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The V-QCD model

V-QCD: A holographic bottom-up model for QCD in the Veneziano limit
(large N, Nc; fixed N¢/Nc)
> Bottom-up, but trying to follow principles from string theory as closely as possible
» Many parameters: effective description of QCD
» Comparison with QCD data essential
» Relatively complicated model (because QCD is complicated)
» Inclusion of axial and chiral anomalies worked out

The model is obtained through a fusion of two building blocks: [MJ, Kiritsis arXiv:1112.1261]

. IHQCD: model for glue inspired by string theory (dllaton gravity)

[Giirsoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via space filling D4 — D4 branes and

tachyon condensation
[Klebanov,Maldacena; Bigazzi,Casero,Cotrone,latrakis, Kiritsis,Paredes]

Full backreaction between the two sectors in the Veneziano limit
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Chirally symmetric V-QCD

Dual fields: ¢ <> G, G*, a < GW@“’, (A,L/R)U & PI(1 £ y5)y, 0
Sv—_qcp = Sg + Spei + S5 + Scs

S0 = wenz [ =g R 002 + Vi)

Som = M. [ dx Vi(o) Tr |/~ derg, + w()FD) + (L R)
M3 N2 2
Sa = 5 / d°xv/—g Z() [0 — Tr (AL — AR) /N]
iN, . 1
Scs = 247 /Tr{—/AL/\FL/\FL-l-EAL/\AL/\AL/\FL"‘

+li0ALAAL/\ALAALAAL+(L<—>R)}

> A slight generalization of models discussed e.g. by Sebastian on Tuesday
» Most of the structure fixed by chiral symmetry, parity, and anomalies
» Many potentials V,, V¢, w, Z — however need to be “simple” functions —

determined by comparing to lattice data 4/16



Anomaly terms in V-QCD

1. Axial anomaly:

N62M3 5 L R 2
Sa=——5— [ d°xv=g Z(¢) [aﬂa T (A“ - Au) /NC}
is invariant under the U(1) gauge transformation
L L R R f
(ALY — (A)Y +06%0,¢ (A7) — (AL)Y — 60, a—a+ 2ﬁc €
» Symmetry implies the axial anomaly in QCD N .
» S, includes a bulk mass for the axial gauge field Opdy = T2 O m

2. Global chiral anomalies:

The gauge transformation of Scs (with parameters A /) is a boundary term

matching with field theory anomaly [See Niko's talk]
iN.

(SSCS 214 5 /Tr [/\LFL A FL — /\RFR A FR + - ]

N.B. chirally broken S, and Scs also available
[Casero, Paredes, Kiritsis hep-th/0702155; Arean, latrakis, MJ, Kiritsis 1309.2286, 1609.08922

[MJ, Kiritsis, Nitti, Préau 2209.05868; 2212.06747 5/16



Comparing with lattice data

Potentials Vg, V¢, w (gravity + DBI) determined by fitting to lattice QCD data
[Jokela, MJ, Remes 1809.07770]

Interaction measure E}ip, Baryon number -
2+1 flavors susceptibility Xzzﬁg o
(e-apT* [Data: Borsanyi et al. 1309.5258] ol T [Data: Borsanyi et al. 1112.4416]
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Choice of Z(¢) in S, less constrained — consider three possibilities
Z(¢) = Zo(1 + cre® + c4e*®) ,  Z(¢) = Zo(e® + cae™®) ,  Z(¢) = Zo(e*® + cue*?)

Fit ¢; to lattice Yang-Mills data for pseudo-scalar glueballs and Zy to topological
susceptibility [Gallegos, MJ, Weitz 2406.07617] g /1¢



2. Spatial instability in V-QCD
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Spatially modulated instability in V-QCD?

The CS term could drive the Nakamura-Ooguri-Park instability in V-QCD
[Nakamura, Ooguri, Park 0911.0679; Ooguri, Park 1011.4144]

N . .
Scs = I/Tr[/AL/\FL/\FL+/AR/\FR/\FR+-~]
2472
» Background: charged black hole in V-QCD In(u»0

Im(w)<!
» CS term only affects “helicity-one” gauge =

field fluctuations \

Two cases: a
1. Non-Abelian fluctuations: decoupled fields ~ (5A’L</R(r) + idAf/R(r))tae_"W*"qz
where t? is a generator of SU(Ny)
2. Abelian fluctuations (simpler in vector/axial basis due to parity)

SAX £ iSAY s SVX LISV s Ogm t idgsy
coupled (CS) coupled

Im(w)

Check numerically the region where the instability exists
[Cruz Rojas, Demircik, MJ 2405.02399] 8/16



Results for instability

150[ 55 I Declonﬂned Phase T
» Extends to surprisingly low /T
» Non-Abelian instability stronger! <
[}
. =
» Three variants bb, 7a, 8b: =
) i . 501 Confined Phase |
uncertainty after lattice fit Non-Abelian Inst
» Result actually “universal”! o .. \AdShine apeian nst
[Nikols talk] 0 100 200 300 400 500 600 700
[Demircik, Jokela, MJ, Piispa 2405.02392] H(MeV)
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Dispersion relations

Dispersion relations of the unstable modes at
low 11/ T (upper plot) and high 1/ T (lower plot)
» Details vary over the phase diagram

» Characteristic frequency and momentum
roughly constant, w ~ Aqcp ~ g

» Apart from minor mixing effects, results
for Abelian and non-Abelian modes similar

Im{w(2 7T T)

Imfwl(2 e T)

Non-Abelian Helicity 1 Fluctuations, y = 100 MeV & T = 130 MeV

1k

)

g2 T)

Non-Abelian Helicity 1 Fluctuations, u = 450 MeV & T = 30 MeV

T



3. Chiral separation effect in V-QCD
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Anomalous transport in V-QCD

We did the basic computation of anomalous conductivities
[Gallegos, MJ, Weitz 2406.07617]

5(TE) = oyw B + ovaBj 4 ovquw”

» Background: black holes with vectorial and/or axial charge

» Turned on constant infinitesimal magnetic fields and vorticity w’ = eUkﬁj(Sgtk|bdry
> Computed variation of consistent vectorial current by solving the fluctuations

» In V-QCD, the consistent current is UV finite, whereas the covariant current is not
» In this basis, only oy, is nonzero — the chiral separation conductivity

» Result deviates from universal value oy = ’\é;r’gcu due to dynamical gauge fields,

i.e. the mass of the axial gauge field in the bulk
[Jimenez-Alba, Landsteiner, Melgar 1407.8162; Gallegos, Giirsoy 1806.07138]
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Results at zero density

We show the conductivity normalized to the universal result in the limit of 4 — 0
» Used three different variants of Z(¢) controling the mass of the axial gauge field

» Qualitative agreement with recent lattice analysis
[Brandt, Endrodi, Garnacho-Velasco, Marko 2312.02945]

» Tuning Z(¢) to obtain more precise match with lattice seems possible

Our result Lattice (Nf =2+ 1)
1.0 : : : :
— 005 F = st — ) = ]
0.8 004k
1 Ccse 0.03F ont. limit
= — Z(A)~ZoA2 Cor . omtessation
1o Z(A)~ZoA 002} T
s Z()\)'—ZU % 28% x 10
L 36% x 12
0.01 i
. - & 32% xas
0.0 T ‘ ‘ ‘ ‘ ‘ 0.00 ¥ s ”
’ 150 200 250 300 350 400 . . . .
0 100 200 300 400
T MeV
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Results at finite density

Predictions at finite vectorial or axial density
» (N, = 3) lattice QCD results unavailable (sign problem)

» However can compare to N, = 2 results
[Buividovich, Smith, von Smekal 2012.05184]

Our result Lattice (N = 2)
0.6 0.12 T T T T T T
0.1 F
0.08 % 1
— pa=0 MeV = $
— ua=100 MeV g 0.06 - 3 1
— pa=200 MeV G g O L e 7%2%
— p4=300 MeV 0.04 1 s Cooarie o |
@ Lo=24,,;=20 —&—
0.02 | Le=30,L,=16 ,
0. ‘ ‘ ‘ ‘ ‘ Lo=30,L,=18 ~3—
% 100 200 300 400 500 600 o L ‘ . L=80L=20 A |
uy MeV 0 0.1 0.2 03 0.4 05



4. Conclusion
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Conclusions

» | presented a (chirally symmetric) holographic model
which fits lattice data and includes QCD anomalies

» First application: Nakamura-Ooguri-Park instability at
surprisingly low p/ T

» Turns out to be a universal result (see Niko's talk)

» Second application: analyzed chiral separation effect —
found qualitative agreement with lattice results
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Thank you!



QCD phase diagram and the critical point

The Phases of QCD

= Quark-Gluon Plasma
2 200
Search for the critical point: ongoing effort at ¢
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QCD phase diagram and the critical point

Search for the critical point: ongoing effort at
RHIC

» Beam Energy Scan stage | results
available

> Stage Il finished, results being analyzed

Will be extended by future experiments at
FAIR, J-PARC, NICA

Neutron star observations give complementary
information at high density

300

18200 s Vs = 62.4 Gev

The Phases of QCD
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QCD phase diagram and the critical point

Theoretical approaches

» First-principles methods do not work in
the region relevant for critical point

» Phase diagram or even relevant phases
not known

T

Perturbative QCD
Lattice QCD
[

N Quark
\ matter

M\ Neutron stan
\mergers _ (==
—

Nucleary . =_.
matter Pﬁgsee(é? &

Neutron star
cores

19/16



QCD phase diagram and the critical point

Theoretical approaches

» First-principles methods do not work in
the region relevant for critical point

» Phase diagram or even relevant phases
not known

» May include spatially modulated phases

T

Perturbative QCD
Lattice QCD
[

N Quark
\ matter

M\ Neutron stan
\mergers __ \==
—

Nucleary . =_.
matter Pﬁgsee(é? &

Neutron star
cores

19/16



QCD phase diagram and the critical point

Theoretical approaches

>

>

First-principles methods do not work in
the region relevant for critical point

Phase diagram or even relevant phases
not known

May include spatially modulated phases

Can be accessed via the gauge/gravity
duality?

T

Perturbative QCD
Lattice QCD
[

N Quark
\ matter

M\ Neutron stan
\mergers __ \==
—

Nucleary . =_.
matter PﬁgS%%iz &

Neutron star
cores

19/16



QCD phase diagram and the critical point

Theoretical approaches

>

>

T

First-principles methods do not work in Perturbative QCD

the region relevant for critical point L1 e Q.C\D

Phase diagram or even relevant phases

N uark
not known Q

\ matter

M\ Neutron stan
\mergers __ \==
—

Nucleary . =_.
matter PﬁgS%%iz &

May include spatially modulated phases

Can be accessed via the gauge/gravity
duality?

Neutron star
cores

Basic idea (bottom-up): use the gauge/gravity duality to extrapolate lattice (and

other) data to higher density
[DeWolfe et al. 1012.1864; Knaute et al. 1702.06731; Critelli et al. 1706.00455
Jokela, MJ, Remes 1809.07770; Demircik, Ecker, MJ 2112.12157

Cai, He, Li, Wang 2201.02004; Li, Liang, He, Li 2305.13874 ...]
[See also the talk by Mei Huang]
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2. Holographic models
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Generic holographic approach: fields

We want to describe holographically (chirally symmetric) QCD plasma (/Nf massless
flavors)
Most important (relevant and marginal) operators

» T, dual to the metric g,

» Gluon operator G2, dual to a scalar (the dilaton) ¢

Al

> Flavor currents 17, (1 % v5)1;, dual to the gauge fields (A/L/R),-j (with
i,j=1...N¢) - global U(N¢), x U(N¢)g of QCD promoted to gauge symmetry

» Flavor bilinears 1;1); dual to a complex scalar T;;
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Generic holographic approach: fields

We want to describe holographically (chirally symmetric) QCD plasma (/Nf massless
flavors)
Most important (relevant and marginal) operators

» T, dual to the metric g,

» Gluon operator G2, dual to a scalar (the dilaton) ¢

Al

> Flavor currents 17, (1 % v5)1;, dual to the gauge fields (A/L/R),-j (with
i,j=1...N¢) - global U(N¢), x U(N¢)g of QCD promoted to gauge symmetry

> Havor-bilinears—p—duat-to-a-complex-seatar—; — irrelevant in chirally symmetric
phase

What are our options for the choice of 5D action?
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Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider the chiral U(N¢); x U(Nf)g coupled to external
fields AL, AR
» Under transformation with parameters A /g

SQCD — 5QCD+ /TI’ [/\LFL/\FL—ARFR/\FR+ ]

iN¢
2472
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Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider the chiral U(N¢); x U(Nf)g coupled to external
fields AL, AR

» Under transformation with parameters A /g
iN¢
SQCDHSQCD"F oy 2/TI’[/\LFL/\FL—/\RFR/\FR—|- ]

Holographic counterpart
» External fields promoted to 5D gauge fields
» Gauge variation at the boundary must agree with the anomaly

» 5D CS term — unique when chiral symmetry intact [Witten hep-th/9802150]
.N 1
Scs = IC/Tr —ALANFLAFL+ SALANALNALA Fi+
2472 ; 2

+1I—OAL/\AL/\AL/\AL/\AL—(L<—>R)
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Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider the chiral U(N¢); x U(Nf)g coupled to external
fields AL, AR

» Under transformation with parameters A /g
iN¢
SQCDHSQCD"F oy 2/TI’[/\LFL/\FL—/\RFR/\FR—|- ]

Holographic counterpart
» External fields promoted to 5D gauge fields
» Gauge variation at the boundary must agree with the anomaly
» 5D CS term — unique when chiral symmetry intact [Witten hep-th/9802150]

.N 1
SCS:21462/Tr[iAL/\FL/\FLJrA/_/\A/_/\AL/\FDL
s

+ 1IOAL/\AL/\AL/\AL/\AL—(L<—> R)
» Generalizations (e.g. chirally broken) worked out

[Casero, Paredes, Kiritsis hep-th/0702155; Lau, Sugimoto 1612.09503;
MJ, Kiritsis, Nitti, Préau 2209.05868]
» Note: U(1)a anomaly is a separate issue — not needed here
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Generic holographic approach: actions

We write down expected (two-derivative) terms

S = Sgr + Smatter + SCS

where Scs is fixed by anomalies, and

S = MENZ [P /=t | R - 500+ Vy(o)]
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Generic holographic approach: actions

We write down expected (two-derivative) terms

S = Sgr + Smatter + SCS

where Scs is fixed by anomalies, and
4
Sgr = M;’Ng d5X \/ — detg |:R — g(@ﬁb)z + Vg(¢):|
Choice of Spatter less obvious. Options: Spmatter = SpBI OF Smatter = Sym, with

L Soer = MM [ V() Tr |/ det g, + w(@) (P + (L <+ R)|
2. Sym= MSNC/Z(qﬁ) Tr [F7 + F3]
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Generic holographic approach: actions

We write down expected (two-derivative) terms

S = Sgr + Smatter + SCS

where Scs is fixed by anomalies, and
4
S = MENZ [P /=t | R - 500+ Vy(o)]
Choice of Spatter less obvious. Options: Spmatter = SpBI OF Smatter = Sym, with

L Soer = MM [ V() Tr |/ det g, + w(@) (P + (L <+ R)|
2. Sym= MSNC/Z(qﬁ) Tr [F7 + F3]

> Background gauge fields sourced by pp = at small density, F; /g small
= DBI and YM reduce to the same choice

» Potentials (Vg, V¢, w or Vg, Z) to be fixed by QCD data
23/16



Fitting the potentials to data

Potentials determined by comparison to lattice data
» Data for Yang-Mills (V)

» Data for full QCD (other potentials):

d? ap

du? lup=0 -

In case of DBI action we use two approaches

equation of state, X2 =

1. With confinement and phase transition (V-QCD)

2. Without confinement, direct fit to data

1 HotQCD
WB

HotQCD12

1 HotQCDnt8
— DBI

— EMD

150 200 250

T [MeV]

300 350 400

20

0.08

0.02

i HotQCD
HotQCD12
§ HotQCDnt8

140

160 180

T [MeV]

200 220
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3. Spatial Instability
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Inhomogeneity in holographic plasma?

Spatially modulated instability
[Nakamura, Ooguri, Park 0911.0679; (a0

Ooguri, Park 1011.4144] W o

» Exponentially growing perturbation at g # 0:
a quasi-normal mode with Imw >0 \
» The Chern-Simons term can drive

such a modulated instability at finite density

Im(w)

q
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Inhomogeneity in holographic plasma?

Spatially modulated instability
[Nakamura, Ooguri, Park 0911.0679;

Im(w)>0

Ooguri, Park 1011.4144] W

» Exponentially growing perturbation at g # 0:
a quasi-normal mode with Imw >0
» The Chern-Simons term can drive

Im(w)

such a modulated instability at finite density

Schematic fluctuation equation

2

! w

, / n
0+ (A4 )00 + o+ (- %

From CS term

Y =0A] g £ iéAi/R r = holographic coord.
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Inhomogeneity in holographic plasma?

Spatially modulated instability
[Nakamura, Ooguri, Park 0911.0679; (a0

Ooguri, Park 1011.4144] W ——
» Exponentially growing perturbation at g # 0:
a quasi-normal mode with Imw >0
» The Chern-Simons term can drive
such a modulated instability at finite density

Im(w)

Schematic fluctuation equation
! 2 2

/ f / n
0+ (A4 ) 00 + gtz (- 5 ) v =0
From CS term

= 0A] g £ i0A] = hol hi d.
(0 L/R T 10AL /R r = holographic coor .

» Ground state: Modulated 5D gauge fields dual to
modulated persistent chiral currents in field theory %
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Modulated instability in V-QCD

The region where instability

exists in V-QCD

[Cruz Rojas, Demircik, MJ 2405.02399]

TMeV]
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*.. 7
)
H -.’:5& i
e 4
% . ]
%, |
Confined phase Unstable
! ! ‘ ! ‘ ‘
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Modulated instability in V-QCD

180 Deconfined phase |
Unstable
*..
100 |- ) “~.ﬁ?§$& ]
The region where instability 3 "9’.%0
exists in V-QCD F %o,)
[Cruz Rojas, Demircik, MJ 2405.02399] 50 E i
Confined phase Unstable
» The Chern-Simons term is
strong enough to Create 0 100 200 300 400 500 600
H[MeV]

an instability in V-QCD (unsurprising)
» Instability is found at low T and large density (expected)

700
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Modulated instability in V-QCD

150 -

Deconfined phase |

Unstable
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The region where instabilit 3 RN
g y 3
N 2 s
exists in V-QCD F “%,
[Cruz Rojas, Demircik, MJ 2405.02399] 50 ’ i
Confined phase ) Unstable
» The Chern-Simons term is ‘ ‘ ‘ ‘ ., ‘
strong enough to Create 0 100 200 300 400 500 600
H[MeV]

an instability in V-QCD (unsurprising)
» Instability is found at low T and large density (expected)

700

» Instability is also found at higher T, near the regime with critical point?! (a big

surprise)
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Modulated instability in V-QCD

180 Deconfined phase |
Unstable
*..
100 - : NK’?}QS‘ B
The region where instability % 2
N 2 s
exists in V-QCD F “%,
[Cruz Rojas, Demircik, MJ 2405.02399] 501 1
Confined phase Unstable
» The Chern-Simons term is ‘ ‘ ‘ ‘ -, ‘
strong enough to create 0 100 200 300 400 500 600 700
H[MeV]

an instability in V-QCD (unsurprising)
» Instability is found at low T and large density (expected)
» Instability is also found at higher T, near the regime with critical point?! (a big
surprise)

» Estimate for transition and critical point from earlier work
[Demircik, Ecker, MJ 2112.12157}, , ¢



Model dependence: fitting uncertainty

Low-density instability would be phenomenologically highly interesting and potentially
testable

» There may be caveats and uncertainties (choices in fitting the data, model
dependence and reliability. . .)

» However, at low densities, expect that models strictly fixed by lattice data

» Important to check this! [Demircik, Jokela, MJ, Piispa 2405.02392]
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Model dependence: fitting uncertainty

Low-density instability would be phenomenologically highly interesting and potentially
testable
» There may be caveats and uncertainties (choices in fitting the data, model
dependence and reliability. . .)
» However, at low densities, expect that models strictly fixed by lattice data
» Important to check this! [Demircik, Jokela, MJ, Piispa 2405.02392]
160

Parameter dependence in g
V—QCD: rather weak 140} N
» Onset of instability T

Deconfined phase

. . < [
solidly .dete.rmlned 3 120 — V-QCD 8b
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Model dependence: other checks

Vary fitting strategy

160+
Deconfined phase
140+ -
— V-QCD 7a |

. g DBI
% 120+ :
2
[

100

Confined phase
80
0 100 200

» Only minor changes
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Model dependence: other checks

Vary fitting strategy Vary matter action
T 160 ‘ ‘ ‘ :
N Deconfined phase | Jpa— Deconfined phase
140} ] 140k T T oBI
— V-QCD7a . >~ EVMD
_ DBI | _ Y = -
> 3 120t - A
2 2 >
= =
100+ ]
Confined phase
80+ B
0 100 200 300 400 500 0 100 200 300 400 500
Hq(MeV) Hq(MeV)

» Only minor changes — in particular, DBI and Yang-Mills actions give essentially
identical results
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Model dependence: other checks

T(MeV)

160

140}

120+

100

80

Vary fitting strategy

A

Deconfined phase

— V-QCD 7a |
DBI

Confined phase

T(MeV)

160

Vary matter action

Deconfined phase

™~ ~ DBI
S — EYMD
—~

Confined phase

200 300 400

Ho(MeV)

100

500

» Only minor changes — in particular, DBI and Yang-Mills actions give essentially
identical results

> This means that the instability appears in a wide class of models in the literature
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Model dependence: strange quark mass

. 2
> Instability potentially sensitive to fit to x» = 37’; =0

» Lattice data shows mild flavor dependence [Borsanyi et al. 1112.4416]
> Naive test: fit instead of the full x» the light quark x2 (dashed curves) of the

Nf =2 + 1 lattice result = isolate the instability in the light quark sector
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Model dependence: strange quark mass

160

140+

120+

T(MeV)

100+

80

Confined phase

Deconfined phase

0

100

200 300

Ho(MeV)

400

» Rather strong suppression of the instability!
> However, not a consistent check due to strange quark effects in lattice data
» Moreover, fit to strange quark y» would instead enhance instability

500

--- V-QCD 7a(ll)
DBI(Il)

— V-QCD 7a(l)
DBI(l)
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Model dependence: strange quark mass

160
] Deconfined phase

140+ ' . 8
> 120} ] --- v-QcD 7a(lly
= DBI(II)
= — V-QCD 7a(l)

100 DBI(])

Confined phase
80+ 4
0 100 200 300 400 500

Hq(MeV)
» Rather strong suppression of the instability!
> However, not a consistent check due to strange quark effects in lattice data
» Moreover, fit to strange quark y» would instead enhance instability
» Therefore further careful study is required 31/16
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Conclusion

» Holographic bottom-up QCD models anchored to lattice
data suffer from strong Nakamura-Ooguri-Park instability
» Model dependence weak, so perhaps also a feature of real QCD?

» Appears at high density, region potentially reached in neutron star cores and
neutron star mergers

» A surprise: also found at low density and high temperature, region reachable
by lattice or experiments

» Dependence on fitting procedure and choice of flavor action small at low
density — affects ALL models fitted to equation of state and Y5

» Flavor effects, in particular dependence on strange quark mass, expected to
be significant

» Next step, therefore: add separate flavors and strange quark mass — in
progress with Toshali Mitra — fitting already done

33/16



Thank you!



Generic holographic approach: fitting strategies

Potentials are determined by comparing with lattice results for QCD thermodynamics.
Two main strategies:

Strategy |: Include confined phase, with Sy, _shet = O(N?), and
the transition to a deconfined phase, with Sy, _shert = O(N2)
» Used in Improved Holographic QCD and V-QCD models
[Giirsoy, Kiritsis 0707.1324; Giirsoy, Kiritsis, Nitti 0707.13409;
. ) MJ, Kiritsis 1112.1261]
> Fit lattice data above T = T,
[Giirsoy, Kiritsis, Mazzanti, Nitti 0903.2859;
Jokela, MJ, Remes 1809.07770]

» Faithful to the behavior in the limit of large N,
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[Giirsoy, Kiritsis 0707.1324; Giirsoy, Kiritsis, Nitti 0707.13409;

] ] MJ, Kiritsis 1112.1261]
> Fit lattice data above T = T,

[Giirsoy, Kiritsis, Mazzanti, Nitti 0903.2859;
Jokela, MJ, Remes 1809.07770]
» Faithful to the behavior in the limit of large N,

Strategy II: Only deconfined black holes: no phase transition at
low density

» Fit lattice data at all temperatures
[Gubser, Nellore, Pufu, Rocha 0804.1950; Gubser, Nellore 0804.0434;
DeWolfe, Gubser, Rosen 1012.1864; .. .]
» Follows the behavior in the phase diagram of QCD (crossover at low density)

We study both approaches
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Fitting the models: setup

Solve numerically black hole geometries

1
2 _ _2A(r) 2 2, 42
ds®=e (f(r) dre — f(r)dt® + dx )

with a horizon f(r = ry) = 0 and a background gauge field
AL(r) = AR(r) = &(n)I
Black hole thermodynamics = equation of state

1
T = E|f’(rh)| s = 47TM§N3€3A(”’)

Relation between quark number n and chemical r’gtentlial (for YM action)
,u—CD(r—O)—n/p —_—
e’ Z(¢)
Numerical expansion = susceptibilities

_9p(T,p) 8 'n(T, )
Xk(Ta ,u) - 8,u’< - 8,u’<*1
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Constraining the potentials

In the UV (A — 0):

» UV expansions of potentials matched with perturbative QCD beta functions =
asymptotic freedom and logarithmic flow of the coupling and quark mass, as in
QCD

[Giirsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]
In the IR (A — o0): various qualitative constraints

» Linear confinement, discrete glueball & meson spectrum, linear radial trajectories

» Existence of a “good” IR singularity

» Correct behavior at large quark masses

» Working potentials often string-inspired power-laws, multiplied by logarithmic

corrections (i.e, first guesses usually work!)
[Giirsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, latrakis, MJ, Kiritsis 1309.2286, 1609.08922;

MJ 1501.07272]
Final task: determine the potentials in the middle, A = O(1)
» Qualitative comparison to lattice/experimental data
37/16



Ansatz for potentials, (x = 1)

Vo2
Ve(\) =12 [1 FVIA+ — 2 4 Vige /A (A /)3 /log(1 + )\/)\o)]

1+ X/ )Xo
W2>\2 —\
Vio(A\) = Wo + Wi + —20 1+ W, o/M A/ Ao)?
f0(A) o+ Wi +1+KM0+ RE (A/Xo)
wiA/Ao — _—Xo/Aw (wsA/Ao)*/?
— 1 0 s
Wiy T T T f log(1 + weA/ o)
o 1 4619
V7 orr20 2T 4665674
 8+3Wo 6488 4 999 Wy
WMi=—2 " W= 5

Fixed UV/IR asymptotics = fit parameters only affect details in the middle
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Fitting example: V-QCD (strategy )

Fit to lattice data near ;. = 0 with DBI action and fitting strategy | (with transition):
the V-QCD model (in the chirally symmetric phase) [MJ, Jokela, Remes, 1809.07770]
» Choose suitable Ansatze for the potentials, many parameters
» Parameters adjusted “by hand”
» Good description of lattice data — nontrivial result!
» Flat direction in the fit = a one-parameter family of models

Interaction measure E_T%p, Baryon number ,
241 flavors susceptibility yo2 = jﬂ’; -
[Data: Borsanyi et al. 1309.5258] [Data: Borsa;nyi et al. 1112.4416]
(e-3p)/T* xslT?
0.30
0.25
0.20)
0.15
0.10
0.05
L
1.0 15 2.0 25 T

39/16



Fitting example: direct fit (strategy II)

Use strategy Il (no phase transition) with both DBI and YM [Jokela, MJ, Piispa 2405.02394]

Systematic statistical fit to 20 SB e
1. Equation of state
15,
(through entropy density) . I Hotqep
=y
2. Cumulants x2 and xa 10 ws
— DBI
» (Here YM — EMD: s — BMD
for Abelian background,
. 150 200 250 300 350 400 450 500
Yang-Mills=Maxwell) TIMev]
” L 0.8 1 HotQcD
030 ! HotQCD12
0.25, { HotQcD 0.06 1 HotQCDnt8
0.20 WB e
a2 s HotQCD12 < 004
) { HotQCDnt8
010 — DBI 002t 4 Y
0.05 — EMD
0. 0.00
150 200 250 300 350 400 120 140 160 180 200 220
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How does the instability arise?

Looks quite different from Nakamura- el Deconfined phase ]
Ooguri-Park, where the onset was at unsavle
fixed p/ T...what is going on’ " %&%
= %,
» Also differs from result in A 4
VV| tten—S a ka |—S u g| m OtO Confined phase Unstable
[Ooguri, Park 1011.4144] .
. . 0 -~
> Look at the fluctuation equation o W W ww we s w70

' qn w? g
" A/ o / - =
v ( - f)¢ RN VEEZ Y Pk <f2 f)w 0
> Values of ¢ largest near horizon, and grow for smaller black holes

» Smallest black holes found near the deconfinement transition _
[Alho, MJ, Kajantie, Kiritsis, Rosen, Tuominen 1312.5199]

» Z(¢) determined by fit to y2: fast increase of x» with T
= fast decrease of Z with ¢

» Enhances instability strongly for small black holes
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