

Charge Transport in Magnetized Plasma from First Principles

SIR

Igor Shovkovy Arizona State University

March 28, 2025

[Ghosh, Shovkovy, Phys. Rev. D **109**, 096018 (2024)] [Ghosh, Shovkovy, Phys. Rev. D **110**, 096009 (2024)] [Ghosh, Shovkovy, Eur. Phys. J. C **84**, 1179 (2024)]

FONDAZIONE BRUNO KESSLER

Holographic perspectives on chiral transport and spin dynamics

Magnetized QGP (a) RHICs

L, B

Phys. Rev. C 85, 014909

- Magnetic field in RHICs:
 - is strong in magnitude $|eB| \sim m_{\pi}^2$
 - is highly sensitive to the impact parameter (b)
 - fluctuates from event to event
 - is short lived, $t \sim R_{Au}/c$

[Rafelski & Müller, PRL, 36, 517 (1976)]

[Kharzeev et al., arXiv:0711.0950] [Skokov et al., arXiv:0907.1396]

[Voronyuk et al., arXiv:1103.4239] [Bzdak &. Skokov, arXiv:1111.1949] [Deng & Huang, arXiv:1201.5108]

Conductivity

- How **strongly magnetized** is QGP in heavy-ion collisions?
- *Trapping* and *survival* of magnetic field depends on the **conductivity** of QGP
- **Conductivity** is **unknown** (a) $B \neq 0$

Conductivity at $B \neq 0$

Phenomenological models (holographic models, NJL, etc.)

[Mamo, JHEP **08**, 083 (2013)] [Fukushima & Okutsu, Phys. Rev. D **105**, 054016 (2022)] [Kurian & Chandra, Phys. Rev. D **96**, 114026 (2017)] [Das, Mishra, Mohapatra, Phys. Rev. D **101**, 034027 (2020)] [Satapathy, Ghosh, Ghosh, Phys. Rev. D **104**, 056030 (2021)] [Bandyopadhyay et al. EPJC **83**, 489 (2023)]

Few analytical attempts within a gauge theory (*LLL approximation* or *an effective "longitudinal" kinetic theory*) [Hattori & Satow, PRD 94, 114032 (2016)]

[Hattori, Satow, Yee, Phys. Rev. D **95**, 076008 (2017)] [Fukushima & Hidaka, Phys. Rev. Lett. **120**, 162301 (2018)] [Fukushima & Hidaka, JHEP **04**, 162 (2020)]

Lattice calculations

[Buividovich et al. Phys. Rev. Lett. **105**, 132001 (2010)] [Astrakhantsev et al. Phys. Rev. D **102**, 054516 (2020)] [Almirante et al., Phys. Rev. D **111**, 034505 (2025)]

Conductivity of QGP

- Conductivity at B = 0 (analytical, QED): $\sigma \simeq 15.7 T/[e^2 \ln(2.5T/m_D)]$ [Arnold, Moore, Yaffe, JHEP 05 (2003) 051]
- Conductivity of QGP at B = 0 (lattice):

 $\sigma \simeq (5.8 \pm 2.9) \frac{T}{T_c} \text{ MeV}$

[Ding, et al. PRD83, 034504 (2011)]

 $\sigma \simeq 1.1 \text{ MeV}$ @ T=200 MeV to 5.6 MeV @ T=350 MeV

[Aarts et al. JHEP 1502, 186 (2015)]

• Conductivity at $B \neq 0$ (latest lattice results):

$$\frac{\Delta \sigma_{\parallel}}{TC_{\rm em}} = \frac{3 |eB|}{4\pi^2 T^2} C_{\tau}(|eB|)$$

where $C_{\tau}(4 \text{ GeV}^2) \approx 0.134$ and $C_{\tau}(9 \text{ GeV}^2) \approx 0.142$

[Almirante et al., Phys. Rev. D 111, 034505 (2025)]

Preview of our results

- Use Kubo's formula for the conductivity tensor in a gauge theory [Ghosh, Shovkovy, Phys. Rev. D 110, 096009 (2024)] & [Ghosh, Shovkovy, Eur. Phys. J. C 84, 1179 (2024)]
- Fermion damping rate obtained from first-principles (exact amplitudes and full kinematics) in the Landau-level representation $\Gamma_n(p_z)$ [Ghosh, Shovkovy, Phys. Rev. D 109, 096018 (2024)]
- $\Gamma_n(p_z) \sim \alpha |eB|/T$ is determined by $1 \rightarrow 2 \& 2 \rightarrow 1$ processes!
- Sub-leading corrections $(2 \rightarrow 2)$ to $\Gamma_n(p_z)$ are suppressed by $\alpha T^2/|eB|$
- Results are **reliable** when $|eB| \gg \alpha T^2$ (**QED**) or $|eB| \gg \alpha_s T^2$ (**QCD**)
- Very different transport mechanisms for σ_{\perp} and σ_{\parallel} (with $\sigma_{\perp}/\sigma_{\parallel} \ll 1$), with σ_{\perp} suppressed and σ_{\parallel} enhanced by a strong magnetic field

Electrical conductivity tensor

• Kubo's formula [Ghosh, Shovkovy, Phys. Rev. D 110, 096009 (2024) & Ghosh, Shovkovy, Eur. Phys. J. C 84, 1179 (2024)]

$$\sigma_{ij} = \lim_{\Omega \to 0} \frac{\operatorname{Im}\left[\Pi_{ij}(\Omega + i0; \mathbf{0})\right]}{\Omega} = -\frac{\alpha}{8\pi T} \sum_{f=1}^{N_f} q_f^2 \int \frac{dk_0 d^3 \mathbf{k}}{\cosh^2 \frac{k_0 - \mu_f}{2T}} \operatorname{tr}\left[\gamma^i A_{\mathbf{k}}^f(k_0) \gamma^j A_{\mathbf{k}}^f(k_0)\right]$$

where $A_k^f(k_0)$ is the fermion spectral density, $A_k^f(k_0) \sim \Gamma_n(p_z)$

• When $\Gamma_n(p_z) \rightarrow 0$, the transverse and longitudinal conductivities read

- σ_{\perp} is **nonzero** only because of interactions (via hopping between LLs)
- σ_{\parallel} is **finite** only because of interactions (same as for B = 0)

Damping rate for $|eB| \gg \alpha T^2$

• Gauge invariant definition of damping rate $@B \neq 0$

$$\Gamma_n(p_z) = \frac{1}{2p_0} \int d^4u' \int d^4u \operatorname{Tr}\left[\frac{2\pi\ell^2}{V_\perp} \int dp \sum_s \bar{\Psi}_{n,p,s}(u') \operatorname{Im}\Sigma(u',u) \Psi_{n,p,s}(u)\right]$$

[Ghosh, Shovkovy, Phys. Rev. D 109, 096018 (2024)]

• Imaginary part of self-energy in gauge theory (QED) at leading order

$$\operatorname{Im} \Sigma_n(p_z) = \underbrace{(n, p_z)}_{(n, k_z)} \underbrace{S_{(n, p_z)}}_{(n', k_z)}$$

i.e., the underlying processes are n > n' n < n' $\forall n \& n'$

The resulting $\Gamma_n(p_z)$ is of the order of $\alpha |eB|/T$. [Subleading $\Gamma_n(p_z) \sim \alpha^2 T$]

Damping rate, $|eB| \gg \alpha T^2$

• Analytical expression for the damping rate [Ghosh, Shovkovy, Phys. Rev. D 109, 096018 (2024)]

$$\Gamma_n(p_z) = \frac{\alpha |qB|}{4p_0} \sum_{n'=0}^{\infty} \sum_{\{s\}} \int d\xi \, \frac{\mathcal{M}_{n,n'}(\xi) \left[1 - n_F(s_1 E_{n',k_z^{s'}}) + n_B(s_2 E_q) \right]}{s_1 s_2 \sqrt{(\xi - \xi^-)(\xi - \xi^+)}}$$

where function $\mathcal{M}_{n,n'}(\xi)$ is determined by the squared amplitudes (QED)

$$\mathcal{M}_{n,n'}(\xi) = -\left(n+n'+\bar{m}_0^2\ell^2\right) \left[\mathcal{I}_0^{n,n'}(\xi) + \mathcal{I}_0^{n-1,n'-1}(\xi)\right] + (n+n') \left[\mathcal{I}_0^{n,n'-1}(\xi) + \mathcal{I}_0^{n-1,n'}(\xi)\right]$$

and the Landau-orbit overlap function is $\mathcal{I}_{0}^{n,n'}(\xi) = \frac{(n')!}{n!} e^{-\xi} \xi^{n-n'} \left(L_{n'}^{n-n'}(\xi) \right)^{2}$

Same spin-averaged $\Gamma_n(p_z)$ is obtained from the poles of the propagator (!)

Poles of the propagator allow one to obtain both $\Gamma_n^{(+)}(p_z) \& \Gamma_n^{(-)}(p_z)$ (!)

Fermion damping rate, $|eB| \gg \alpha T^2$

Numerical calculation of damping rates $\Gamma_n(p_z)$ is costly

a wide range of longitudinal momenta: $0 < p_z < p_{z,max}$

Conductivity of QED plasma

• Parameters: $15m_e \le T \le 80m_e$ and $(15m_e)^2 \le |eB| \le (200m_e)^2$

Convergence of Landau-level sum

- In a wide range of parameters, a large number Landau levels must be included [Ghosh, Shovkovy, Eur. Phys. J. C 84, 1179 (2024)]
 - The Landau-level sum in σ_{\perp} requires $n_{\text{max}} \gtrsim 30 T^2 / |eB|$
 - The Landau-level sum in σ_{\parallel} requires $n_{\text{max}} \gtrsim 10 T^2 / |eB|$

Dependence on T and |eB|

- *T*-dependence of σ_⊥ and σ_{||} resembles conductivity in semiconductors and metals, respectively [Ghosh, Shovkovy, Eur. Phys. J. C 84, 1179 (2024)]
 - $\sigma_{\perp} \propto \Gamma_n(p_z)$ tends to increase with temperature (~ semiconductors)
 - $-\sigma_{\parallel} \propto 1/\Gamma_n(p_z)$ tends to decrease with temperature (~ metals)
- *B*-dependence is nearly opposite (σ_{\perp} decreases and σ_{\parallel} increases with *B*)

Conductivity of QCD plasma

• Parameters: $15m \le T \le 80m$ and $(15m)^2 \le |eB| \le (200m)^2$

QCD coupling is large, $\alpha_s = 1$

(also, $\alpha_s = 0.5 \& 2$)

Compared to lattice,

 σ_{\perp} - is similar

 σ_{\parallel} - is much larger

Many other processes may be important

 $2 \rightarrow 2 (?)$

Transport mechanism

- Longitudinal conductivity
 - Conductivity is **disrupted** by transitions/scattering

$$\sigma_{\parallel} \simeq \alpha \sum_{n=0}^{\infty} \int dp_z \frac{F_{\parallel}(E_n, p_z)}{\Gamma_n(p_z)}$$

- Individual LLs contribute like independent species*

*Note: the damping rates are determined by scattering and transitions to all LLs

- Transverse conductivity
 - Conductivity is driven by transitions (hopping) between LLs

$$\sigma_{\perp} \simeq \alpha \sum_{n=0}^{\infty} \int dp_z \, \Gamma_n(p_z) \, F_{\perp}(E_n, E_{n+1}, p_z)$$

- At least, transitions between 0th and 1st LLs are required
- Generally, the LLL approximation is insufficient, unless $|eB|/T^2 \gg 10$

Summary

- Conductivity of a strongly magnetized plasma is calculated from first principles within a gauge theory (QED/QCD)
- The mechanisms for longitudinal and transverse conductivities are revealed
- Results are reliable when $|eB| \gg \alpha T^2$ (QED) & $|eB| \gg \alpha_s T^2$ (QCD)
- The damping rates are determined by $1 \rightarrow 2$ and $2 \rightarrow 1$ processes
- Conductivity is highly anisotropic $(\sigma_{\perp}/\sigma_{\parallel} \ll 1)$
- Under realistic conditions, many Landau levels contribute
- The results are relevant for heavy-ion physics, astrophysics, etc.