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• Generation of an electric current in the presence of a magnetic field 
and chiral imbalance.  

• For a non-expanding abelian plasma 

• The magnetic field is naturally present in the quark-gluon plasma 
(QGP), although large uncertainties in its dynamics. 

• Chiral imbalance can be generated through the chiral anomaly

1. Chiral Magnetic Effect (CME)

JCME = 8αμ5B

Interest:  
Its measurement in heavy-ion collisions 
would serve as a evidence for the non-
trivial topology of non-abelian gauge 

fields
NCS

E

∂μJμ
A =

1
32π2

Tr{FF̃} ⇒ Δn5 ∝ ΔNCS [Kharzeev, McLerran, Warringa (2007)]



2. CME in holography

Chern-Simons  modelU(1)A × U(1)V

S =
1

2κ2 ∫ℳ
d5x −g [R +

12
ℓ2

−
1
4

F2 −
1
4

F2
5 +

α
3

ϵμνρστAμ (3FνρFστ + F5
νρF5

στ)]
• It incorporates the vector and axial abelian symmetries, as well as the 

abelian contribution to the anomaly through the Chern-Simons term. 

• It is conformal, so it does not describe the confined chirally-broken 
phase of QCD. 

• The parameters of the model  and  are matched to the entropy 
density and anomaly coefficient of 3 flavour QCD.

α κ

α =
6
19

, κ2 =
24π2

19
.

• Non-conformal effects become more important as the temperature of 
the plasma is decreased.
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α κ
[Bazavov et al (2014)]
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α =
6
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• Non-conformal effects become more important as the temperature of 
the plasma is decreased.



2. CME in holography

Previous results

[Ghosh, Grieninger, SMT, Landsteiner (2021)]

• Out-of-equilibirum CME in a non-
expanding plasma for constant 
magnetic field and axial charge. 
Concludes that lower energies are 
preferred (based on lifetime of 
magnetic field)

τB(200 GeV) = 0.6 fm/c τB(5.2 TeV) = 0.02 fm/c



2. CME in holography

Previous results

[Cartwright,Kaminski,Schenke (2021)]

• Out-of-equilibirum CME in a non-
expanding plasma for constant 
magnetic field and axial charge. 
Concludes that lower energies are 
preferred (based on lifetime of 
magnetic field)

• Out-of-equilibrium CME for the 
same model in an expanding 
plasma. Obtains a larger CME 
signal for higher collision energies 
in 4 out of the 6 scenarios.

τB(200 GeV) = 0.6 fm/c τB(5.2 TeV) = 0.02 fm/c



2. CME in holography

“Weak” magnetic field

• The previous studies consider a full back-reacted geometry at 
“constant” magnetic field. 

• The magnitude of the magnetic field at  is about 
, while the temperature of the plasma is about . 

The ratio that controls a small magnetic field expansion is, in this case,

s = 200 GeV
Bmax ∼ m2

π T ∼ 300 MeV

We extend the construction to consider time-dependent 
magnetic fields, under the assumption that it is sufficiently small.

Bmax

(πT )2
∼ 0.022



2. CME in holography

“Weak” magnetic field

• The previous studies consider a full back-reacted geometry at 
“constant” magnetic fi

• The magnitude of the magnetic fi


fi

s = 200 GeV
Bmax ∼ m2

π T ∼ 300 MeV

We extend the construction to consider time-dependent 
magnetic fifi

Bmax

(πT )2
∼ 0.022

Advantage:  
Neglect transverse plane 

dynamics to leading order.



2. CME in holography

Expanding background

• We construct a background metric that is chiral imbalanced and at 
finite temperature. Our ansatz is 

and we demand that the metric asymptotes to 

ds2 = − fdv2 −
2
u2

dudv + Σ2 (e−2ξdη2 + eξdy2 + eξdz2)
A = Avdv V = ϵ ηV⊥(v, u)dy + ϵ Vz(v, u)dz

ds2 →
1
u2 (−dτ2 + τ2dη2 + dy2 + dz2)

• We follow                                         and construct the boost-invariant 
plasma with axial chemical potential at late-times. To this end, we 
define the scaling coordinate.

[Kalaydzhyan,Kirsch(2011)]

ζ =
u

v1/3



• The resemblance to the RN solution is suggestive to the following 
definitions of effective temperature and chemical potentials:

• The leading order solution for the background is: 

where  and  are integration constants controlling the energy density 
and axial charge of the solution.  

g4 q̃5
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q̃2
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v2
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We solve the gauge-field e.o.m. and 
obtain the CME current, on top of 

this approximate expanding solution



2. CME in holography

Late-time chiral magnetic effect

• Similarly, we can find the late time solution for the vector gauge fields. 
The ansatz  leads toV = ϵ ηV⊥(v, u)dy + ϵ Vz(v, u)dz

(∂u −
1
2u ) dV⊥ + ( 1

2v
+

u
4

f) V′￼⊥ = 0

(∂u −
1
2u ) dVz + ( 1

2v
+

u
4

f) V′￼z = −
4αq̃5u2V⊥

v2

f =
1
u2 (1 +

g4

v4/3
u4 +

1
12

q̃2
5

v2
u6)

• We change variables  and expand the previous 
equations at late times.

(v, u) → (v, ζ)

V⊥(v, u) = Ṽ⊥(ζ)bz(v) + … ⇒ v2/3bz(v)[∂ζṼ⊥(ζ∂z − 1)G + ζG∂2
ζṼ⊥] + v ·bz(v)(1 − 2ζ∂ζ) Ṽ⊥ + … = 0

Vz(v, u) = Ṽz(ζ)g(v) + … ⇒

⇒ v2/3g(v)[∂ζṼz(ζ∂ζ − 1)G + ζG∂2
ζṼz] + v ·g(v)(1 − 2ζ∂ζ) Ṽz + 8q̃5αζ3Ṽ⊥bz(v) + … = 0



2. CME in holography

Late-time chiral magnetic effect

• If , then the non-trivial solution is v2/3bz > v | ·bz |

• We change variables  and expand the previous 
equations at late times.

(v, u) → (v, ζ)

V⊥(v, u) = Ṽ⊥(ζ)bz(v) + … ⇒ v2/3bz(v)[∂ζṼ⊥(ζ∂z − 1)G + ζG∂2
ζṼ⊥] + v ·bz(v)(1 − 2ζ∂ζ) Ṽ⊥ + … = 0

Vz(v, u) = Ṽz(ζ)g(v) + … ⇒

⇒ v2/3g(v)[∂ζṼz(ζ∂ζ − 1)G + ζG∂2
ζṼz] + v ·g(v)(1 − 2ζ∂ζ) Ṽz + 8q̃5αζ3Ṽ⊥bz(v) + … = 0

Ṽ⊥ = 1

g(v) =
bz(v)
v2/3

∂ζṼz = −
4αq̃5ζ(ζ2 − ζ2

h)
1 + g4ζ4 + q̃2

5ζ6/12
⇒ Ṽz = 2αq̃5ζ2

hζ2 + O(ζ3)

Vz = 4α ( 1
2v1/3

q̃5ζ2
h) bz(v)

v
u2 + O(u3)

JCME = 8αμ5(τ)Bz(τ)

JCME ≡ ⟨Jz⟩ =
1

2κ2 (∂2
uVz)u=0



3. Thermodynamic parameters

Axial charge

Magnetic field

Initial time

Temperature



3. Thermodynamic parameters

Temperature

Axial charge

Magnetic f

Initial time

T0 ( s) = 96.50 s0.23/2 − 23.51 [MeV]

• We fit the temperatures used in [Cartwright,Kaminski, 
Schenke(2021)] to the formula given above.  

19 27 39 64 200 2750

165 181 200 225 300 577

s

T0

T ≡
1

τ1/3

1
πζh (1 −

1
24

q̃2
5ζ

6
h)



3. Thermodynamic parameters

Temperature

Axial charge

Magnetic f

Initial time

T0 ( s) = 96.50 s0.23/2 − 23.51 [MeV]

• For axial charge, we use the estimation 
 and assume that it scales 

as . 

• Different estimations, e.g [Shi,Jiang,Lilleskov,Liao(2018)]. 
 are about 10 times larger, but lead to 

a trivial multiplicative factor in the CME signal.

n0
5(200 GeV ) = 0.0027 GeV3

n0
5 ∼ ( s)

1/3

n0
5 /s0 ∼ 0.065

• We fi
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Temperature

Axial charge

Magnetic field

Initial time

T0 ( s) = 96.50 s0.23/2 − 23.51 [MeV]
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as . 

• Different estimations, e.g [Shi,Jiang,Lilleskov,Liao(2018)]. 
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• Peak value of 
magnetic field 
(given at  
except exceptions) 

τ = 0

Bmax =
s

200
m2

π

s

T0



3. Thermodynamic parameters

Temperature

Axial charge

Magnetic field

Initial time

• Peak value of 
magnetic field 
(given at  
except exceptions) 

τ = 0

Bmax =
s

200
m2

π

Profile A: B(τ) =
Bmaxτini

τ
.

Profile B: B =
Bmax.

1 + (τ/τB)2 , τB =
92 GeV ⋅ fm/c

s
.

Profile C: B =
Bmax.

[1 + (τ/τB)2]
3/2 , τB =

125 GeV ⋅ fm/c

s
.

Profile D: B = Bmax.e−τ/τB , τB =
128 GeV ⋅ fm/c

s
.

BHAC-QGP: B(τ) from [Mayer,Dash,Inghirami,Elfner,
Rezzolla,Rischke (2024)]

Profile E: B(τ) = Bmax.
sinh(τini./τB)
sinh(τ/τB)

, τB =
484 GeV ⋅ fm/c

s
.

[Guo,Shi,Feng,
Liao(2019)]

(Bjorken expansion)
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Liao(2019)]

(Bjorken expansion)



3. Thermodynamic parameters

Temperature

Axial charge

Magnetic f

Initial time

• We consider two different initial times for the 
expanding plasma:  and . 

• In the first scenario, the initial stages of the 
collision are gluon dominated. The magnetic field 
is evolving but there is no response from the 
quarks degrees of freedom, and no CME. 
[Huang,She,Shi,Huang,Liao(2023)]. 

• The second scenario is more conservative with 
respect to the approximate expanding 
background that we use. 

• At initial time, we assume no CME signal. The initial 
state is specified by

τini = 0.1 fm/c τini = τ0 = 0.6 fm/c

Vini
z = 0 , Vini

⊥ = bz(0) + ·bz(0)u .



4. Energy scan

Results at s = 200 GeV

Exploring collision energies

• Qualitative features are 
similar for the chiral magnetic 
current in all cases. 

• The time-dependence of the 
magnetic field triggers a 
circular current in the 
transverse plane.

J⊥ ≡ ∂yJx − ∂xJy =
1

4κ2 (∂2
uV⊥)u=0



4. Energy scan

Results at s = 200 GeV

Exploring collision energies

• Qualitative features are 
similar for the chiral magnetic 
current in all cases. 

• The time-dependence of the 
magnetic field triggers a 
circular current in the 
transverse plane. 

• The late-time CME formula 
applies for the “slowly 
decaying” profiles



4. Energy scan

Results at s = 200 GeV

Exploring collision energies

• The Bjorken expanding magnetic 
field (profile A) predicts a 
monotonic increase with the 
signal with collision energy. In 
agreement with [Cartwright,Kaminski, 
Schenke(2021)] (Case VI). 

• Profiles E and  suggest an 
optimal collision energy slightly 
below 200 GeV. (Different from 
the other two scenarios).

E

• Profiles B, C and D give very 
similar qualitative predictions, 
with an optimal collision energy 
of about 40 GeV. This conclusion 
aligns with the results of 
[Ghosh,Grieninger,SMT,Landsteiner(2021)]. 



4. Energy scan

Results at s = 200 GeV

Exploring collision energies



4. Energy scan

Results at s = 200 GeV

Exploring collision energies

• The integrated CME signal in the 
non-expanding case is essentially 
controlled by the integrated 
magnetic field.



5. Conclusions & Outlook

The small magnetic field limit seems to be a good approximation to model the CME in 
holography.

The CME satisfies the quasi-equilibrium formula also in the expanding plasma, provided 
that the decay of the magnetic field is sufficiently slow.

The dynamics of the magnetic field highly influences the response of the CME.

The magnetic field profiles obtained from a fit to different energies predict an 
enhancement of the CME at energies below 200 GeV.



5. Conclusions & Outlook

Take into account non-conformal effects. More important at lower temperatures.

Study transverse dynamics and possible oscillatory behaviour in arbitrarily strong 
magnetic fields.

Regard magnetic field as dynamical and obtain its time-dependence from holography.
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through grant No. 760079/23.05.2023, funded by the Romanian 
ministry of research, innovation and digitalization through Romania’s 
National Recovery and Resilience Plan, call no. PNRR-III-C9-2022-I8.
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