Is holographic quark-gluon plasma homogeneous?

Niko Jokela

Holographic perspectives on chiral transport and spin dynamics ECT*, Trento March 27, 2025

Research premise

Theoretical approaches

- First-principles methods do not work in the region relevant for critical point
- Phase diagram or even relevant phases not known
- Can be accessed via the gauge/gravity duality?
- Basic idea (bottom-up): use the gauge/gravity duality to extrapolate lattice (and other) data to higher density

[lots of work to cite here...]

- Likely include spatially modulated phases: effect e.g. on transport (see Matti's talk)
- This talk, main references:

[Demircik–NJ–Järvinen–Piispa 2405.02392; NJ–Järvinen–Piispa 2405.02394;

CruzRojas-Demircik-Järvinen 2405.02399] 2/11

We want to describe holographically (chirally symmetric) QCD plasma (N_f massless flavors)

Most important (relevant and marginal) operators

- $T_{\mu
 u}$, dual to the metric $g_{\mu
 u}$
- Gluon operator ${\cal G}^2_{\mu
 u}$, dual to a scalar (the dilaton) ϕ
- Flavor currents $\bar{\psi}_i \gamma_\mu (1 \pm \gamma_5) \psi_j$, dual to the gauge fields $(A_\mu^{L/R})_{ij}$ (with $i, j = 1 \dots N_f$) global $U(N_f)_L \times U(N_f)_R$ of QCD promoted to gauge symmetry
- Flavor bilinears $\bar{\psi}_i \psi_j$ dual to a complex scalar T_{ij} irrelevant in chirally symmetric phase

Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider $U(N_f)_L \times U(N_f)_R$ coupled to external fields A_L , A_R

• Under gauge transformation with parameters $\Lambda_{L/R}$

[Fujikawa'79]

$$S_{\text{QCD}} \mapsto S_{\text{QCD}} + \frac{iN_c}{24\pi^2} \int \text{Tr} \left[\Lambda_L F_L \wedge F_L - \Lambda_R F_R \wedge F_R + \ldots\right]$$

- 't Hooft: low energy EFT should have the same anomaly
- slide lifted from talk by S. Sugimoto:
 - Original derivation of the WZW term

Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider $U(N_f)_L \times U(N_f)_R$ coupled to external fields A_L , A_R

• Under gauge transformation with parameters $\Lambda_{L/R}$

[Fujikawa'79]

$$S_{\text{QCD}} \mapsto S_{\text{QCD}} + \frac{iN_c}{24\pi^2} \int \text{Tr} \left[\Lambda_L F_L \wedge F_L - \Lambda_R F_R \wedge F_R + \ldots\right]$$

• 't Hooft: low energy EFT should have the same anomaly

Holographic counterpart

• External fields promoted to 5D gauge fields

$$S_{CS} = \frac{iN_c}{24\pi^2} \int \operatorname{Tr} \left[-iA_L \wedge F_L \wedge F_L + \frac{1}{2}A_L \wedge A_L \wedge A_L \wedge F_L + \frac{i}{10}A_L \wedge A_L \wedge A_L \wedge A_L \wedge A_L \wedge A_L - (L \leftrightarrow R) \right]$$

- This term is not gauge invariant in the presence of a boundary
- Gauge variation at the boundary must agree with the anomaly: S_{CS} unique when chiral symmetry intact

Generic holographic approach: actions

We write down expected (two-derivative) terms

 $S = S_{\rm gr} + S_{\rm matter} + S_{\rm CS} \label{eq:Scs}$ where $S_{\rm CS}$ is fixed by anomalies, and

$$S_{\rm gr} = M_{\rm p}^3 N_c^2 \int d^5 x \sqrt{-\det g} \left[R - \frac{4}{3} (\partial \phi)^2 + V_{\rm g}(\phi) \right]$$

less obvious. Options: Some = Some or Some = Some with

Choice of S_{matter} less obvious. Options: $S_{matter} = S_{DBI}$ or $S_{matter} = S_{YM}$, with

1.
$$S_{\text{DBI}} = M_{\text{p}}^{3} N_{c} \int V_{\text{f}}(\phi) \operatorname{Tr} \left[\sqrt{-\det \left[g_{\mu\nu} + w(\phi)(F_{L})_{\mu\nu} \right]} + (L \leftrightarrow R) \right]$$

2.
$$S_{\text{YM}} = M_{\text{p}}^{3} N_{c} \int Z(\phi) \operatorname{Tr} \left[F_{L}^{2} + F_{R}^{2} \right]$$

- Background gauge fields sourced by $\mu_B \Rightarrow$ at small density, $F_{L/R}$ small \Rightarrow DBI and YM reduce to the same choice
- Potentials (V_g , V_f , w or V_g , Z) to be fixed by QCD data

Fitting the potentials to data

Potentials determined by comparison to lattice data

- Data for Yang-Mills (V_g)
- Data for full QCD (other potentials): equation of state, $\chi_2^B = \frac{d^2p}{d\mu_B^2}|_{\mu_B=0}$...

In case of DBI action we use two approaches

- With confinement and phase transition (V-QCD)
- Without confinement, direct fit to data

Inhomogeneity in holographic plasma

Spatially modulated phases

[(Nakamura)–Ooguri–Park 0911.0679,1011.4144,...]

- Exponentially growing perturbation at q ≠ 0: a quasi-normal mode with Im ω > 0
- Chern–Simons term drives
 a modulated instability at finite density n
- Modulated 5D gauge fields dual to modulated persistent chiral currents $\bar{\psi}\gamma^{y}(1-\gamma_{5})t^{a}\psi(x)$

Schematic fluctuation equation

$$\delta\varphi''(r) + \left(A' + \frac{f'}{f}\right)\delta\varphi'(r) + \underbrace{\frac{q \times n}{M_p^3 f e^{2A} w(\phi)^2}\delta\varphi(r)}_{\text{From CS term}} + \left(\frac{\omega^2}{f^2} - \frac{q^2}{f}\right)\delta\varphi(r) = 0$$

$$\delta\varphi = \delta A_{L/R}^y \pm i\delta A_{L/R}^z$$
From CS term r = holographic coord.

8/11

Modulated instability in holo-QM

The region where instability exists

[CruzRojas-Demircik-Järvinen 2405.02399; Demircik-NJ-Järvinen-Piispa 2405.02392]

- Holographic QCD is unstable to forming inhomogeneous ground state: Unsurprising
- Instability is found at low T and large density region relevant for neutron stars: Expected
- \bullet Instability is also found at higher ${\cal T},$ near the regime with critical point:

A big surprise

• Model dependence is really mild:

[Demircik-NJ-Järvinen-Piispa 2405.02392]

 $\bullet\,$ varied model parameters $\leftrightarrow\,$ freedom in fitting to lattice data

• Model dependence is really mild:

[Demircik-NJ-Järvinen-Piispa 2405.02392]

- \bullet varied model parameters \leftrightarrow freedom in fitting to lattice data
- varied fitting model w/ confinement and phase transition (V-QCD) \leftrightarrow without

• Model dependence is really mild:

[Demircik-NJ-Järvinen-Piispa 2405.02392]

- $\bullet\,$ varied model parameters $\leftrightarrow\,$ freedom in fitting to lattice data
- varied fitting model w/ confinement and phase transition (V-QCD) \leftrightarrow without
- $\bullet\,$ varied the flavor action DBI $\leftrightarrow\,$ Yang–Mills truncation

• Model dependence is really mild:

[Demircik-NJ-Järvinen-Piispa 2405.02392]

- $\bullet\,$ varied model parameters $\leftrightarrow\,$ freedom in fitting to lattice data
- $\bullet\,$ varied fitting model w/ confinement and phase transition (V-QCD) $\leftrightarrow\,$ without
- $\bullet\,$ varied the flavor action DBI \leftrightarrow Yang–Mills truncation
- All holographic massless QM models fitted to lattice data has instability at high-T
- Flavor dependence in susceptibilities, visible in lattice data?

[Borsanyi et al. 1112.4416]

• Naive test: fit instead light quark χ_2 to the $N_f = 2 + 1$ lattice result

Conclusion and outlook

- ALL holographic bottom-up QCD models anchored to lattice data suffer from strong Nakamura–Ooguri–Park instability
 - Model dependence weak, so perhaps also a feature of real QCD?
- Appears at high density, region potentially reached in neutron star cores and neutron star mergers
- A surprise: also found at low density and high temperature, region reachable by lattice or experiments
- Flavor effects, in particular dependence on strange quark mass, expected to be significant

Grazie a tutti!