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Quark-gluon plasma: Polarisation of Λ-hyperons3

▶ PH ≡ polarization along Ĵsys.
▶ |ω| ≈ kBT (PΛ′ + PΛ′)/ℏ.

3STAR Collaboration, Nature 548 (2017) 62–65. 3 / 30



Polarisation mechanism: Chiral vortical effect (CVE)1

Non-vanishing vorticity ω induces electric (JV ) and chiral (JA) currents via CVE:

JV =σV ω, σV =µV µA

π2 ,

JA =σAω, σA =T 2

6 + µ2
V + µ2

A

2π2 .

JA ̸= 0 even when µA = 0!
1D. E. Kharzeev et al., Nucl. Phys. 88 (2016) 1.
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V/A/H charges for (not so) free fermions
▶ The Dirac field is described by

Lfree = i

2(ψγµ∂µψ − ∂µψγ
µψ), i/∂ψ = 0. (1)

▶ The (free) theory supports (at least) three conserved currents:

Jµ
V = ψγµψ, Jµ

A = ψγµγ5ψ, Jµ
H = ψγµhψ + hψγµψ. (2)

▶ The vector current is always conserved:

∂µJ
µ
V = 0. (3)

▶ The axial current cons. is broken by (effective) mass and by anomaly:

∂µJ
µ
A = 2imψ̄γ5ψ − e2

16π2 ε
µναβFµνFαβ (4)

▶ The helicity current cons. is broken by HVPA (helicity-violating pair annihilation)
processes:

∂µJ
µ
H = − 1

τH
QH+??, (5)

where we leave ?? for possible (unknown) anomalies.
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Helicity number violation (HVPA)
▶ e+

Re
−
L → e+

Le
−
R violates helicity: Qi

A = Qf
A = 0 vs. Qi

H = −2 = −Qf
H .

▶ In QED, the HVPA cross section is [Peskin & Schroeder]

dσ

dΩ(e+
Re

−
L → e+

Le
−
R) = α2

4E2
cm

(1 − cos θcm)2, (6)

where α = e2/4π while Ecm and θcm are related to Mandelstam s and t via

s = (p+ k)2 = E2
cm, t = (p− p′)2 = −1

2E
2
cm(1 − cos θcm), (7)

with (p, k) and (p′, k′) the incoming and outgoing momenta, respectively.
▶ In QCD, the HVPA processes take place via gluon exchange:

dσ

dΩ(qi
Rq̄

j
L → qi′

L q̄
j′

R ) =
α2

QCD

4E2
cm

(1 − cos θcm)2
∑
a,b

tajit
a
j′i′tbijt

b
i′j′ , (8)

where taij (1 ≤ a ≤ 8) are the SU(3) generators, while (i, j) and (i′, j′) are the
colour indices of the initial and final quarks.
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Kinetic model: Collision term [VEA & MC, EPJC 82 (2023)]

▶ Consider a helically-imballanced state described by

f eq;ς
p,λ =

[
exp

(
p · u− qς,λ · µ

T

)
+ 1
]−1

, qς,λ ·µ = ςµV +2λµA +2ςλµH . (9)

▶ We seek to compute the helicity relaxation time, defined via
dQH

dt
≃ −QH

τH
, QH = g

∑
ς,λ

∫
dP (u · p)f eq;ς

p,λ , (10)

with dP = d3p/[(2π)3Ep] and g = NcNf .
▶ Assuming pµ∂µf

ς
p,λ = C[f ], dQH/dt selects just the HVPA 2 → 2 processes:

dQH

dt
= g

∑
λ,ς

2ςλ
∫
dPdKdP ′dK ′δ4(p+ k − p′ − k′)s(2π)6

× [f ς
p′,−λf

−ς
k′,λf̃

ς
p,λf̃

−ς
k,−λ − f ς

p,λf
−ς
k,−λf̃

ς
p′,−λf̃

−ς
k′,λ]

×Nf

∑
i′,j,j′

dσ

dΩ(qς,i
p,λq

−ς,j
k,−λ → qς,i′

p′,−λq
−ς,j′

k′,λ ), (11)

where f̃ ς
p,λ = 1 − f ς

p,λ etc are the Pauli blocking factors.
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Helicity relaxation time τH [VEA & MC, EPJC 82 (2023)]

▶ We now consider that the plasma is charge-neutral (µV = 0) and slightly
polarized, (small µH), such that

f ς
p,λ ≃ f0p + 2λςβµHf0pf̃0p, f0p = [eβEp + 1]−1, f̃0p = [1 + e−βEp ]−1.

(12)

▶ In this case, QH ≃ gµH/3β2 and dQH

dt
= −QH

τH
, where

τ−1
H = 8

3(2π)6gα2
QCDβ

3
∫
dPdKdP ′dK ′(1 − cos θcm)2δ4(p+ k − p′ − k′)

× f0pf0kf̃0p′ f̃0k′(f̃0p + f0p′). (13)

▶ The momentum integrals appearing above can be performed, eventually leading
to

τH = 0.392 × π3β

Nfα2
QCD

≃
(

250 MeV
kBT

)(
1

αQCD

)2( 2
Nf

)
× 4.80 fm/c. (14)

▶ Unexpectedly, τH ≃ 4.80 fm/c ≫ τA ≃ 0.25 fm/c, giving helicity imbalance a
chance to survive in the hot QGP. [N. Astrakhantsev et al, PRD 102 (2020) 054516]
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V/A/H charges in QCD
▶ Chiral and helicity imbalance can be modelled in LSMq:

L = Lq + LM, Lq = ψ̄(i/∂ − gσ + µV γ
0 + µAγ

0γ5 + 2µHγ
0h)ψ, (15)

with LM = 1
2∂µσ∂

µσ − V (σ) and V (σ) = λ
4 (σ − v2)2 − hσ.

▶ The energy eigenvalues read

p
(ς)
0,λ(p) = −µV − 2λµH + ς

√
m2

q + (|p| − 2λµA)2, mq = gσ. (16)

▶ The grand potential of the model reads

Φ = −T

V
ln Z = V (σ) + Φzp

q + Φβ
q ,

Φzp
q = −NcNf

2
∑
σ,λ

∫
d3p

(2π)3 ςp
(ς)
0,λ(p) = −NcNf

∫
dp p2

2π2

∑
λ=± 1

2

√
m2

q + (p− 2λµA)2,

Φβ
q = −TNcNf

∑
σ,λ

∫
d3p

(2π)3 ln(1 + e−ςp
(ς)
0,λ

(p)/T ). (17)

▶ When µA ̸= 0, Φzp
q is medium-dependent!
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QCD with chiral chemical potential
▶ Due to its µ5 dependence, the infinite Φzp

q

must be regularized in a consistent manner:

Ωzp
q = Ωzp

0 (s) + Ωzp
5 (ξ) + δΩzp

fin,

Ω0(s) = −NcNf

2π2 I1,

Ω5(ξ) = −m2
qµ

2
5
NcNf

2π2 I2,

Ωzp
fin = −µ4

5
NcNf

12π2 ,

where the divergent integrals I1 and I2 can be obtained using dimensional
regularization:

I1 = 2µ2s

∫
p2dp

(p2 +m2
q)s− 1

2
= −

m4
q

8s +
m4

q

16

[
−3 + 2γE + 2ψ(− 1

2 ) + 4 ln mq

µ

]
,

I2 = µ2ξ

∫
p2dp

(p2 +m2
q)ξ+ 3

2
= 1

2ξ −
[

γE

2 + 1
2ψ( 3

2 ) + ln mq

µ

]
.

▶ Renormalizing the LSM model using 3 schemes gives 3 different results
[M. Ruggieri, G. X. Peng, arXiv:1602.03651]
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QCD with helical chemical potential

▶ When µA = 0, Ωzp
q is independent of T , µV , µH .

▶ µH plays a role dual to that of µV , the PD exhibiting a self-duality with respect
to µV ↔ µH .

11 / 30



Kinematic frame for rigid rotation

Ω

z

x

y

(ρ, φ, z)

a
u

ω

τ

eφ̂

et̂

u

τ

A “kinematic” orthogonal tetrad is given by: [Becattini, Grossi, PRD 2015]

Velocity : u =Γ(et̂ + ρΩeφ̂), Γ = (1 − ρ2Ω2)−1/2,

Acceleration : a =∇uu = −ρΩ2Γ2eρ̂,

Vorticity : ω = 1
2ε

α̂β̂γ̂σ̂eα̂uβ̂(∇γ̂uσ̂) = Γ2Ωeẑ,

Fourth vector : τ = − εα̂β̂γ̂σ̂eα̂ωβ̂aγ̂uσ̂ = −ρΩ3Γ5(ρΩet̂ + eφ̂). 12 / 30



Rigidly-rotating thermal states

QV QA QH JV JA JH ω
C − + − − + − +
P + − − − + + +
T + + + − − − −

▶ Rotating thermal states can be constructed using

⟨Â⟩ = Z−1Tr(ϱ̂Â), Z = Tr(ϱ̂),

ϱ̂ = exp

[
−β0

(
Ĥ − ΩM̂z −

∑
ℓ

µℓ;0Q̂ℓ

)]
,

where β0 = T−1
0 and µV/A/H;0 are measured on the rotation axis.

▶ The currents Jµ
ℓ = Qℓu

µ + σω
ℓ ω

µ
ℓ + στ

ℓ τ
µ have vortical conductivities:

σV ≃2µHT

π2 ln 2 + µV µA

π2 , σA ≃T 2

6 + µ2
V + µ2

A + µ2
H

2π2 , σH ≃2µV T

π2 ln 2 + µHµA

π2 .

▶ In rigid rotation, T = T0Γ and µℓ = µℓ;0Γ, with Γ = (1 − ρ2Ω2)−1/2.
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Neutral isothermal plasma at rest
▶ At leading order w.r.t. T , σω

V/H are given by

σω
V = 2µHT

π2 ln 2, σω
H = 2µV T

π2 ln 2.

▶ Close to the rotation axis,

Jℓ ≃ Qℓ∂t + Ωσω
ℓ +O(ρΩ).

▶ Considering a neutral plasma (µV = µA = µH = 0), the charge densities and
vortical conductivities are

Qℓ = T 2

3 δµℓ, σV = 2T ln 2
π2 δµH , σH = 2T ln 2

π2 δµV .

▶ Considering δµV/H = δµV/H;0e
−ik(vt−z), imposing ∂µJ

µ
V/H = 0 and neglecting

fluctuations in T and uµ, the velocity of the HVW is

vHVW = 6 ln 2
π

ℏ|Ω|
kBT

c.

▶ The V and H (not A) dofs naturally combine in the HVW!
▶ In the context of the QGP, ℏΩ ≃ 6.6 MeV, kBT ≃ 150 MeV and
vHVW ≃ 2 × 10−2c.
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Vortical waves overview
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From β to Landau frame
▶ Neglecting O(Ω2) terms, Jµ

ℓ = ⟨Ĵµ
ℓ ⟩ and Tµν = ⟨T̂µν⟩ read

Jµ
ℓ = Qβ

ℓ u
µ
Ω + σµ

ℓ;β , Tµν = Eβu
µ
Ωu

ν
Ω − Pβ∆µν

Ω + σω
ε;β(ωµ

Ωu
ν
Ω + ων

Ωu
µ
Ω), (18)

with ∆µν = gµν − uµ
Ωu

ν
Ω and Eβ = 3Pβ .

▶ The study is simpler in the Landau frame, Tµ
νu

ν
L = ELu

µ
L, with

Tµν = ELu
µ
Lu

ν
L−PL∆µν

L , Jµ
ℓ = QL

ℓ u
µ
L+σω

ℓ;Lω
µ
L, σω

ℓ;L = σω
ℓ;β−

Qℓσ
ω
ε;β

E + P
. (19)

▶ uµ
L has a vorticity correction that can be eliminated via a Lorentz boost L:

uµ
L = uµ

Ω +
σω

ε;β

E + P
ωµ

Ω −→
L
uµ

Ω, Lµν = gµν −
σω

ε;β

E + P
(uµ

Ωω
ν
Ω − uν

Ωω
µ
Ω). (20)

▶ In what follows, we work in the boosted Landau frame, where

P ≃ −T 4

π2

∑
σ,λ

Li4(−eµσ,λ/T ), Qℓ = ∂P

∂µℓ
, σω

ℓ = 1
2

∂2P

∂µℓ∂µA
− QAQℓ

E + P
. (21)
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Conservation equations
▶ We work in the boosted Landau frame (“L” subscript dropped).
▶ The energy-momentum conservation ∂µT

µν = 0 leads to
DE + (E + P )θ = 0, (E + P )Duµ − ∇µP = 0, (22)

with D = uµ∂µ, ∇µ = ∆µν∂ν and θ = ∂µθ
µ.

▶ Non-conservation of Jµ
A, Jµ

H can be modelled as a relaxation process, in two ways:

∂µJ
µ
ℓ = −Qℓ

τℓ
(leads to instabilities)

∂µJ
µ
ℓ = −µℓT

2

3τℓ
(compatible with GCE) (23)

▶ We take the second approach and solve
DQV +QV θ + ∂µ(σω

V ω
µ) = 0, (24)

DQA +QAθ + ∂µ(σω
Aω

µ) = −µAT
2

3τA
, (25)

DQH +QHθ + ∂µ(σω
Hω

µ) = −µHT
2

3τH
. (26)

▶ The limit τA, τH → ∞ ⇔ ideal plasma;
▶ The limit τA → ∞, 0 < τH < ∞ ⇔ QED plasma;
▶ The case 0 < τA, τH < ∞ ⇔ QCD plasma. 17 / 30



Kinetic dissipation
▶ In real fluids, interparticle collisions happending on a timescale τR lead both to

the equilibration of the fluid and to viscous dissipation.
▶ The “perfect fluid” limit means τ → 0, which should imply also τA, τH → 0

(frozen axial and helical dofs).
▶ For consistency, when τA, τH > 0, one should consider the effects of τR.
▶ In the simplest model, dissipation is added as a first order term:

Tµν = (E + P )uµuν − Pgµν + πµν
d , Jµ

ℓ = Qℓu
µ + σω

ℓ ω
µ + V µ

ℓ;d. (27)
▶ In the RTA by Anderson-Witting,

πµν
d = 2ησµν , V µ

ℓ;d = τR

(
1
3∇µQℓ − Qℓ∇µP

E + P

)
, (28)

with η = 4
5τRP and σµν = ∇(µuν) − 1

3 ∆µνθ.
▶ The value of τR can be estimated from the ratio η/s:

τR = 5η
sT

= 0.26 fm/c× (4πη/s) ×
(

300 MeV
T

)
. (29)

▶ First-order dissipation is acausal. More rigorous frameworks include Chiral kinetic
theory [E.V. Gorbar, D.O. Rybalka, I.A. Shovkovy, PRD 95 (2017) 096010]
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Energy-momentum sector
▶ In the following, we consider perturbations around rigid rotation, localized in the

vicinity of the rotation axis (ρΩ → 0).
▶ A perturbed quantity f̄ is split into background and perturbations:

f̄ = f + δf̄ , δf̄ =
∫ ∞

−∞
dk eikz

∑
ω

e−iω(k)tδfω(k), (30)

▶ The conservation of Tµν (dissipation included) gives rise to a closed set of
equations: (

−3ω 4kP
k −4Pω − 4

3 iηk
2

)(
δPω

δuz
ω

)
= 0, (31)

where we assume the perturbations are purely longitudinal.
▶ Imposing vanishing determinant reveals the sound modes:

[E.V. Gorbar, D.O. Rybalka, I.A. Shovkovy, PRD 95 (2017) 096010]

ω±
ac. = ±kcs(η) − ik2η

6P , cs(η) = 1√
3

√
1 − k2η2

12P 2 . (32)

▶ A small discrepancy in ω±
ac. w.r.t. Gorbar et al is due to neglecting δu⊥ in

Ref. [Gorbar et al].
▶ For the charge modes, the determinant no longer vanishes and it follows that
δPω = δuz

ω = 0!
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Charge current modes
▶ For the charge modes, δPω = δuµ

ω = 0.
▶ When charge ℓ is not conserved, its chemical potential also becomes

infinitesimal: µ̄ℓ = δµ̄ℓ:(
ω + ik2τR

3

)
δQℓ;ω − kΩδσω

ℓ;ω = − T 2

3τℓ
δµℓ. (33)

▶ Expressing now ω̃ = ω + ik2τR

3 and writing δQℓ;ω and δσω
ℓ;ω in terms of δTω and

δµℓ;ω gives

Mℓℓ′δµℓ′;ω = 0, 1
T 2M = ω̃Mω − κΩMΩ + i

3τA
IA + i

3τH
IH , (34)

with κΩ = kΩ/T , (IA)ℓℓ′ = δℓAδℓ′A and (IH)ℓℓ′ = δℓHδℓ′H , as well as

Mω
ℓℓ′ = 1

T 2

(
∂Qℓ

∂µℓ′
− 3QℓQℓ′

sT
+ Qℓ′ µ⃗

sT
· ∂Qℓ

∂µ⃗

)
, (35)

MΩ
ℓℓ′ = 1

T

(
∂σω

ℓ

∂µℓ′
− 2σω

ℓ Qℓ′

sT
+ Qℓ′ µ⃗

sT
· ∂σ

ω
ℓ

∂µ⃗

)
. (36)
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Conserved A and H charges: large T limit
▶ Let us consider first τA, τH → ∞.
▶ At large temperatures, the pressure becomes

P = 7π2T 4

180 + µ⃗2T 2

6 + 4µ3
×T

π2 ln 2 + (µ⃗2)2

12π2 + µ2
Aµ2

H + µ2
V µ2

H + µ2
V µ2

A

3π2 + O(T −1). (37)

▶ The matrices Mω and MΩ become:

Mω = 1
3 I + 4 ln 2

π2T

( 0 µH µA

µH 0 µV

µA µV 0

)
+ O(T −2), (38)

MΩ = 2 ln 2
π2

(0 0 1
0 0 0
1 0 0

)
+ 2

7π2T

(
µA µV 0
µV −4µA µH

0 µH µA

)
+ O(T −2). (39)

▶ Writing ω̃ = ω̃0 + T−1ω̃1 + T−2ω̃2 +O(T−3) reveals:

HVW :
ω±

h

k
= ± 6 ln 2

π2
Ω
T

− 6
7π2

[
84
π2 (ln 2)2−1

]
ΩµA

T 2 +O(T−3), (40)

AVW : ωa

k
= − 24

7π2
µAΩ
T 2 +O(T−3). (41)

▶ The AVW is non-reciprocal (only travels in one direction).
▶ Non-reciprocity seen in the HVW, in the subleading term.
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HVW propagation: split of helical signal

▶ We take µ̄V (0, z) = δµ̄V ;0e
−z2/2σ2 .

▶ The exact solution for the propagation of the initial Gaussian lump reads:

δµ̄V (t, z) = δµ̄V ;0

2

[
e−(z−cht)2/2σ2

+ e−(z+cht)2/2σ2
]
, (42)

δµ̄H(t, z) = δµ̄V ;0

2

[
e−(z−cht)2/2σ2

− e−(z+cht)2/2σ2
]
. (43)
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AVW propagation: non-reciprocity

▶ The AVW propagates only at finite µA, which we take as µT = 0.1T .
▶ For the initial profile µ̄A(0, z) = µA + δµ̄Ae

−z2/2σ2 , we find

µ̄A(t, z) = µA + δµ̄A e
−(z−vat)2/2σ2

. (44)

23 / 30



Charged, unpolarized plasma: µA = µH = 0
▶ The pressure of the unpolarized plasma reads

P = 7π2T 4

180 + µ2
V T 2

6 + µ4
V

12π2 . (45)

▶ The matrix T−2M = ω̃Mω − κΩMΩ becomes

Mω = 2
T 2

σω
A − T 2

3 ∆H 0 0
0 σω

A σω
H

0 σω
H σω

A

 , MΩ =

( 0 1
H

A 1
H

B
A 0 0
B 0 0

)
, (46)

where ∆H = H − 1, H = (E + P )/sT , while A and B are

A = αV

π2 − QV

3s
, B = HL

π2 − 2QV

sT 2 σω
H . (47)

▶ The corresponding characteristic equation reads

det
(

ω̃Mω − κΩMΩ + i

3τH
IH + i

3τA
IA

)
= 2ω

T 2

{(2ω

T 2

)2
(

σω
A − T 2

3 ∆H

)
[(σω

A)2 − (σω
H)2] − κ2

Ω
H

[(A2 + B2)σω
A − 2ABσω

H ]
}

+ i

3

[(2ω

T 2

)2
σω

A

(
σω

A − T 2

3 ∆H

)( 1
τH

+ 1
τA

)
− κ2

Ω
H

(
A2

τH
+ B2

τA

)]
− 2ω

9T 2τAτH

(
σω

A − T 2

3 ∆H

)
= 0. (48)24 / 30



Damping of the HVW

▶ Consider the |µV | ≪ T limit (µA = µH = 0). The HVW behaves as

ωHVW = − i

2τH
± kch

√
1 −

k2
th
k2 , kth = 1

2τHch
= π2

12 ln 2
T

ΩτH
. (49)

▶ τH prevents the propagation of large wavelengths.
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Freezing the H mode: resurgence of AVW

▶ When τH = 0, the δµH → 0 instantaneously ⇒ the helical dof doesn’t propagate
and

ωh = − iT 2σω
A

6τH [(σω
A)2 − (σω

H)2] . (50)

▶ In this regime, the A and V dofs couple and give rise to a propagating wave:

ω±
a = ± AT 2

2σω
A

√
H

(
1 − T 2∆H

3σω
A

)−1/2
kΩ
T
. (51)

26 / 30



Wave spectrum
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Damping of the AVW

▶ Consider the |µV | ≪ T limit (µA = µH = 0). The AVW behaves as

ωa = 3iα2
V

π2τA(τA − τH − τHτ2
Ak

2c2
h)

×
[
(τA − τH)

(
1 + 12

49π2κ
2
Ωτ

2
A

)
+ τH

48
π2 (ln 2)2

(
1 + 3

28π2κ
2
Ωτ

2
A

)]
. (52)

▶ τA inhibits the propagation of the AVW for large wavenumbers.
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Wave spectrum
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Conclusion

▶ The Dirac theory allows for (at least) three conserved currents: Jµ
V , Jµ

A and Jµ
H .

▶ Associated to QH is µH , which accounts for helicity imbalance.
▶ For m = 0, (µV , µA, µH) form a triad, contributing non-trivially to anomalous

transport (vortical effects).
▶ At m ̸= 0, QH remains conserved and µH is well defined.
▶ The µH dof gives rise to the helical vortical wave (HVW), which propagates

faster than the CVW.
▶ While µA is incompatible with the LSMq, µH appears to be dual to µV .
▶ Neither Jµ

H nor Jµ
A are conserved in interacting theories ⇒ τH and τA inhibit the

propagation of the HVW and AVW at large wavelengths.
▶ This work is supported by the European Union - NextGenerationEU through

grant No. 760079/23.05.2023, funded by the Romanian ministry of research,
innovation and digitalization through Romania’s National Recovery and
Resilience Plan, call no. PNRR-III-C9-2022-I8.
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