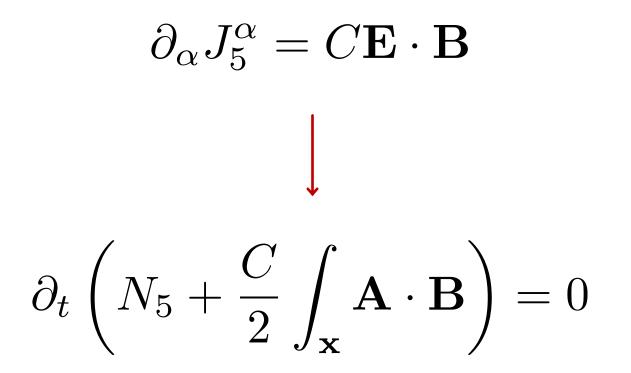
in collaboration with S. Wang, K. Hattori, and X.-G. Huang

Andrey Sadofyev

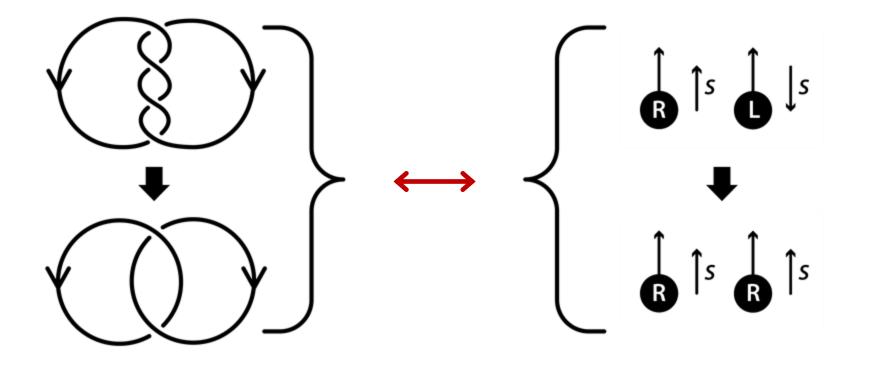
LIP, Lisbon

Holographic perspectives on chiral transport and spin dynamics, ECT*, 2025

Generalized axial charge

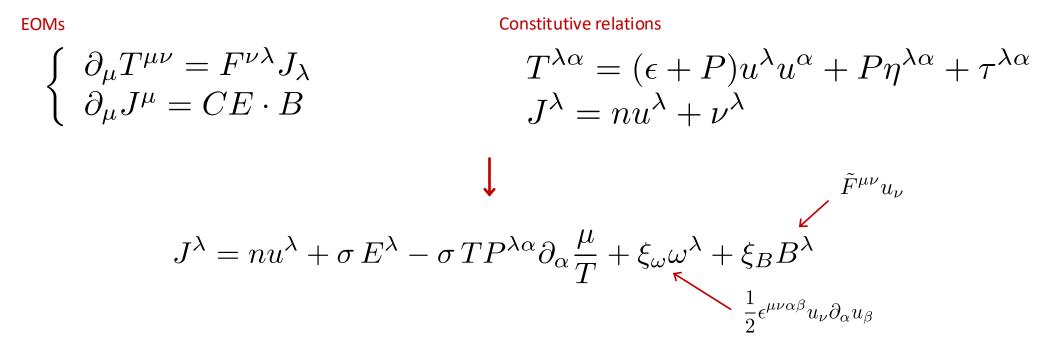


Generalized axial charge

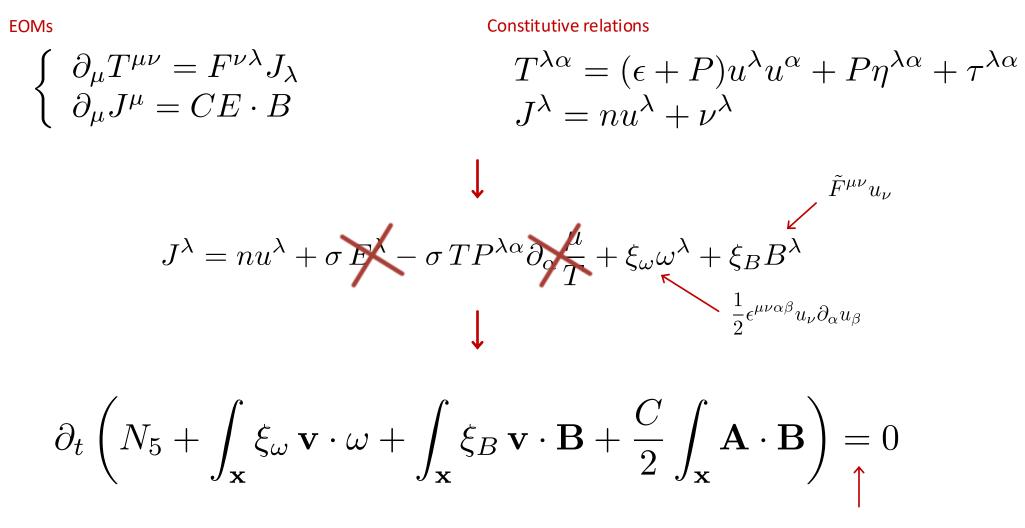


J. Erdmenger, M. Haack, M. Kaminski, A. Yarom, JHEP, 2009 N. Banerjee et. al., JHEP, 2011 D.T. Son, P. Surowka, PRL, 2009

Generalized axial charge



Generalized axial charge



ideal MHD limit

Generalized axial charge

A. Avdoshkin, V. Kirilin, AS, V.I. Zakharov, PLB, 2016 N. Yamamoto, PRD, 2016 A. Avkhadiev, AS, PRD, 2017 V. Kirilin, AS, PRD, 2017 P. Wiegmann, A. Abanov, JHEP, 2022 C. Manuel, J. Torres-Rincon, PRD, 2023

$$\partial_t \left(N_5 + \int_{\mathbf{x}} \xi_\omega \, \mathbf{v} \cdot \omega + \int_{\mathbf{x}} \xi_B \, \mathbf{v} \cdot \mathbf{B} + \frac{C}{2} \int_{\mathbf{x}} \mathbf{A} \cdot \mathbf{B} \right) = 0$$

Rubakov (1986); M. Joyce, M. E. Shaposhnikov (1997); ... Y. Akamatsu, N. Yamamoto, (2013) A. Avdoshkin, V. Kirilin, AS, V.I. Zakharov, PLB, 2016 S. Wang, X.-G. Huang, PRD, 2024

Chiral instabilities

$$\partial_t \left(N_5 + \int_{\mathbf{x}} \xi_{\omega} \, \mathbf{v} \cdot \omega + \int_{\mathbf{x}} \xi_B \, \mathbf{v} \cdot \mathbf{B} + \frac{C}{2} \int_{\mathbf{x}} \mathbf{A} \cdot \mathbf{B} \right) = 0$$

$$N_5 \sim \mathcal{H}_{fh} \sim \mathcal{H}_{mfh} \sim \mathcal{H}_{mh}$$

A. Avkhadiev, AS, PRD, 2017 N. Yamamoto, PRD, 2017 M. N. Chernodub, A. Cortijo, K. Landsteiner, PRD, 2018 Y. Hirono, D. Kharzeev, Y. Yin, PRL, 2016 V. Kirilin, AS, PRD, 2017

Chiral instabilities

- If the generalized axial charge picture works, the helicities and chirality could mutually transform
- How could that happen microscopically? (e.g. CVE for light)
- This picture not only constraints the dynamics but also indicates that the system can exhibit various instabilities and non-linear chiral effects (and it is not necessary to start with μ_5)

A. Avkhadiev, AS, PRD, 2017 N. Yamamoto, PRD, 2017 M. N. Chernodub, A. Cortijo, K. Landsteiner, PRD, 2018 Y. Hirono, D. Kharzeev, Y. Yin, PRL, 2016 V. Kirilin, AS, PRD, 2017

Chiral instabilities

- If the generalized axial charge picture works, the helicities and chirality could mutually transform
- How could that happen microscopically? (e.g. CVE for light)
- This picture not only constraints the dynamics but also indicates that the system can exhibit various instabilities and non-linear chiral effects (and it is not necessary to start with μ_5)
- A simpler bit: Is there a vortical channel of chiral instability when you start at $\mu_5 \neq 0$?

Linearized hydrodynamics

$$T_{\mu\nu} = w u_{\mu} u_{\nu} + P g_{\mu\nu} - \eta \sigma_{\mu\nu} + \sum \lambda_i \Sigma^{(i)}_{\mu\nu}$$
$$J^{\alpha} = n u^{\alpha} - \kappa P^{\alpha\beta} \partial_{\beta} \frac{\mu}{T} + \xi_{\omega} \omega^{\alpha} + \sum \zeta_i \Theta^{(i)}_{\alpha}$$

No instability in LF at 1st order

$$\begin{split} \Sigma_{\mu\nu}^{(1)} &= P_{\mu\alpha} P_{\nu\beta} u^{\lambda} \partial_{\lambda} \sigma^{\alpha\beta} - \frac{1}{3} P_{\mu\nu} P^{\alpha\beta} u^{\lambda} \partial_{\lambda} \sigma_{\alpha\beta} ,\\ \Sigma_{\mu\nu}^{(2)} &= P_{\mu\alpha} P_{\nu\beta} \partial^{\alpha} \partial^{\beta} \frac{\mu}{T} - \frac{1}{3} P_{\mu\nu} P^{\alpha\beta} \partial_{\alpha} \partial_{\beta} \frac{\mu}{T} ,\\ \Sigma_{\mu\nu}^{(3)} &= \frac{1}{2} P_{\mu\alpha} P_{\nu\beta} (\partial^{\alpha} \omega^{\beta} + \partial^{\beta} \omega^{\alpha}) - \frac{1}{3} P_{\mu\nu} P^{\alpha\beta} \partial_{\alpha} \omega_{\beta} ,\\ \Theta_{\alpha}^{(1)} &= P_{\alpha\beta} \partial_{\lambda} \sigma^{\lambda\beta} , \qquad \Theta_{\alpha}^{(2)} = P_{\alpha\beta} \partial_{\lambda} \omega^{\lambda\beta} \end{split}$$

$$\left(\omega - i\frac{\eta}{w}k^2 - \frac{\lambda_1}{w}\omega k^2\right)\delta\mathbf{v}_{\perp} + \frac{k^2}{4w}\lambda_3(\mathbf{k}\times\delta\mathbf{v}_{\perp}) = 0$$

Linearized hydrodynamics

$$T_{\mu\nu} = w u_{\mu} u_{\nu} + P g_{\mu\nu} - \eta \sigma_{\mu\nu} + \sum \lambda_i \Sigma^{(i)}_{\mu\nu}$$
$$J^{\alpha} = n u^{\alpha} - \kappa P^{\alpha\beta} \partial_{\beta} \frac{\mu}{T} + \xi_{\omega} \omega^{\alpha} + \sum \zeta_i \Theta^{(i)}_{\alpha}$$

No instability in LF at 1st order

$$\begin{split} \Sigma_{\mu\nu}^{(1)} &= P_{\mu\alpha} P_{\nu\beta} u^{\lambda} \partial_{\lambda} \sigma^{\alpha\beta} - \frac{1}{3} P_{\mu\nu} P^{\alpha\beta} u^{\lambda} \partial_{\lambda} \sigma_{\alpha\beta} ,\\ \Sigma_{\mu\nu}^{(2)} &= P_{\mu\alpha} P_{\nu\beta} \partial^{\alpha} \partial^{\beta} \frac{\mu}{T} - \frac{1}{3} P_{\mu\nu} P^{\alpha\beta} \partial_{\alpha} \partial_{\beta} \frac{\mu}{T} ,\\ \Sigma_{\mu\nu}^{(3)} &= \frac{1}{2} P_{\mu\alpha} P_{\nu\beta} (\partial^{\alpha} \omega^{\beta} + \partial^{\beta} \omega^{\alpha}) - \frac{1}{3} P_{\mu\nu} P^{\alpha\beta} \partial_{\alpha} \omega_{\beta} ,\\ \Theta_{\alpha}^{(1)} &= P_{\alpha\beta} \partial_{\lambda} \sigma^{\lambda\beta} , \qquad \Theta_{\alpha}^{(2)} = P_{\alpha\beta} \partial_{\lambda} \omega^{\lambda\beta} \end{split}$$

unstable for

CSWs:
$$\omega = ik^2 \frac{\eta \pm \frac{k}{4}\lambda_3}{w - \lambda_1 k^2} \longrightarrow k > \frac{4\eta}{|\lambda_3|}$$

unstable for

CSWs:
$$\omega = ik^2 \frac{\eta \pm \frac{k}{4}\lambda_3}{w - \lambda_1 k^2} \longrightarrow k > \frac{4\eta}{|\lambda_3|}$$

Other frames: $u_{\nu} \rightarrow u_{\nu} + \alpha_1 P_{\nu\gamma} \partial^{\gamma} \frac{\mu}{T} + \alpha_2 \omega_{\nu} + \alpha_3 \Theta_{\nu}^{(1)} + \alpha_4 \Theta_{\nu}^{(2)}$

unstable for

CSWs:
$$\omega = ik^2 \frac{\eta \pm \frac{k}{4}\lambda_3}{w - \lambda_1 k^2} \longrightarrow k > \frac{4\eta}{|\lambda_3|}$$

Other frames:

$$u_{\nu} \to u_{\nu} + \alpha_1 P_{\nu\gamma} \partial^{\gamma} \frac{\mu}{T} + \alpha_2 \omega_{\nu} + \alpha_3 \Theta_{\nu}^{(1)} + \alpha_4 \Theta_{\nu}^{(2)}$$

$$\sigma^{\mu\nu} = P^{\mu\alpha}P^{\nu\beta}(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha}) - \frac{2}{3}P^{\mu\nu}\partial^{\alpha}u_{\alpha}$$

$$\downarrow$$

$$\Sigma^{(3)}_{\mu\nu} = \frac{1}{2}P_{\mu\alpha}P_{\nu\beta}(\partial^{\alpha}\omega^{\beta} + \partial^{\beta}\omega^{\alpha}) - \frac{1}{3}P_{\mu\nu}P^{\alpha\beta}\partial_{\alpha}\omega_{\beta}$$

unstable for

CSWs:
$$\omega = ik^2 \frac{\eta \pm \frac{k}{4}\lambda_3}{w - \lambda_1 k^2} \longrightarrow k > \frac{4\eta}{|\lambda_3|}$$

Other frames:

$$u_{\nu} \rightarrow u_{\nu} + \alpha_1 P_{\nu\gamma} \partial^{\gamma} \frac{\mu}{T} + \alpha_2 \omega_{\nu} + \alpha_3 \Theta_{\nu}^{(1)} + \alpha_4 \Theta_{\nu}^{(2)}$$

$$\downarrow$$

$$\omega = ik^2 \frac{\eta \left(1 \mp \frac{1}{2} \alpha_2 k\right) \pm \frac{k}{4} \lambda_3}{w(1 \mp \frac{1}{2} \alpha_2 k) - (\lambda_1 + \alpha_3 w + \frac{1}{2} \alpha_4 w) k^2}$$

B. Sahoo, H.-U. Yee, PLB, 2010 D. Kharzeev, H.-U. Yee, PRD, 2011 S. Nakamura, H. Ooguri, C.-S. Park, PRD, 2010

Chiral vortical instability

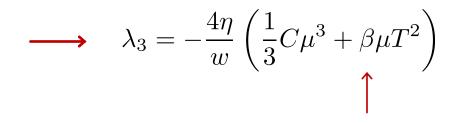
- For sufficiently large k, CSWs are unstable
- Their leading behavior is frame-independent
- λ_3 can be fixed by the entropy current analysis
- Without a microscopic theory, one can only argue that there are situations where $k = 4\eta/|\lambda_3|$ remains within the hydrodynamic regime:

a.
$$2\sqrt[4]{6\pi^2/N_f} < k/w^{1/4} \ll 1$$

-1

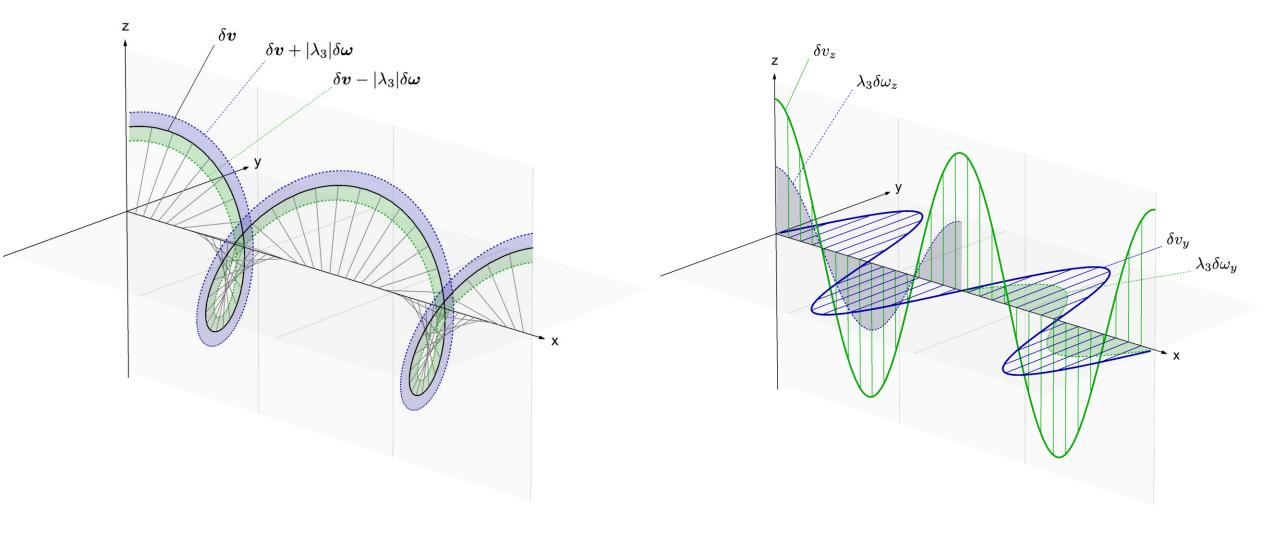
b.
$$4\eta < \frac{1}{3}C_{\chi}\mu^3 \Rightarrow w > \max(\eta k, |\lambda_3|k^2)$$

• Is it related to the spatially modulated phase for a large CS coupling in holographic plasma?



controls mixed anomaly

- We see that the modes of second-order chiral hydrodynamics are consistent with the presence of CVI, though it is pushed beyond the hydrodynamic regime (large k modes grow faster)
- CSWs can become unstable within the hydrodynamic regime under specific conditions, e.g. low viscosity and large anomalous coefficient
- CVI indicates the system's tendency to form spatially modulated flow configurations, likely consisting of self-linked vortices
- Apparently, CVI enhances the development of the turbulent cascade



linearized

Gabc:
$$\partial_{\alpha}T^{\alpha\beta}=0$$

Global rotation:

$$\partial_{\alpha}T^{\alpha\beta} \sim \lambda_3 \omega^2 \omega^\beta$$

$$\mathbf{v} = v_0 \begin{pmatrix} 0 \\ \sin kx_1 \\ \cos kx_1 \end{pmatrix} \qquad \mathbf{v} = \begin{pmatrix} -\omega x_2 \\ \omega x_1 \\ 0 \end{pmatrix}$$
a solution
$$T^{\mu\nu}(\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu}) = 0$$

CPI:
$$i\mathbf{k} imes \mathbf{B} = \xi_B \mathbf{B}$$
 $k = |\xi_B|$

- self-similar GABC fields
- $k < \xi_B$ (inversed cascade)
- $N_5 \rightarrow H_{mh}$

$$\mathsf{CVI:} \qquad \lambda_3(\mathbf{k} \times \delta \mathbf{v}_\perp) = 4i\eta \delta \mathbf{v}_\perp$$

$$k = \frac{4\eta}{|\lambda_3|} \sqrt{1 - v_0^2}$$

- self-similar GABC fields
- $k > 4\eta/\gamma |\lambda_3|$ (direct cascade)
- $N_5 \rightarrow H_{fh}$

Summary

- Chiral media tend to generate helical flows at short distances, and the initial homogeneous state is unstable due to CVI
- CSWs may become unstable within the hydrodynamic regime, suggesting that CVI persists at higher orders
- Global rotation of chiral matter destabilizes, favoring helical solutions
- Elementary static GABC flows solve the full nonlinear dynamics, shedding light on CVE development
- Phenomenological implications: spin polarization in HIC, rotation of astrophysical and cosmological systems, etc.