Spin polarization in strongly coupled QGP

Shu Lin

Sun Yat-Sen University

Holographic perspectives on chiral transport and spin dynamics, ECT*, March 24-28, 2025

S.-W. Li, SL, to appear SL, Tian, 2410.22935

Outline

- Spin physics in heavy ion collisions
- Uncertainty in local polarization
- Holographic model for spin polarization
- Fermionic spectral function in strongly coupled QGP
- Conclusion and outlook

HIC: global polarization from vorticity

HIC: local polarization from vorticity

Becattini, Karpenko, PRL 2018 Wei, Deng, Huang, PRC 2019 Wu, Pang, Huang, Wang, PRR 2019 Fu, Xu, Huang, Song, PRC 2021 STAR collaboration, PRL 2019

talks by Becattini, Tang

wrong sign

HIC: local polarization from vorticity + shear

STAR collaboration, PRL 2019

wrong sign

talk by Becattini

shear $S^i \sim \epsilon^{ijk} \hat{p}_k \hat{p}_l \sigma_{jl}$

$$S^z \sim \left(\langle p_y^2 \rangle - \langle p_x^2 \rangle \right) \partial_y u_x$$

right sign

Hidaka, Pu, Yang, PRD 2018 Liu, Yin, JHEP 2021 Becattini, et al, PLB 2021

Uncertainty in spin response to shear

Fu, Liu, Pang, Song, Yin, PRL 2021 Becattini, et al, PRL 2021 Yi, Pu, Yang, PRC 2021

two scenarios A: point particle A: quark model structure important for spin-shear!

$$S^{\mu}(p^{\alpha}) = \frac{1}{4m} \frac{\int d\Sigma \cdot p \, n_0 (1 - n_0) \mathcal{A}^{\mu}}{\int d\Sigma \cdot p \, n_0}.$$

Lesson from quantum kinetic theory

free theory point particle
$$S^i \sim \left(\omega^i + \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} + \epsilon^{ijk} \hat{p}_j \frac{\partial_k T}{T}\right) \delta(P^2 - m^2) \frac{df}{dp_0}$$

 \rightarrow shear correction from collision (perturbative O(1))

$$S^i \sim (\cdots) \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} \frac{df}{dp_0}$$

shear/vorticity correction to spectral function (perturbative O(g²), usually ignored)

$$S^{i} \sim \left((\cdots) \omega^{i} + (\cdots) \epsilon^{ijk} \hat{p}_{j} \hat{p}_{l} \sigma_{kl} \right) f$$

SL, Wang, JHEP 2022, PRD 2025 Fang, Pu, Yang, PRD 2024 Fang, Pu, PRD 2025

SL, Tian, 2410.22935 Fang, Pu, Yang, 2503.13320

Complication for Λ polarization

shear correction from collision (perturbative O(1))

SL, Wang, JHEP 2022, PRD 2025 Fang, Pu, Yang, PRD 2024 Fang, Pu, PRD 2025

shear/vorticity correction to spectral function (perturbative O(g²))

SL, Tian, 2410.22935 Fang, Pu, Yang, 2503.13320

correction to Λ structure model (non-perturbative)

Alternative approach? Holographic model

Holographic model for baryon

$$S = i \int d^{D+1}x \sqrt{-g} \bar{\psi} \left(\Gamma^M \nabla_M - m \right) \psi, \qquad \qquad \text{Iqbal, Liu 2009}$$

5D Dirac fermion 4D Weyl fermion $\psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}$ "lump of quark/gluon"

treat all interaction effects uniformly Collisional correction (steady state effect)
Spectral correction (structure effect)
focus of the talk

Holographic model for QGP

 $ds^{2} = -2u_{\mu}(x)dx^{\mu}dr - r^{2}f(b(x)r)u_{\mu}u_{\nu}dx^{\mu}dx^{\nu} + r^{2}P_{\mu\nu}dx^{\mu}dx^{\nu} \quad \text{local equilibrium} \\ + 2r^{2}bF(br)\sigma_{\mu\nu}dx^{\mu}dx^{\nu} + \frac{2}{3}ru_{\mu}u_{\nu}\partial_{\lambda}u^{\lambda}dx^{\mu}dx^{\nu} - ru^{\lambda}\partial_{\lambda}(u_{\mu}u_{\nu})dx^{\mu}dx^{\nu} \quad \text{steady state}$

Bhattacharyya et al, JHEP 2008

$$O(\partial^{0}) \qquad O(\partial)$$

$$T^{\mu\nu} = (\pi T)^{4} (\eta^{\mu\nu} + 4 u^{\mu} u^{\nu}) - 2 (\pi T)^{3} \sigma^{\mu\nu}$$
local equilibrium η
steady state
$$\sigma_{ij} \quad -\frac{\partial_{0}b}{\partial_{0}b} = \frac{1}{3} \partial_{i} u_{i} \quad \partial_{i}b = \partial_{0} u_{i}$$

Spectral function generalities

$$G^{R}_{\alpha\beta}(\omega,\vec{p}) = i \int d^{4}x e^{ip \cdot x} \theta\left(x^{0}\right) \left\langle \Psi_{\alpha}\left(x\right)\Psi^{\dagger}_{\beta}\left(0\right) + \Psi^{\dagger}_{\beta}\left(0\right)\Psi_{\alpha}\left(x\right)\right\rangle$$
$$\rho_{\alpha\beta}\left(\omega,\vec{p}\right) = \int d^{4}x e^{ip \cdot x} \left\langle \Psi_{\alpha}\left(x\right)\Psi^{\dagger}_{\beta}\left(0\right) + \Psi^{\dagger}_{\beta}\left(0\right)\Psi_{\alpha}\left(x\right)\right\rangle$$
$$\left\langle\cdots\right\rangle = \operatorname{Tr}[D\cdots] \qquad \text{D: density matrix}$$

D hermitian $ho = 2 \text{Im} G^R$ assume D T-even $ho_{\alpha\beta}(\omega, \vec{p}) = (\sigma_2 \rho(\omega, -\vec{p})\sigma_2)^*_{\alpha\beta}$

Holography: equilibrium spectral function

 $G_R(\omega, \vec{p}) = A(\omega, p) + B(\omega, p)\hat{p} \cdot \vec{\sigma}$

 $\pi T=1$ orange: vacuum p=0.9 ${
m Im}[A+B]\sim (\omega-p)^{-1/2}$ Iqbal, Liu 2009 no spacelike spectral

blue: equilibrium QGP soften the singularity develop spacelike spectral

focus on timelike spectral for baryon

Off-equilibrium: gradient correction

baryon as a probe to QGP

 $\omega, p \gg \partial_i T, \partial_i u_j$ Wigner transform

$$G_{\alpha\beta}^{R}\left(\omega,\vec{p}\right) = i \int d^{4}x e^{ip \cdot x} \theta\left(x^{0}\right) \left\langle \Psi_{\alpha}\left(x\right)\Psi_{\beta}^{\dagger}\left(0\right) + \Psi_{\beta}^{\dagger}\left(0\right)\Psi_{\alpha}\left(x\right)\right\rangle$$

solve bulk Dirac equation in gradient expansion

$$\left(\Gamma^M \nabla_M - m\right)\psi = 0.$$

Gradient corrections

 $ds^2 = -2u_\mu(x)dx^\mu dr - r^2 f(b(x)r)u_\mu u_\nu dx^\mu dx^\nu + r^2 P_{\mu\nu} dx^\mu dx^\nu \qquad \text{local equilibrium}$ $+2r^{2}bF(br)\sigma_{\mu\nu}dx^{\mu}dx^{\nu}+\frac{2}{3}ru_{\mu}u_{\nu}\partial_{\lambda}u^{\lambda}dx^{\mu}dx^{\nu}-ru^{\lambda}\partial_{\lambda}(u_{\mu}u_{\nu})dx^{\mu}dx^{\nu}$ steady state $\left(\Gamma^M \nabla_M - m\right)\psi = 0$ steady state polarization from shear, T-grad, no vorticity of QGP $\left(\Gamma^M \nabla_M - m\right) \psi = 0$ polarization from vorticity, shear, T-grad local equilibrium QGP

strong vs weak coupling

$$\begin{split} \delta G^R &= D_1 \partial_i b \,\sigma_i + i D_2 \epsilon^{ijk} \hat{p}_i \partial_j b \,\sigma_k \\ \delta G^R &= E_1 \omega_i \sigma_i + i E_2 \epsilon^{ijk} \hat{p}_i \omega_j \sigma_k \qquad b = \frac{1}{\pi T} \\ \delta G^R &= F_1 \hat{p}_j \sigma_{ij} \sigma_i + i F_2 \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} \sigma_i \end{split}$$

strong coupling $D_{1,2}, E_{1,2}, F_{1,2} \sim O(\lambda^0)$

weak coupling D_2 , $E_1 F_2 \sim O(g^2)$ no D_1 , E_2 , F_1 $\frac{g^2 C_F}{2(2\pi)^2} \frac{\pi}{2p} \gamma^5 \gamma_i \left[0.95 \omega_{\parallel}^i + 1.48 \omega_{\perp}^i - 0.52 \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} - 0.02 \epsilon^{ijk} \hat{p}_j \frac{\partial_k \beta}{\beta} \right]$ SL, Tian, 2410.22935 radiative correction can't access steady state

Steady state effect: shear example

$$\delta G^R = F_1 \hat{p}_j \sigma_{ij} \sigma_i + i F_2 \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} \sigma_i$$

steady state effect of baryon, not contribute to polarization

acceleration balanced by collision

contribute to polarization of Weyl fermion, cancels in polarization of baryon (axial) baryon = R-Weyls + L-Weyl

do modify vector component of spectral function!

Expected contribution at $O(\partial^2)$

Expect mixed contributions to polarization

$$S^i \sim \epsilon^{ijk} \partial_j b \hat{p}_l \sigma_{kl}$$

steady state effect + spin Nernst effect

$$\xi_{ij} \sim \sigma_{ij} \quad \epsilon^{ijk} \varpi_{jk} \sim \omega_i$$

Sheng, Becattini, Huang, Zhang, PRC 2024

Conclusion

- Uncertainty in local polarization related to Λ structure
- Holographic model for probe baryon in strongly coupled QGP
- Gardient corrections to baryon spectral function: local equilibrium + steady state contribution
- Expect mixed contribution to polarization at second order

Outlook

 Schwinger-Keldysh extended holographic model for complete gradient correction to polarization

Thank you!

T-symmetry

$$\begin{split} \delta G^R &= D_1 \partial_i b \,\sigma_i + i D_2 \epsilon^{ijk} \hat{p}_i \partial_j b \,\sigma_k \\ \delta G^R &= E_1 \omega_i \sigma_i + i E_2 \epsilon^{ijk} \hat{p}_i \omega_j \sigma_k \qquad b = \frac{1}{\pi T} \\ \delta G^R &= F_1 \hat{p}_j \sigma_{ij} \sigma_i + i F_2 \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} \sigma_i \end{split}$$

$$\rho_{\alpha\beta}(\omega, \vec{p}) = (\sigma_2 \, \rho(-\omega, \vec{p}) \, \sigma_2)^*_{\alpha\beta}$$

 $\delta \langle \cdots \rangle = \operatorname{Tr}[\delta D \cdots]$

green: consistent with T-symmetry purple: inconsistent with T-symmetry

T-even part of δD T-odd part of δD

Spin shear coupling & Spin Hall effect

boundary plate (2D) (stationary)

 p_y