

Bzdak et al. 1906.00936]
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QCD phase diagram and the critical point

Theoretical approaches

I First-principles methods do not work in
the region relevant for critical point

I Phase diagram or even relevant phases
not known

I May include spatially modulated phases

I Can be accessed via the gauge/gravity
duality?

µmatterVacuum

Nuclear

T

cores

theory
field
Effective

matter
Quark

Perturbative QCD

phases?
Paired

cores
Neutron star

Neutron star
mergers

Lattice QCD

I Basic idea (bottom-up): use the gauge/gravity duality to extrapolate lattice (and
other) data to higher density

[DeWolfe et al. 1012.1864; Knaute et al. 1702.06731; Critelli et al. 1706.00455
Jokela, MJ, Remes 1809.07770; Demircik, Ecker, MJ 2112.12157

Cai, He, Li, Wang 2201.02004; Li, Liang, He, Li 2305.13874 . . . ]

[See also the talk by Mei Huang]
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Generic holographic approach: fields

We want to describe holographically (chirally symmetric) QCD plasma (Nf massless
flavors)

Most important (relevant and marginal) operators

I Tµν , dual to the metric gµν
I Gluon operator G 2

µν , dual to a scalar (the dilaton) φ

I Flavor currents ψ̄iγµ(1± γ5)ψj , dual to the gauge fields (A
L/R
µ )ij (with

i , j = 1 . . .Nf ) – global U(Nf )L × U(Nf )R of QCD promoted to gauge symmetry

I Flavor bilinears ψ̄iψj dual to a complex scalar Tij

What are our options for the choice of 5D action?
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Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider the chiral U(Nf )L × U(Nf )R coupled to external
fields AL, AR

I Under transformation with parameters ΛL/R

SQCD 7→ SQCD +
iNc

24π2

∫
Tr [ΛLFL ∧ FL − ΛRFR ∧ FR + · · · ]

Holographic counterpart
I External fields promoted to 5D gauge fields
I Gauge variation at the boundary must agree with the anomaly

[Witten hep-th/9802150]I 5D CS term – unique when chiral symmetry intact

SCS =
iNc

24π2

∫
Tr

[
− iAL ∧ FL ∧ FL +

1

2
AL ∧ AL ∧ AL ∧ FL+

+
i

10
AL ∧ AL ∧ AL ∧ AL ∧ AL − (L↔ R)

]
I Generalizations (e.g. chirally broken) worked out

[Casero, Paredes, Kiritsis hep-th/0702155; Lau, Sugimoto 1612.09503;
MJ, Kiritsis, Nitti, Préau 2209.05868]

I Note: U(1)A anomaly is a separate issue – not needed here
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I Note: U(1)A anomaly is a separate issue – not needed here
22/16



Generic holographic approach: actions

We write down expected (two-derivative) terms

S = Sgr + Smatter + SCS

where SCS is fixed by anomalies, and

Sgr = M3
pN

2
c

∫
d5x

√
− det g

[
R − 4

3
(∂φ)2 + Vg(φ)

]

Choice of Smatter less obvious. Options: Smatter = SDBI or Smatter = SYM, with

1. SDBI = M3
pNc

∫
Vf(φ) Tr

[√
− det [gµν + w(φ)(FL)µν ] + (L↔ R)

]
2. SYM = M3

pNc

∫
Z (φ) Tr

[
F 2
L + F 2

R

]
I Background gauge fields sourced by µB ⇒ at small density, FL/R small
⇒ DBI and YM reduce to the same choice

I Potentials (Vg , Vf , w or Vg , Z ) to be fixed by QCD data
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Fitting the potentials to data

Potentials determined by comparison to lattice data
I Data for Yang-Mills (Vg )
I Data for full QCD (other potentials):

equation of state, χB
2 = d2p

dµ2
B

∣∣
µB=0

. . .

In case of DBI action we use two approaches

1. With confinement and phase transition (V-QCD)
2. Without confinement, direct fit to data

24/16



Outline

1. Introduction

2. Holographic models

3. Spatial Instability

4. Conclusion

25/16



Inhomogeneity in holographic plasma?

Spatially modulated instability
[Nakamura, Ooguri, Park 0911.0679;

Ooguri, Park 1011.4144]

q

Im
(ω

)

Im(ω)>0

Im(ω)<0

I Exponentially growing perturbation at q 6= 0:
a quasi-normal mode with Imω > 0

I The Chern-Simons term can drive
such a modulated instability at finite density

Schematic fluctuation equation

ψ′′(r) +

(
A′ +

f ′

f

)
ψ′(r) +

qn

M3
p fe

2AZ (φ)2
ψ(r)︸ ︷︷ ︸

From CS term

+

(
ω2

f 2
− q2

f

)
ψ(r) = 0

ψ = δAx
L/R ± iδAy

L/R r = holographic coord.

I Ground state: Modulated 5D gauge fields dual to
modulated persistent chiral currents in field theory
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Modulated instability in V-QCD

The region where instability
exists in V-QCD

[Cruz Rojas, Demircik, MJ 2405.02399]
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I The Chern-Simons term is
strong enough to create
an instability in V-QCD (unsurprising)

I Instability is found at low T and large density (expected)
I Instability is also found at higher T , near the regime with critical point?! (a big

surprise)
I Estimate for transition and critical point from earlier work

[Demircik, Ecker, MJ 2112.12157]
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Model dependence: fitting uncertainty

Low-density instability would be phenomenologically highly interesting and potentially
testable
I There may be caveats and uncertainties (choices in fitting the data, model

dependence and reliability. . . )
I However, at low densities, expect that models strictly fixed by lattice data
I Important to check this! [Demircik, Jokela, MJ, Piispa 2405.02392]

Parameter dependence in
V-QCD: rather weak
I Onset of instability

solidly determined
by lattice fit
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★★
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Model dependence: other checks

Vary fitting strategy

Vary matter action

★★★★
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I Only minor changes

– in particular, DBI and Yang-Mills actions give essentially
identical results

I This means that the instability appears in a wide class of models in the literature
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Model dependence: strange quark mass

I Instability potentially sensitive to fit to χ2 = d2p
dµ2

∣∣
µ=0

I Lattice data shows mild flavor dependence [Borsanyi et al. 1112.4416]

I Naive test: fit instead of the full χ2 the light quark χ2 (dashed curves) of the
Nf = 2 + 1 lattice result ⇒ isolate the instability in the light quark sector
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Model dependence: strange quark mass

★★
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I Rather strong suppression of the instability!
I However, not a consistent check due to strange quark effects in lattice data
I Moreover, fit to strange quark χ2 would instead enhance instability

I Therefore further careful study is required
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1. Introduction
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Conclusion

I Holographic bottom-up QCD models anchored to lattice
data suffer from strong Nakamura-Ooguri-Park instability

I Model dependence weak, so perhaps also a feature of real QCD?

I Appears at high density, region potentially reached in neutron star cores and
neutron star mergers

I A surprise: also found at low density and high temperature, region reachable
by lattice or experiments

I Dependence on fitting procedure and choice of flavor action small at low
density – affects ALL models fitted to equation of state and χB

2

I Flavor effects, in particular dependence on strange quark mass, expected to
be significant

I Next step, therefore: add separate flavors and strange quark mass – in
progress with Toshali Mitra – fitting already done
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Thank you!



Generic holographic approach: fitting strategies

Potentials are determined by comparing with lattice results for QCD thermodynamics.
Two main strategies:

Strategy I: Include confined phase, with Son−shell = O(N0
c ), and

the transition to a deconfined phase, with Son−shell = O(N2
c )

I Used in Improved Holographic QCD and V-QCD models
[Gürsoy, Kiritsis 0707.1324; Gürsoy, Kiritsis, Nitti 0707.1349;

MJ, Kiritsis 1112.1261]
I Fit lattice data above T = Tc

[Gürsoy, Kiritsis, Mazzanti, Nitti 0903.2859;
Jokela, MJ, Remes 1809.07770]

I Faithful to the behavior in the limit of large Nc

Strategy II: Only deconfined black holes: no phase transition at
low density

I Fit lattice data at all temperatures
[Gubser, Nellore, Pufu, Rocha 0804.1950; Gubser, Nellore 0804.0434;

DeWolfe, Gubser, Rosen 1012.1864; . . . ]
I Follows the behavior in the phase diagram of QCD (crossover at low density)

We study both approaches
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Fitting the models: setup

Solve numerically black hole geometries

ds2 = e2A(r)

(
1

f (r)
dr2 − f (r)dt2 + d~x2

)
with a horizon f (r = rh) = 0 and a background gauge field

At
L(r) = At

R(r) = Φ(r)I

Black hole thermodynamics ⇒ equation of state

T =
1

4π
|f ′(rh)| s = 4πM2

pN
2
c e

3A(rh)

Relation between quark number n and chemical potential (for YM action)

µ = Φ(r = 0) = n

∫ rh

0

1

eAZ (φ)

Numerical expansion ⇒ susceptibilities

χk(T , µ) =
∂kp(T , µ)

∂µk
=
∂k−1n(T , µ)

∂µk−1
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Constraining the potentials

In the UV ( λ→ 0):
I UV expansions of potentials matched with perturbative QCD beta functions ⇒

asymptotic freedom and logarithmic flow of the coupling and quark mass, as in
QCD

[Gürsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]

In the IR (λ→∞): various qualitative constraints
I Linear confinement, discrete glueball & meson spectrum, linear radial trajectories
I Existence of a “good” IR singularity
I Correct behavior at large quark masses
I Working potentials often string-inspired power-laws, multiplied by logarithmic

corrections (i.e, first guesses usually work!)
[Gürsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, Iatrakis, MJ, Kiritsis 1309.2286, 1609.08922;

MJ 1501.07272]

Final task: determine the potentials in the middle, λ = O(1)
I Qualitative comparison to lattice/experimental data
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Ansatz for potentials, (x = 1)

Vg (λ) = 12

[
1 + V1λ+

V2λ
2

1 + λ/λ0
+ VIRe

−λ0/λ(λ/λ0)4/3
√

log(1 + λ/λ0)

]
Vf 0(λ) = W0 + W1λ+

W2λ
2

1 + λ/λ0
+ WIRe

−λ0/λ(λ/λ0)2

1

w(λ)
= w0

[
1 +

w1λ/λ0

1 + λ/λ0
+ w̄0e

−λ0/λws
(wsλ/λ0)4/3

log(1 + wsλ/λ0)

]

V1 =
11

27π2
, V2 =

4619

46656π4

W1 =
8 + 3W0

9π2
; W2 =

6488 + 999W0

15552π4

Fixed UV/IR asymptotics ⇒ fit parameters only affect details in the middle
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Fitting example: V-QCD (strategy I)

Fit to lattice data near µ = 0 with DBI action and fitting strategy I (with transition):
the V-QCD model (in the chirally symmetric phase) [MJ, Jokela, Remes, 1809.07770]

I Choose suitable Ansätze for the potentials, many parameters
I Parameters adjusted “by hand”
I Good description of lattice data – nontrivial result!
I Flat direction in the fit ⇒ a one-parameter family of models

Interaction measure ε−3p
T 4 ,

2+1 flavors

[Data: Borsanyi et al. 1309.5258]
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Fitting example: direct fit (strategy II)

Use strategy II (no phase transition) with both DBI and YM [Jokela, MJ, Piispa 2405.02394]

Systematic statistical fit to

1. Equation of state
(through entropy density)

2. Cumulants χ2 and χ4

I (Here YM → EMD:
for Abelian background,
Yang-Mills=Maxwell)
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How does the instability arise?

★★
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Looks quite different from Nakamura-
Ooguri-Park, where the onset was at
fixed µ/T . . . what is going on?

I Also differs from result in
Witten-Sakai-Sugimoto

[Ooguri, Park 1011.4144]

I Look at the fluctuation equation

ψ′′ +

(
A′ +

f ′

f

)
ψ′ +

qn

M3
p fe

2AZ (φ)2
ψ +

(
ω2

f 2
− q2

f

)
ψ = 0

I Values of φ largest near horizon, and grow for smaller black holes
I Smallest black holes found near the deconfinement transition

[Alho, MJ, Kajantie, Kiritsis, Rosen, Tuominen 1312.5199]

I Z (φ) determined by fit to χ2: fast increase of χ2 with T
⇒ fast decrease of Z with φ

I Enhances instability strongly for small black holes
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