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Charge in magnetic field – guiding center
approximation

Matter in magnetic fields – many
important contexts and applications.

Scale separation: fast gyro motion,
slower guiding center motion

Effective theory of this slower motion
is a very useful tool

Simple case B = const and E ‖ B:
guiding center moves along a mag-
netic field line — 1+1d motion.

But what if E ∦ B and/or B 6= const?
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Drift

Important problem,
e.g., for thermonuclear
plasma confinement.
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Guiding-center approximation

In (special) relativistic context, averaging over fast gyromotion,
Vandervoort ‘60 finds a rather long and non-covariant formula:

ε = a/L (orbit radius over characteristic length of B variation).

We shall begin by rederiving this formula using simpler and man-
ifestly Lorentz (and general coordinate) covariant formalism.
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E ‖ B frame

The motion is simplest in a (family of) frame(s) where E ‖ B.

In such a frame we define B∗ ≡ |B| and E∗ ≡ E ·B/|B|.

B∗ and E∗ are invariants of the EM field. more

Cyclotron radius a = p⊥/B∗.

Treat both a/L and E∗/B∗ as small.

Upon averaging over p⊥ only p ‖ B remains, i.e., p×B = 0.

Effectively 1 + 1d motion. With effective mass

m̃2 = m2 + p2⊥ ≡ m2 + JB∗

where J = ap⊥ = p2⊥/B∗ – adiabatic invariant.

In quantum case J = ~(2n+ 1 + gsz).
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Covariant description – action principle

Boost B and E fields separately back to Lab frame:
Fµν = Bµν + Eµν . Then p×B = 0 becomes Bµνpν = 0.

Consider Lagrangian with additional constraint Bµνpν = 0:

L = −ẋ · (p+A) +
α

2
(p2 − m̃2) + λµB

µνpν .

EOMs:
ẋµ = αpµ + λαB

αµ ≡ αpµ + vµD,

ṗµ = Fµν ẋ
ν +

α

2
J∂µB∗ − λαpβ∂µBαβ,

and two constraints: p2 − m̃2 = 0, Bµνpν = 0.

Substitute ẋ into eq. for ṗ, use Bµνpν = 0 and obtain:

vµD = αB−2∗

(
(p · ∂)Bµνpν +

J

2
Bµν∂νB∗

)
.
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Substitute ẋ into eq. for ṗ, use Bµνpν = 0 and obtain:

vµD = αB−2∗

(
(p · ∂)Bµνpν +

J

2
Bµν∂νB∗

)
.

M. Stephanov Guiding Center Dynamics ECT* 2024 6 / 13



Covariant description – action principle

Boost B and E fields separately back to Lab frame:
Fµν = Bµν + Eµν . Then p×B = 0 becomes Bµνpν = 0.

Consider Lagrangian with additional constraint Bµνpν = 0:
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Manifestly GR covariant drift formula

vµD = αB−2∗

(
(p · ∇)Bµνpν︸ ︷︷ ︸
B-curvature,
gravity/inertia

+
J

2
Bµν∇νB∗︸ ︷︷ ︸

gradient drift

)
.

written in components contains all of this

but also gravity effects.
Mainfestly general coordinate covariant and much shorter.
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Guiding center kinetic theory

L[f ] ≡ ẋ · ∂f
∂x

+ ṗ · ∂f
∂p

= C[f ] ,

ẋµ = αpµ + λαB
αµ ≡ αpµ + vµD,

ṗµ = Fµν ẋ
ν +

α

2
J∂µB∗ − λαpβ∂µBαβ,

The invariant phase volume is Wd4p, where

W = θ(p0)δ(p
2 − m̃2)︸ ︷︷ ︸

mass shell

δ2 (∆µ
νp

ν)︸ ︷︷ ︸
p ‖ B

B∗
2π2α︸ ︷︷ ︸

LL density

(
1 +

pµ∂νB
µν

B2
∗

)
.

∆µ
ν ≡ B−2∗ BµαBνα — projector onto ⊥ B plane (in E ‖ B frame).

The phase space has only one momentum direction: p ‖ B.

B-field line curvature correction is important. more Tµν
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Ideal hydrodynamics

To lowest non-trivial order in a/L and E∗/B∗:

∂µÑ
µ = 0 — charge conservation,

∆̃λ
ν∂µT

µ
λ = EνλÑ

λ — 1+1 energy-momentum conservation.

where ∆̃µ
ν = δµν −∆µ

ν projector onto 1+1 E ‖ B space.

Constitutive equations:

Ñµ = nuµ ,

Tµν = (ε+ P )uµuν − P ∆̃µν︸ ︷︷ ︸
T̃µν – 1+1d tensor

−P⊥∆µν ,

and ∆µ
ν (x)uν(x) = 0 — i.e., fluid rest frame is an E ‖ B frame.

The flow is (locally) 1+1-dimensional (along B).

But there is transverse pressure P⊥ (due to gyromotion). more
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Full EM current

The full (unprojected) divergence of the full Tµν :

∂µT
µ
ν = FνµJ

µ, with Jµ ≡ Nµ + ∂λM
λµ .

Transport current Nµ = Ñµ +Nµ
D contains “longitudinal” (‖u) + “drift”

Nµ
D ≡

∫
p
WvµDf = B−2∗ (T̃ λν ∂λB

µν −MBµν∂νB∗) .

currents. The “magnetization current” is ∂λMλµ, where

Mλµ = MBλµ/B∗

is the magnetization density due to the fast transverse gyro motion.

The drift and the magnetization currents conspire to make the 3+1
energy-momentum conservation equations linearly dependent,
reducible to 1+1 (projected) equations.
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Constitutive relations

Can be obtained in three different ways, with the same result:

n =
∂P

∂µ
, ε = T

∂P

∂T
+ µ

∂P

∂µ
− P , P⊥ = P −B∗

∂P

∂B∗
.

Directly from kinetic theory in terms of feq:

{n, ε, P, P⊥} =
B∗
2π

∫
dpz
2π

feq(βu · p− α)

{
1, p0,

p2z
p0
,

JB∗
2p0︸︷︷︸

JB∗ = p2⊥

}
.

Pressure depends on feq. Relations between P , n, ε, P⊥ do not.

By applying the 2nd law of thermodynamics.

From the partition function lnZ =
∫
d4x
√
−g P (µ, T,B∗) in ex-

ternal gauge field and metric backgrounds.
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Beyond kinetic theory

With uµ defined via Bµνuν = 0 and ∆̃µ
λT

λ
νu

ν = εuµ

(1+1 projected Landau condition), the constitutive relations

Ñµ = nuµ ,

Tµν = (ε+ P )uµuν − P ∆̃µν − P⊥∆µν ,

n =
∂P

∂µ
, ε = T

∂P

∂T
+ µ

∂P

∂µ
− P , P⊥ = P −B∗

∂P

∂B∗
,

are the most general covariant relations at zeroth order in deriva-
tives satisfying second law constraints.

Thus, such hydrodynamic description would also apply to
strongly coupled QGP (as found in, e.g., Hattori et al ’22).

The condition Bµνu
ν = 0 eliminates non-hydro modes relaxing

fast: Γ⊥ = σB2/(ε+ P ) – flow ⊥ to B generates ohmic heat.
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Conclusions and outlook

Action principle with a momentum constraint offers a simple and
manifestly covariant derivation of the guiding-center dynamics.

This approach leads to a number of new results such as the
mainfestly covariant expression for vD, invariant phase space
volume W , covariant kinetic theory and hydrodynamics.

More work is needed to incorporate collisions and dissipation.

Did not consider feedback of the particles onto the EM fields.
But we found the full EM current (longitudinal, drift and magneti-
zation) – a crucial ingredient for MHD simulations.
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More
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Properties of the E ‖ B frame(s)

Frame velocity uµ is an eigenvector: (FµλFλν)uν = E2
∗u

µ.

In such a frame E ×B = 0.

E and B are invariant under boosts along E and B.

2(B2
∗ − E2

∗) = FµνF
µν and −4E∗B∗ = FµνF̃

µν .

Unique decompostion Fµν = Eµν +Bµν , where

Bµν =
Fµν − ε∗F̃µν

1 + ε2∗
, Eµν = ε∗

F̃µν + ε∗Fµν
1 + ε2∗

, ε∗ = E∗/B∗.

such that Bµνuν = 0, EµνBλν = 0, BµνBµν = 2B2
∗ , EµνEµν = −2E2

∗ .

For u = γ(1, 0, 0, v), E0z = E∗ and Bxy = −B∗. back
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Invariant phase-space volume

Invariant phase-space volume = flux of the state density current

JM = (ẋµ, ṗν)W ,

in phase space through a given equal-time surface:

d7Γ = JMd7ΣM = (n · ẋ)Wd3xd4p.

Solving conservation equation ∂MJM = 0 we find

W =
B∗ + B−1∗ pµ∂νB

µν

2π2α
θ(p0)δ(p

2 − m̃2)δ2(∆µνpν).

∆µ
ν = B−2∗ BµαBνα – projector onto the plane orthogonal to B.

The overall (quantum) coefficient is fixed by Landau-level degeneracy.

back
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From kinetic theory to hydrodynamics

Using conservation of charge and energy/momentum in collisions:∫
p
W{1, pν}L[f ] = {∂µNµ, ∂µT̃

µ
ν − Fν} = 0 .

where current, energy-momentum and force density:

{Nµ, T̃µν , Fν} =

∫
p
W{ẋµ, ẋµpν , ṗν}f .

Using equations of motion, to leading order:

T̃µν =

∫
p
Wαpµpνf,

Fν = FνλN
λ −M∂νB∗, M ≡ −

∫
p
W
αJ

2
f.
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Charge transport current

“Transport” current Nµ = Ñµ +Nµ
D consists of “longitudinal”

Ñµ ≡
∫
p
Wαpµf ,

and “drift” components (higher order in a/L, due to ∂s)

Nµ
D ≡

∫
p
WvµDf = B−2∗ (T̃ λν ∂λB

µν −MBµν∂νB∗) .

ND is parametrically negligible in current conservation equation.

Hence ∂ · Ñ = 0 to leading order.
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Stress tensor

But ND is not negligible in energy-momentum (non-)conservation
(because leading term BνλÑ

λ = 0).
We can rewrite

∂µT̃
µ
ν = FνλN

λ −M∂νB∗

in the final form (1+1 projected equations)

∆̃λ
ν∂µT

µ
λ = EνλÑ

λ

if we define full stress tensor as

Tµν ≡ T̃µν + Tµν⊥ , where Tµν⊥ = MB∗∆
µ
ν .

Since
Tµν⊥ ≡

∫
p
Wαpµ⊥p

ν
⊥f.

this is the contribution to pressure from the fast transverse gyro motion.
back
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